TARDÍGRADOS

Ciencia en español

Archive for the ‘Física de partículas’ Category

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m₁ y m₂, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r₁ y r₂, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0).
2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m₁, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a₁₂ y en a₂₁. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Anuncios

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

NO ESTAMOS SOLOS EN EL UNIVERSO

Posted by Albert Zotkin en junio 16, 2016

Existen muchas civilizaciones alienígenas más avanzadas tecnológicamente que la nuestra, saben que estamos aquí, pero no nos visitan porque no somos nada interesantes para ellos.
1. Búsqueda de Inteligencia Extraterrestre: Existen varios programas SETI de búsqueda de vida inteligente extraterrestre. Dicha búsqueda se hace de forma activa, enviando mensajes al espacio exterior, y de forma pasiva escuchando las señales que nos llegan y analizándolas para saber si tiene origen natural o artificial.
Pero, una civilización extraterrestre muy avanzada tecnológicamente, podría ser potencialmente un peligro inmenso para nuestra propia civilización si nos visitaran. Eso fue lo que nos dijo el prestigioso astrofísico y matemático inglés,Stephen Hawking. El cree firmemente en la existencia no sólo de vida extraterrestre, sino en la existencia de civilizaciones alienigenas muy avanzadas tecnológicamente. Piensa que no sólo la vida en la Tierra estaría en peligro, sino la misma Tierra como planeta, ante una potencial invasión de ingentes enjambres de naves alienígenas formados por cientos de miles de naves nodrizas interestelares, conteniendo cada una miles de drones equipados con armas letales de destrucción masiva. En concreto, el profesor Hawking confesó que: “Quizás esas civilizaciones alienígenas, que viven en colonias nómadas interestelares, estén en constante movimiento por toda la galaxia en busca de recursos materiales y energéticos para construir y mantener sus naves y todos sus sistemas de pervivencia. Una eventual visita a la Tierra de una de esas colonias nómadas resultaría en un cataclismo de proporciones bíblicas …
2. La ecuación de Drake: Según una primera estimación de la ecuación de Drake, existen en nuestra galaxia al menos diez civilizaciones alienígenas más avanzadas tecnológicamente que nosotros. La ecuación de Drake es la siguiente:

\displaystyle N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L

drake

y una primera estimación es la siguiente:

R^* =  10/año (10 estrellas se forman cada año)
f_p =  0.5 (la mitad de esas estrellas cuentan con planetas)
n_e =  2 (cada una de esas estrellas contiene dos planetas)
f_l =  1 (el 100 % de esos planetas podría desarrollar vida)
f_i =  0.01 (solo el 1 % albergaría vida inteligente)
f_c =  0.01 (solo el 1 % de tal vida inteligente se puede comunicar)
L =  10 000 años (Cada civilización duraría 10 000 años trasmitiendo señales)

N =10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
N =  10 posibles civilizaciones detectables.

3. La paradoja de Fermi: La Paradoja de Fermi nos dirá que si hay al menos 10 civilizaciones alienígenas en nuestra galaxia, ¿dónde están?, no nos han visitado, no dan señales de vida. Esta supuesta paradoja se resuelve muy fácilmente: No nos han visitado porque el planeta Tierra, y en particular la vida en él y nuestra civilización humana, no les motiva especialmente. Es como si nosotros visitamos un desierto donde no hay prácticamente nada de interés. ¿por qué tenemos que aventurarnos hacia lugares remotos si sabemos a ciencia cierta que no tienen nada nuevo allí que no sepamos?. La respuesta a la paradoja de Fermi implica que existe al menos una civilización alienígena cercana muy avanzada, una civilización muy antigua, que quizás ya esté extinguida, que alcanzó su cúspide de avances tecnológicos y científicos hace aproximadamente unos ocho mil millones de años, cuando el sistema solar aún estaba en su más temprana etapa de formación. Quizás, fue esa civilización alienígena la que “sembró” el planeta Tierra de vida, convirtiéndolo en un santuario.
fermi-paradox-660x330
4. No son como nosotros: ¿Te imaginas a un ser alienígena super inteligente poseyendo el cuerpo de un gusano pestilente del tamaño de una anaconda arrastrándose por el fango?. El contacto con esos seres no sería muy agradable para nosotros, sería algo vomitivo, y lo mismo sentirían ellos de nosotros. Nuestros cuerpos, nuestros hábitats, nuestras costumbres gastronómicas, serían para esos seres algo repulsivo. ¿Te imaginas a un inteligente y avanzado alien con un cuerpo muy semejante al de una cucaracha y del tamaño de un elefante, desprendiendo un insoportable y extraño hedor?. Como poder, sí se puede imaginar, pero no sería algo muy agradable de sentir cerca de nosotros, y ese ser alienígena sentiría algo muy parecido al vernos a nosotros.
alien-2
Saludos cucarachescos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Física de partículas, Gravedad Cuántica, Inteligencia artificial, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un pequeño apunte sobre el Premio Nobel de Física 2015: oscilación de neutrinos

Posted by Albert Zotkin en febrero 4, 2016

El año pasado la Real Academia de las Ciencias de Suecia entregó el Premio Nobel de Física 2015 al japonés Takaaki Kajita y al canadiense Arthur B. McDonald “por el descubrimiento de las oscilaciones de neutrinos que demuestran que estas partículas subatómicas tienen masa” (Rey Carlos Gustavo de Suecia entrega los Premios Nobel 2015).

Los neutrinos son unas minúsculas partículas elementales que no poseen carga eléctrica, pero poseen algo extraño llamado sabor (flavor). Existen tres clases de sabores, electrónico, muónico y tauónico. Es decir, estas diminutas partículas son como unas pequeñas chuches de tres colores o sabores.
neutrinos1

Viajan por el espacio a velocidades ultrarápidas y casi constantes, sin que a penas se vean frenadas ni desviadas al atravesar la materia. Se ha calculado que por cada centímetro cuadrado de la superficie terrestre pasan unos 6.5 × 1010 neutrinos por segundo procedentes del sol (para superficies que apunten hacia él). Se sabe que los neutrinos que salen del Sol son todos de sabor eléctrónico, pero al ser detectados algunos en la Tierra se comprueba que hay de los tres sabores en diferentes proporciones. Eso quiere decir que durante su viaje hacia la Tierra algunos neutrinos eléctrónicos oscilaron y se convirtieron en muónicos o tauónicos. Pero para que un neutrino pueda oscilar necesita tener masa, por muy pequeña que esa sea.

Sorprendentemente, hay muchas evidencias de que el cuadrado de las masas de los neutrinos es negativo. Eso es bastante exótico, por no decir intrigante. ¿Qué significa que los cuadrados de las masas de los neutrinos sean valores negativos?. Pues sencillamente que dichas masas son números imaginarios (números complejos puros). Y la primera consecuencia de eso es que son partículas que viajan a una velocidad superior a la de la luz en el vacío. ¿Por qué ocurre eso?. En los experimentos diseñados para medir las masas de los neutrinos, se obtienen esos resultados porque se usan los formalismos matemáticos de la Relatividad Especial. Más exactamente sus relaciones de dispersión entre energía total (E) y momento (p):

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E = m_0 c^2 \gamma \\ \\  \gamma = \cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} (1)
La energía total E es siempre un escalar, un número real positivo. Si una partícula supera la velocidad de la luz en el vacío, v>c, entonces desde la Relatividad Especial de Einstein se obtiene un factor de Lorentz γ imaginario. Pongamos primero el factor de Lorentz de esta forma:

\displaystyle  \gamma=\cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} = \cfrac{1}{\sqrt{-1}\sqrt{\frac{v^2}{c^2}-1}}= \\ \\  = \pm \cfrac{i}{i^2 \sqrt{\frac{v^2}{c^2}-1}}=\mp \cfrac{i}{\sqrt{\frac{v^2}{c^2}-1}} (2)

porque \sqrt{-1}=\pm i

y eso significa que, si asumimos que la energía total es siempre un escalar positivo, la masa de un neutrino será un número imaginario (o lo que es lo mismo, un neutrino es un tachión):

\displaystyle  E= m_0 c^2 \gamma \\ \\  m_0 \gamma = \frac{E}{c^2} \\ \\  m_{\text{neutrino}}= m_0  i (3)
Observamos con estupor cómo la Relatividad Especial no es la mejor teoría del mundo para analizar la cinemática ni la dinámica de partículas superlumínicas. Para analizar mejor ese tipo de partículas, de las que los neutrinos parecen formar parte, he desarrollado las siguientes relaciones de dispersión que se enmarcan dentro de la Relatividad Galileana. La energía total de una partícula con masa en reposo m0 es :

\displaystyle  E = m_0 c^2 \cosh\left( \frac{v}{c}\right) (4)

y su momento lineal viene expresado así:

\displaystyle  p= m_0 c \sinh \left( \frac{v}{c}\right)  (5)
Esto implica, ni más ni menos, que la relación energía-momento sigue poseyendo la misma forma que la de la Relatividad Especial, pero con el significativo hecho de que no existe ninguna velocidad superior límite:

\displaystyle  E^2 = m_0^2c^4 + (pc)^2 \\ \\  E^2 -(pc)^2  = m_0^2c^4  \\ \\   m_0^2c^4 \cosh^2 \left( \frac{v}{c}\right) -  m_0^2c^4 \sinh^2 \left( \frac{v}{c}\right) = m_0^2c^4 \\ \\   \cosh^2 \left( \frac{v}{c}\right) -   \sinh^2 \left( \frac{v}{c}\right) = 1   (6)
que es estricta y matemáticamente la relación existente entre coseno y seno hiperbólicos. Vemos desde esta Relatividad Galileana, cómo cuando una partícula iguala la velocidad de la luz en el vacío, su energía total no es infinita, como predice la Relatividad Especial, sino que es un escalar finito:

\displaystyle  E_c = m_0 c^2 \cosh\left( \frac{c}{c}\right) = m_0 c^2 \cosh 1 = \\  E_c = m_0 c^2 1.543080634815243778477905620757061682601529112365[9]  (7)
Los neutrinos pueden ser tratados desde esta teoría de una forma más natural que desde la Relatividad Especial. Es decir, ya no surge ninguna masa imaginaria, es todo real y natural. Las predicciones teóricas con estos nuevos formalismos se ajustan a los resultados experimentales de la misma forma que las de de la Relatividad Especial. Dicho de otro modo, no hay, hoy por hoy, con la tecnología actual más avanzada, forma alguna de llegar a un punto donde se pueda afirmar con rotundidad que el experimento diferencia entre una y la otra teoría. Para poder distinguir experimentalmente una predicción entre estas dos teorías antagónicas, habría que poder discriminar con precisiones de medida tales que, a partir de un punto, el valor del factor relativista de Lorentz y el del coseno hiperbólico de la beta, β = v/c, fueran visiblemente distintos. Esto encierra una discriminación en expansiones de series de Taylor como la siguiente:

\displaystyle  \cosh \beta =1+\frac{\beta ^2}{2}+\frac{\beta ^4}{24}+\frac{\beta ^6}{720}+\frac{\beta ^8}{40320}+\frac{\beta ^{10}}{3628800}\dots \\ \\  \gamma = 1+\frac{\beta ^2}{2}+\frac{3 \beta ^4}{8}+\frac{5 \beta ^6}{16}+\frac{35 \beta ^8}{128}+\frac{63 \beta ^{10}}{256}\dots  (8)
Es decir, para poder afirmar que una de esas dos teorías pasa el test experimental y la otra no, habría que alcanzar una precesión experimental tal que se discriminara entre las cuartas potencias de la beta, β = v/c:
cosh
Alguien escéptico de lo que aquí afirmo podría decir que en el acelerador de partículas más puntero, el LHC, se alcanzan velocidades del orden de v = 0,999999991c, que equivale a un factor de Lorentz de γ = 7460. Por lo que en ningún caso se observan velocidades superlumínicas. Pero, eso no es exactamente así, porque lo que se miden en el LHc no son velocidades, sino energías y momentos. Las velocidades de los protones que circulan por el LHC son deducidas teóricamente aplicando los formalismos matemáticos de la Relatividad Especial. En modo alguno, esas velocidades son medidas directamente. Veamos qué velocidad predice la Relatividad Galileana cuando aplicamos sus formalismos expresados arriba en (4) y (5), para una energía total de un protón de 7 TeV:

\displaystyle  v = c\; \text{arcosh} \left( \cfrac{E}{m_0 c^2}\right)  (9)

La masa del protón es m_0 = 938.3\; \text{MeV}/c^2.
Por lo tanto, m_0 c^2 = 9.383 \times 10^{-4} \; \text{TeV}. Esto da un valor para la velocidad de:

\displaystyle  v = c\; \text{arcosh} \left( \cfrac{7}{9.383 \times 10^{-4}}\right)=9.6105\;c (10)
Pero volviendo al tema de la velocidad de los neutrinos, hace ya algunos años se hizo un experimento para medir dicha velocidad, y el resultado fue muy polémico, ya que concluía que antineutrinos muónicos daban velocidades ligeramente superior a la de la luz en el vacío. Este experimento se llamó OPERA, y afirmaba haber medido velocidades superlumínicas en un chorro de antineutrinos muónicos emitido desde el CERN hasta Gran Sasso, viajando una distancia de 730 km. Se observó con sorpresa que dichos neutrinos llegaban antes que si viajaran a la velocidad de c = 299792458 m/s. Esa desviación respecto de c correspondía exactamente a:

\displaystyle  \cfrac{v-c}{c}=2.37\pm 0.32 \times 10^{-5} (10)
Esa es una desviación demasiado grande respecto a c, por lo que indicaría que la Relatividad Especial está acabada. Mucho mas tarde se “comprobó” (lo pongo entre comillas porque siempre queda un olorcillo conspiratorio) que todo se debía a un error sistemático. Se comprobó que un cable de fibra óptica mal conectado era el responsable principal de esa desviación. ¿Cuál es el problema de todo esto?. El problema del cable mal apretado consiste básicamente en que no es ciencia es sólo tecnología, y eso da pie a que la conspiración aflore de forma natural. ¿Cuántos notarios constataron que el cable estaba mal apretado?. ¿Cuántos testigos había en el momento en que se descubrió que un cable estaba mal conectado?. Eso no es ciencia, es tecnología llevada al juzgado de guardia. Por eso, siempre está la sombra de la sospecha de la conspiración para dar carpetazo al tema de la velocidad de los neutrinos. Todos nos creemos que los neutrinos no superaron nunca la velocidad c, la Relatividad Especial permanece tan válida como siempre, y todos tan contentos. A nadie se le volverá a ocurrir nunca repetir ese experimento con los cables bien apretados, no sea que vuelva el fantasma de la velocidad superlumínica, y entonces haya que ver a qué aparato endosamos el error sistemático para que la eterna Relatividad Especial siga siendo nuestra única teoría.

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

¿Es posible superar la velocidad de la luz en el vacío? Diferencias entre electrón, muón y tau leptón

Posted by Albert Zotkin en agosto 14, 2015

limite maximo

Hola amigos de Tardígrados. Hoy vamos a intentar viajar a una velocidad superior a la de la luz en el vacío. Es decir, subiremos a nuestro cohete a reacción e intentaremos acelerar hasta una velocidad superior a c = 299.792.458 km/s. ¿Lo conseguiremos?. Sí. Pero las consecuencias no serán tan bonitas como pensamos.

Según la Teoría de la Relatividad Especial, para acelerar un cohete hasta la velocidad de la luz en el vacío haría falta una cantidad infinita de energía, es decir, sería imposible, porque en el universo no hay disponible para nosotros una cantidad infinita de energía. Pero claro, eso es lo que predice esa teoría. Yo podría proponer otra teoría más “bonita” desde la cual sí sería posible superar ese límite máximo, aunque con algo que sería inesperado y decepcionante para los amantes de los viajes interestelares.

La teoría que propongo dice que al superar la velocidad de la luz en el vacío se produce una conjugación de la paridad, es decir, la partícula superlumínica sería vista viajando en dirección opuesta con una velocidad sublumínica. Así nuestro cohete al igualar la velocidad de la luz sería visto como estacionario (parado) en cierto punto, y al superar dicha velocidad sería visto viajando en dirección opuesta. Sería algo muy parecido a su imagen especular. De esta forma tan rocambolesca, podemos superar la velocidad de la luz cuantas veces queramos, porque dicha velocidad no sería algo absoluto sino algo cíclico. Estas consideraciones ya las apunté en un antiguo post titulado ¿Es cierto que la velocidad de la luz en el vacío es la máxima velocidad que una partícula puede alcanzar?. Efectivamente, todo esto tiene que ver con el fenómeno de la interferencia de ondas. Y parafraseando un conocido eslogan de una famosa franquicia de pizzas, podemos afirmar que “el secreto está en la masa“.

Así un electron y un muón, ambos vistos en reposo, poseen distintas masas. ¿Qué ocurre?. Pues muy fácil, un muón es un electrón que ha superado un ciclo de la velocidad de la luz. ¿Y un tau leptón?. Un tau leptón sería un electrón que ha superado dos ciclos, es decir, que se mueve inercialmente a dos ciclos de la velocidad de la luz.

Todo esto lo podemos expresar matemáticamente de la siguiente forma. Veremos cómo, cuando el número de ciclos es impar, la dirección del movimiento inercial es inversa a la inicial. Usemos una ecuación de movimiento armónico simple

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{2\pi w}{c}\right)\,
la β = w/c indicará el número de ciclos, y w puede ser un valor mayor que c. En cambio, v sólo puede estar en el intervalo [-c, c].

sin

Si aplicamos la fórmula de Euler

\displaystyle   e^{ix}=\cos x+i\sin x

vemos que podemos expresar:

\displaystyle   x=  \frac{2\pi w}{c}\\  \\  \\  \cos x = \mathrm{Re}\{e^{ix}\} =\cfrac{e^{ix} + e^{-ix}}{2} \\  \\  \\   \sin x = \mathrm{Im}\{e^{ix}\} =-\cfrac{e^{ix} - e^{-ix}}{2i}
Estas ecuaciones nos sugieren que la energía total de una partícula de masa m que se desplaza a una velocidad w debe ser:

\displaystyle  E = mc^2 \cosh\left(\frac{2\pi w}{c}\right)

y su momento lineal:

\displaystyle  p = mc \sinh\left(\frac{2\pi w}{c}\right)

y si afirmamos que un muón en reposo equivale a un electrón con una velocidad igual a c, tendremos que la energía en reposo del muón debe coincidir con la energía total del electrón que se mueve a esa c:

\displaystyle   m_ec^2 \cosh\left(\frac{2\pi c}{c}\right) = m_{\mu}c^2 \\ \\ \\   \cfrac{m_{\mu}}{m_e} =\cosh 2\pi \approx 267,7

es decir, la masa del muón sería casi 268 veces la masa del electrón

Todo esto es muy bonito, pero volvamos al concepto de “conjugación de la paridad”. Es evidente que si la partícula es vista viajando en dirección opuesta cuando ha superado la velocidad de la luz, entonces algo no cuadra. Lo correcto sería ver cómo a medida que la partícula acelera, la velocidad aparente debe pasar por un máximo y llegar hasta un mínimo. Y esto implica que c debe ser ese máximo. Es decir, en w = 2c la partícula sería vista estacionaria, en w = 3c sería vista viajando en dirección contraria a la máxima velocidad c, y en w = 4c volvería a estar estacionaria completando un ciclo. Por lo que la ecuación armónica debería ser esta:

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{\pi w}{2c}\right)\,
Y esto significa que si hemos empleado un campo eléctrico para acelerar la partícula (la cual está cargada eléctricamente) entonces, además de una conjugación de la paridad, observaríamos una conjugación de carga. Efectivamente, cuando con el mismo campo eléctrico vemos que la partícula, en lugar de avanzar, retrocede (dirección contraria), entonces estamos ante una conjugación de carga eléctrica (la partícula se comportaría como si hubiera invertido su carga eléctrica). Según esta extraña teoría que estoy perfilando, una partícula poseería una carga eléctrica oscilante, y el signo de esa carga (positiva, negativa o neutra) dependería de cuantos ciclos-luz contiene su masa y de su actual energía cinética.

Así, puesto que la ratio entre la masa de un muón y la de un electrón es:

\displaystyle   \cfrac{m_{\mu}}{m_e}  \approx 206.768

el número de ciclos-luz de un muón sería de:

\displaystyle  \cosh \left(2 \pi x \right) = 206.768  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(206.768\right) = 0.958867

Igualmente, el número de ciclos-luz para un tau leptón sería:

\displaystyle   \cfrac{m_{\tau}}{m_e}  \approx 3477.15  \\ \\  \\   \cosh \left(2 \pi x \right) = 3477.15  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(3477.15\right) = 1.40806

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin en agosto 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Antimateria en una Banda de Möbius

Posted by Albert Zotkin en julio 31, 2015

Amables lectores de Tardígrados, hoy voy a insistir brevemente en una idea que ya apunté en un post anterior. Se trata de la hipótesis de que nuestro universo se materialice en un espacio tridimensional que posee una simetría en dos lados o caras. De esa forma, una partícula con carga eléctrica positiva viviría localmente en uno de esos lados, y su anti-partícula (eléctrica negativa) viviría en el lado opuesto. Si afirmamos que ese espacio dual (dos lados o caras opuestas) posee la característica de una banda de Möbius cuando se consideran distancias cósmicas, entonces estamos en disposición de afirmar que podríamos transformar una partícula en su anti-partícula si la desplazamos por su lado hasta completar un ciclo por esa banda de Möbius y situarla en su punto de partida. Eso implicaría que si queremos dejar invariante una partícula mediante su traslado cósmico deberíamos completar dos ciclos, es decir realizar una rotación de 720 grados.

Este hecho insólito nos está diciendo que dos cargas eléctricas de igual signo se repelen localmente por el alucinante hecho de que en realidad se están atrayendo. La repulsión eléctrica sería en realidad una forma de atracción, por eso las dos partículas de igual carga interaccionan alejándose una de la otra por el mismo lado de la Banda de Möbius, ya que al alejarse por ese lado lo que en realidad está ocurriendo es que tienden a encontrarse en un punto espacial en el que ambas estarán localmente en lados opuestos. Veamos con más detenimiento lo que quiero decir. Sean dos electrones que permanecen retenidos casi en el mismo punto espacial, y soltamos uno de ellos mientras el otro permanece retenido. Entonces el electrón liberado transforma su energía potencial en energía cinética de alejamiento, y seguirá alejándose hasta completar un ciclo en la banda de Möbius y llegar cerca del otro electrón, pero con su carga conjugada (la carga eléctrica negativa se ha convertido en positiva). En ese momento del reencuentro, el electrón viajero es un positrón respecto al que quedó fijo, y por lo tanto se aniquilarán colisionando.

Este hecho insólito, que la ciencia oficial parece no considerar, nos dice claramente que en nuestro universo existe tanta materia como antimateria (como no podía ser de otra forma), ya que la naturaleza no sabe diferenciar el signo de una carga eléctrica. En otras palabras, la carga eléctrica de una partícula no es algo absoluto, sino relativo.

Saludos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , | Leave a Comment »

Meditaciones a cerca del efecto Doppler de las ondas de materia

Posted by Albert Zotkin en julio 26, 2015

Algo misterioso ocurre con las partículas con masa. Un electrón puede ser considerado como una partícula o como una onda, y eso depende de cómo dispongamos nuestros aparatos de medida en el experimento. El problema es que esa onda de materia parece estar deslocalizada respecto a la hipotética fuente que la genera. Según la hipótesis de De Broglie, las partículas poseen también una longitud de onda:

\displaystyle    \lambda = \cfrac{h}{mv}
donde h es la constante de Planck, m la masa de la partícula y v el módulo del vector velocidad. Por lo tanto, según esa ecuación, la longitud de onda de la partícula aumenta cuando disminuye la velocidad (el módulo del vector velocidad)., y disminuye cuando aumenta la velocidad. Pero lo mismo da que la partícula se aleje o se acerque al observador, esas variaciones de longitud de onda se dan siempre considerando el módulo del vector velocidad. Por lo tanto, vemos que para un posible efecto Doppler, esa ecuación nos dice poco, pues estamos acostumbrados a que las ondas de sonido o de la luz alarguen su longitud cuando la fuente que las genera se aleja de nosotros o acorte dicha longitud de onda cuando esa fuente se acerca. Pero, en las ondas de materia parece ser que esa variación sólo ocurre con la variación del módulo del vector velocidad, independientemente de que la partícula se aleje o se acerque al observador.

El experimento de Young (también llamado de la doble rendija) nos deja estupefactos cuando comprobamos una y otra vez que las partículas subatómicas (electrones, protones, neutrones, etc) se comportan como ondas cuando queremos conocer demasiado sobre sus trayectorias y estados. Eso quiere decir ni más ni menos que, intrínsecamente, las “partículas” subatómicas no son ni partículas ni ondas, sino todo lo contrario.

De Broglie descubrió que los cuerpos con masa se comportan como si fueran ondas, es decir, se propagan mostrando cierta longitud de onda o frecuencia (de algo que vibra, ¿campo de Higgs?, ¿Ëter?, ¿campo gravitacional?).

Seguidamente voy a demostrar que las ondas de materia sufren también el efecto Doppler. Y que la longitud de onda y la frecuencia de una onda de materia se expresan completamente de esta forma:

\displaystyle  \;\;\;f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)\;\;\;
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)

He demostrado muchas veces, por activa y por pasiva, que las fórmulas del efecto Doppler completo para una determinada frecuencia (o longitud de onda) electromagnética, se expresan así:

\displaystyle  f = f_0 \exp \left(\cfrac{v}{c}\right)  (1)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right)  (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Igualmente, para las ondas de materias debe existir un efecto Doppler similar. La velocidad de fase cph de una onda de materia, por ejemplo la de un electrón, se expresa como el cociente de su energía total dividida por su momento lineal:

\displaystyle  c_{ph} = \cfrac{E}{p}
En cuanto a la velocidad de grupo vg de dicha onda de materia sería la derivada de la energía total respecto del momento:

\displaystyle  v_{g} = \cfrac{dE}{dp}
La enegía total de una partícula con masa m y su momento lineal se expresarían así:

\displaystyle  E = mc^2 \cosh\left(\cfrac{v}{c}\right) \\ \\ \\  p = mc \sinh\left(\cfrac{v}{c}\right)
por lo tanto, la velocidad de fase y la velocidad de grupo se expresan así:

\displaystyle  c_{ph} = \cfrac{E}{p} = mc^2 \cfrac{\cosh(v/c)}{mc\sinh(v/c)} = c \coth\left(\cfrac{v}{c}\right) \\ \\ \\  v_{g} = \cfrac{dE}{dp}  = \cfrac{mc^2 \sinh(v/c)}{mc \cosh(v/c)}= c \tanh\left(\cfrac{v}{c}\right)
Todo esto está ya super demostrado (por activa y por pasiva). Ahora viene la parte novedosa. Sustituyamos la β = v/c en las fórmulas del efecto Doppler, por esta otra:

\displaystyle  \beta =\cfrac{v_g}{c_{ph}}
Esto significaría que el efecto Doppler quedaría expresado para ondas de materia en lugar de para ondas electromagnéticas, así:

\displaystyle  f = f_0 \exp \left(\cfrac{v_g}{c_{ph}}\right)  (3)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v_g}{c_{ph}}\right)  (4)

Pero es fácil ver que existe una relación de dispersión:

\displaystyle  v_g c_{ph} = \left(c \coth \frac{v}{c} \right) \left(c \tanh \frac{v}{c}\right) = c^2
con lo cual, las ecuaciones (3) y (4) quedarían así, si identificamos la velocidad de grupo de la onda de materia con la velocidad de la partícula, vg = v:

\displaystyle  f = f_0 \exp \left(\cfrac{v^2}{c^2}\right)  (5)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v^2}{c^2}\right)  (6)
Es decir, esta frecuencia f y esta longitud de onda λ ya no corresponden a ondas electromagnéticas, sino a ondas de materia. Y esto significa, ni más ni menos, que f0 y λ0 deben corresponder a la frecuencia y la longitud de Compton:

\displaystyle  f_0 = \cfrac{mc^2}{\hbar}  (7)
\displaystyle  \lambda_0 = \cfrac{\hbar}{mc}  (8)
Así, finalmente, tendremos que el efecto Doppler para las ondas de materia vendría expresado por estas dos ecuaciones:

\displaystyle  f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)  (9)
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)  (10)
CDQ. Con lo cual he demostrado lo que quería demostrar. Además, en estas dos ecuaciones del efecto Doppler de ondas de materia se ve muy claramente por qué la longitud de onda no depende de si la partícula se acerca o se aleja del observador. La causa de eso es porque la β está elevada al cuadrado, y por lo tanto el signo de v (negativo para alejamiento y signo positivo para acercamiento) no influye en el valor de ese efecto Doppler.

Sin embargo, la ecuación (6) no equivale a la ecuación que propuso de Broglie, λ = h/mv, cuando la velocidad de la luz c tiende a infinito, es decir, en el límite clásico (Newtoniano). Esta discordancia obedece al hecho de identificar la velocidad de grupo de una onda de materia con la velocidad de la partícula, lo cual no siempre es correcto. Para corregir ese hecho, simplemente sustituimos el momento lineal clásico, p = mv, por el relativista Galileano, p = mc sinh(v/c). Con lo cual la longitud de onda de una onda de materia quedaría así:

\displaystyle    \lambda = \cfrac{h}{mc \sinh(\tfrac{v}{c})}     11
de esta forma es fácil comprobar como:

\displaystyle     \lim_{c \to \infty} \lambda =  \lim_{c \to \infty}\ \cfrac{h}{mc \sinh(\tfrac{v}{c})} =\cfrac{h}{mv}

Y para la frecuencia, tendremos la ecuación:

\displaystyle    f = \cfrac{E}{h}=\cfrac{m c^2}{h} \cosh(\frac{v}{c})     12

Saludos

Posted in Física de partículas, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: