TARDÍGRADOS

Ciencia en español

Archive for 30 marzo 2015

Velocidades superlumínicas en el LHC del CERN

Posted by Albert Zotkin en marzo 30, 2015

El Gran Colisionador de Hadrones (LHC) tiene previsto este año (2015) reiniciar sus colisiones protón-protón, después de dos años de parada técnica por tareas de mantenimiento. En principio se tenia previsto llegar a colisiones con el máximo de energía para la que fue diseñada la compleja máquina. Esa máxima energía es de 14 TeV (14 Tera-electrón-voltios), pero por razones de optimización posterior, y atendiendo a las características técnicas de los 1232 imanes dipolares superconductores de que está dotado el anillo de 27 kilometros de circunferencia del LHC, la energía a la que llegarán las colisiones este año será de 13 TeV. Aun así, esa energía es significativamente mayor que la que se utilizó al principio, que fue de 7 TeV, llegando después hasta 8 TeV.

Según la Relatividad Especial, la energía total E de una partícula de masa m se expresa así:

\displaystyle  E = \gamma mc^2

siendo γ el famoso factor de Lorentz

Si la energía total a desarrollar para los dos protones que colisionan en el LHC es de 13 TeV, entonces para uno de esos protones, y en un sistema de referencia centrado en el centro de masas de ambas partículas, la energía sería de 6.5 TeV y le correspondería un factor de Lorentz de:

\displaystyle     6.5 \times 10^{12} \;  \mathrm{eV} \times 1,602 \times 10^{-19} \frac{\mathrm{J}}{\mathrm{eV}} = \gamma \; 1,67 \times 10^{-27} \; \mathrm{Kg} \times 3 \;10^8 \; \left(\frac{\mathrm{m}}{\mathrm{s}}\right )^2  \\ \\   \gamma = 6937.7

y ese factor de Lorentz representaría una velocidad de :

\displaystyle    v = c\sqrt{1-\frac{1}{\gamma^2}}= 0.9999999896c

muy próxima a c, pero sin superarla, como dicta la Relatividad Especial.

La velocidad de la luz es, si cabe, uno de los fenómenos físicos más extraños y menos entendidos desde el punto de vista científico. Ni siquiera nadie puede afirmar con rotundidad que esa sea una verdadera velocidad de algo (un fotón) que se desplace por el llamado espacio-tiempo (constructo teorético que también se las trae como concepto bastante artificioso).
Veamos ahora cómo se modela el movimiento de un protón desde otra teoría de la relatividad, en la que la dilatación del tiempo, y/o del espacio, no es necesaria para explicar nada. En dicha teoría la energía total viene definida así:

\displaystyle  E = mc^2 \cosh \left(\frac{v}{c}\right)

con lo que obtenemos una velocidad para un único protón de:

\displaystyle    v = 9.5378784612c

proton-proton

es decir, ¡nueve veces y media la velocidad de la luz! Representemos en dos gráficas comparativas el factor de Lorentz γ y el factor coseno hiperbólico, el cual pertenece a la teoría de la relatividad Galileana:

sl

¿A partir de qué energía total un protón superaría la velocidad de la luz c?

\displaystyle    E=m c^2\cosh 1=1.4457 \;\mathrm{GeV}
A los incrédulos les diré que para comprobar si una partícula supera o no la velocidad de la luz, lo primero que hay que hacer en el experimento es sincronizar dos o más relojes distantes. Ahí está la clave de todo este meollo. La sincronización de relojes es algo absolutamente convencional, es decir, algo arbitrario que ha emanado de la invención humana. La naturaleza no necesita sincronizar relojes para poder funcionar ni comprobar nada, simplemente funciona. En cambio, dependiendo de qué convención arbitraria utilicemos para sincronizar dos o más relojes distantes, obtendremos diferentes resultados dispares en las mediciones de las velocidades. Hay que saber que existen infinitas convenciones de sincronización de relojes, todas ellas igual de válidas. Elije una de ellas y estarás creando una teoría de la relatividad ni más ni menos válida que la actualmente reinante en el mundo de la física.

Pero, los físicos de partículas no son tontos, no se complican la vida afirmando o negando que una partícula, o un puñado de ellas, supera la velocidad de la luz en el vacío. Los físicos de partículas simplemente usan algo llamado rapidez, que se aproxima algo al concepto de velocidad, pero no es igual. Sólo decir, por último, que si llamamos φ a dicha rapidez, entonces la velocidad v, que consideramos en la teoría de la relatividad Galileana, se relaciona con ella de la siguiente forma:

\displaystyle    v = c\varphi

Saludos

Anuncios

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , | 1 Comment »

 
A %d blogueros les gusta esto: