TARDÍGRADOS

Ciencia en español

Posts Tagged ‘Sistema solar’

Armun, el exoplaneta de las auroras gigantes

Posted by Albert Zotkin en agosto 26, 2016

El alienígena Philip K. Dick nos regaló hace 63 años su relato corto titulado “The Variable Man” (el hombre variable, la variable hombre, el hombre del pasado, la guerra con Centauro, o como quieras traducirlo en español).
illo1-small

Según nos relató el alienígena Philip K. Dick, Terra está en guerra contra el imperio de Centauro, cuyo cuartel general está en el planeta Armun en Proxima Centauri, a tan sólo 4,2 años-luz del sistema Solar.

Hace tan sólo dos días, astrofísicos del Observatorio Europeo Austral (ESO), dirigidos por el genio español Guillem Anglada-Escudé, nos informaron del descubrimiento de Próxima B, el exoplaneta tipo Terra en zona habitable más cercano a nosotros. La zona habitable de Proxima centauri, está cerca de ella, porque es una estrella enana roja. Por esa razón, Armun (Próxima B) posee una órbita casi circular (<0.35 de excentricidad), con radio de unos 7,4 millones de kilómetros de su centro. Armun posee una masa de casi cuatro tercios la masa de la Tierra, y podría ser un planeta rocoso con densa atmósfera. En condiciones normales, la posible agua existente en su superficie podría estar en estado líquido en su mayor parte. Se ha calculado que posee un periodo orbital de 11,186 días. Pero, dada su proximidad a su estrella, y debido a las fuerzas de marea, es muy probable que el periodo de rotación y el orbital estén acoplados y sean aproximadamente el mismo. Es lo que se llama acoplamiento de marea. Es lo mismo que se pasa a la Luna orbitando alrededor de la Tierra. La Luna siempre nos presenta la misma cara. En el caso de Armun, es muy probable que al presentar la misma cara siempre hacia su estrella, esa zona estaría muy caliente, y la cara oculta relativamente fría y más oscura. Aunque si poseyera una densa atmósfera, el efecto invernadero contribuiría bastante suavizar las temperaturas extremas por toda la superficie del planeta.
La proximidad de Armun a su estrella, una enana roja muy activa, hace que lleguen a él intensas tormentas de rayos X, y radiación ultravioleta, por lo que las condiciones para la vida, tal como la conocemos, no serían muy idóneas con tan peligrosa radiación. Si Armún además, posee una densa atmósfera y una gran magnetosfera, se puede conjeturar que sus auroras boreales y australes serían inmensas, de gran intensidad y bastantes persistentes. Por lo que no sería raro que en la cara oscura de Armun, su zona de noche perpetua, estuviera iluminada en todo momento por la luz fluorescente de sus brillantes auroras gigantes.

Además, siendo Armun un planeta rocoso tipo Terra, y con densa atmósfera, es muy probable que sea un infierno muy semejante a Venus. Un planeta, que aunque está en zona de habitabilidad, sería inhabitable, por sus condiciones más venusianas que terrestres.
1447349597013

Evidentemente, si el genio Guillem Anglada-Escudé y su equipo científico, hubieran sabido de la existencia del alienígena Philip K. Dick y de su relato bélico interestelar “The Variable Man“, habrían llamado Armun a Proxima B, sin apenas dudarlo. En su descubrimiento usaron el método de la velocidad radial, también conocido como espectroscopia Doppler.

Veamos brevemente en qué consiste este método de espectroscopía Doppler: Mediante un espectógrafo, como por ejemplo el HARPS, instalado en el telescopio de 3.6 m de ESO, se obtiene el espectro de la estrella. Por ejemplo este:

1c6d27a73443b05b3de40bc49186d18b

donde se señalan algunas lineas espectrales de absorción de algunos elementos químicos, y hace un seguimiento espectral a lo largo de un periodo determinado de tiempo, para ver si existen variaciónes ( corrimientos) en esas mismas lineas espectrales. Así pues cuando la estrella se aleja de nosotros a cierta velocidad, las lineas espectrales se verán corridas ligeramente hacia el rojo, y cuando se esté acerca, observaremos cómo esas mismas lineas aparecen ligeramente corridas hacia el azul. Puesto que sabemos la longitud de onda de cada línea cuando la estrella esta en reposo, al aplicar nuestra fórmula del efecto Doppler podremos calcular fácilmente cual es su velocidad radial.

El genio Guillem Anglada-Escudé y su equipo pudieron calcular que la estrella se acerca y se aleja de nosotros con velocidades medias de aproximadamente 5 km/h, debido a que existe ese planeta llamado Armun, orbitando ambos alrededor de un baricentro común.
sin

Una vez que se ha medido el periodo orbital de la estrella, observando los desplazamientos cíclicos de las lineas espectrales, entonces se aplican las leyes de Kepler del movimiento orbital y las de Newton, para deducir la distancia r al baricentro, la velocidad radial VPL, y la masa MPL del planeta, puesto que estamos ante el simple problema gravitatorio de los dos cuerpos,

\displaystyle r^{3}={\frac {GM_{\mathrm {star} }}{4\pi ^{2}}}P_{\mathrm {star} }^{2}

\displaystyle  V_{\mathrm {PL} }={\sqrt {\frac{GM_{\mathrm {star} }}{r}}}

\displaystyle  M_{\mathrm {PL} }={\frac {M_{\mathrm {star} }V_{\mathrm {star} }}{V_{\mathrm {PL} }}}

donde Mstar es la masa de la estrella, que debe ser conocida por otros métodos astrofísicos. Y el parámetro VPL es la velocidad radial de la estrella, que se deduce de las mediciones del efecto Doppler sobre las variaciones de su espectro:

\displaystyle  K=V_{\mathrm {star} }\sin(i)

donde k es la velocidad, e i es la inclinación del plano orbital respecto a nuestro linea de visión. Esto constituye el mayor inconveniente del método de espectroscopía Doppler: que la determinación de la velocidad radial dependa de saber previamente el ángulo de inclinación del plano orbital de la estrella respecto al observador (que somos nosotros). Si aplicamos una fórmula Doppler clásica, y asumiendo una inclinación orbital de cero grados, tendremos, para cualquier longitud de onda λ0 de linea espectral que se observe con un valor distinto λ

\displaystyle \lambda = \lambda_0 \left(1-\frac{K}{c}\right) \\ \\ \\  K = c \left(1-\frac{\lambda }{ \lambda_0}\right) \\ \\ \\  V_{\mathrm {star}} = K

En resumen: posiblemente Armun sea un infierno, con temperaturas medias de más de 500 grados Kelvin, con días y noches eternas iluminadas con brillantes luces fluorescentes procedentes de gigantes auroras. Sólo un potente campo magnético podría actuar como escudo protector de los rayos x y demás radiación peligrosa para la vida y su diversidad en Armun.

Saludos armunianos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , | 7 Comments »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde φ‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) → x, cuando x << 1, y μ (x) → 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol,
\displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional,
\displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND
\displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz
\displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El proyecto Starshot a las estrellas

Posted by Albert Zotkin en abril 29, 2016

El Proyecto Breakbrough Starshot financiado por el multimillonario ruso Yuri Milner, el cual pondrá los 100 millones de dólares iniciales, consiste en enviar micronaves espaciales, de pocos gramos de peso cada una, hacia el sistema estelar Alfa Centauri, que se encuentra a 4,37 años-luz de la Tierra. La intención de enviar esas micronaves es explorar ese sistema estelar, hacer fotografias de alta resolución de posibles planetas y enviarlas a la Tierra. Y todo eso quieren hacerlo en una generación, es decir 20 años de viaje y 5 años para enviar las fotos.

Pero, existen pequeños detalles que podrían poner en peligro el éxito de esa misión. En primer lugar, una nave espacial como las que usualmente exploran nuestro sistema solar o como las que están actualmente escapando de él (Voyager, Pioneer) tardaría unos 80 mil años en llegar a las inmediaciones de Alfa Centauri, sin embargo, en el proyecto Starshot se pretende que lo hagan en 20 años, es decir que viajen a una velocidad del 20% de la velocidad de la luz. Para conseguir esa velocidad de 0.2c, una micronave, que dispondrá y desplegará unas velas solares, sería acelerada mediante un potente rayo láser de unos 100 gigavatios durante unos 30 minutos. Pero, el pequeño detalle es que aunque fuera posible acelerar hasta 0.2c la microsonda espacial, no habría forma de desacelerarla cuando llegase a las inmediaciones del destino. Luego, si su objetivo es fotografiar posibles exoplanetas de ese sistema estelar, la pregunta es cómo se consigue fotografiar con nitidez un objeto si la velocidad relativa entre él y la cámara es de 0.2c.

starshot-starchip-alpha-centauri-160412b-02

La idea Starshot es fascinante. Yo incluso propondría un láser de 1 teravatio (1000 gigavatios) para que esos chips estelares llegaran a Alfa Centauri no ya en 20 años sino en 5. Pero, el problema está en que ese proyecto es casi inviable por muchas razones, no solo los retos tecnológicos apuntados arriba. La principal razón es que se necesitarían más de 20 años de investigaciones y de patentes antes de siquiera construir un prototipo. Es decir, descontando los 20 años de singladura interestelar, habría que sumar al menos 50 años de investigaciones y avances tecnológicos para dispositivos y sistemas pertinentes con el proyecto. Podríamos sumar un siglo entero. ¿Quién es capaz de financiar un proyecto de un siglo de duración aportando 100 millones de dolares cada diez años, por ejemplo?. Lo que era un proyecto ilusionante por conseguir enviar una sonda a la estrella más cercana que haga fotos y nos las envíe a la Tierra en menos de 25 años, se convierte en un proyecto decepcionante porque no se conseguirían avances significativos en menos de un siglo. Los recursos financieros aportados del proyecto serían un auténticos desperdicio, y ni el multimillonario más multimillonario del mundo estaría dispuesto a gastarse más de 60 mil millones de dólares en un proyecto que en poco o en nada aportaría al progreso de la ciencia y de la humanidad, y lo peor, sería a fondo perdido. Además, puesto que Starshot es simplemente un disparo desde la Tierra hacia Alfa Centauri, la más mínima perturbación inicial implicaría un desvío significativo respecto del objetivo. Su trayecto caótico impediría alcanzar un objetivo tan remoto a largo plazo. Además, supongamos que hay fortuna y los científicos apuntan correctamente hacia el objetivo, entonces entraría en juego otro factor llamado posición aparente. Disparar a un objeto distante 4,37 años-luz que no está estático tiene el pequeño inconveniente de que si apuntas hacia su posición aparente (la posición que indica la luz que estás recibiendo de él en ese momento) entonces cuando la bala llegue a sus inmediaciones podría ocurrir con mucha probabilidad que el objeto no está donde se suponía que debía estar, y la bala pasaría muy alejada de la diana real.

Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él poseerían órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas.

Este sistema estelar se encuentra a tan sólo 41,3 billones de kilómetros (4,37 años-luz). Una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años.

En un párrafo anterior digo que la idea Starshot es fascinante. No sé si se me ha entendido bien la ironía, pero es evidente que a mi ese proyecto no me ilusiona, por dos motivos. El primero es que existen demasiadas barreras tecnológicas y presupuestarias, y el segundo es que el resultado del proyecto suponiendo que tuviera el éxito deseado sería únicamente la obtención de unas cuantas fotografías más o menos borrosas de algún exoplaneta o asteroide. La forma más ilusionante de explorar el espacio profundo de nuestra galaxia es el proyecto COINN (Colonias Interestelares de Naves Nómadas).

Posted in Astrofísica, Cosmología, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

La curvatura del espacio-tiempo contradice el Principio de Fermat

Posted by Albert Zotkin en julio 24, 2014

El Principio de Fermat establece que la luz sigue la trayectoria de tiempo mínimo entre la fuente emisora y el observador. La Teoría General de la Relatividad de Einstein predice la existencia del efecto de lente gravitacional, afirmando que ese efecto es causado por la curvatura del espacio-tiempo ante la presencia de materia y/o energía en las inmediaciones. Realmente, esos dos efectos son el mismo. Lo único que tenemos que hacer es repensar lo que entendemos por vacio y cómo es posible que un fotón pueda viajar en el vacio.
refraccion
Si la velocidad de la luz es diferente en diferentes medios, ¿significa eso que hay un cuerpo masivo en la zona limítrofe de ambos medios que hace que el espacio-tiempo se curve ahí? La respuesta debe ser obviamente no. La respuesta correcta es que los átomos y moléculas en un medio deben de retransmitir la señal: si un medio es ópticamente más denso, la velocidad de la luz sería más pequeña. Por lo tanto, el concepto de curvatura del espacio-tiempo es sólo un pseudo-concepto que se refiere implícitamente a la variación de la velocidad de la luz. No se puede afirmar por un lado que el espacio-tiempo se curva y por otro lado que existe una velocidad de la luz localmente variable. Se debe elegir entre una afirmación o la otra, pero no ambas. El problema que nos produce la Relatividad General es que en ella coexisten ambas afirmaciones sin contradicción alguna. y eso es un absurdo.

lente

Está claro que si existe un cuerpo masivo intermedio entre la fuente de luz y el observador, el vacio (medio) se hace gradualmente denso e inhomogéneo, ofreciendo diferentes índices de refracción, no sólo en el sitio de la fuente y en el del observador, sino por todo el espacio. Por lo tanto, surge otra pregunta. ¿Cómo curvaría la antimateria la trayectoria de la luz?. Si la materia ordinaria curva dicha trayectoria hacia el centro del cuerpo masivo intermedio, la antimateria debería curvar la trayectoria de la luz en la dirección opuesta. La antimateria es por lo tanto un alias para referirnos a un medio que posee indices inversos de refracción graduada. Es decir, si un cuerpo masivo de materia ordinaria produce un indice de refracción graduada con la distancia r, n = N(r), entonces un cuerpo masivo de antimateria de la misma clase produciría , n’ = N’(r), de tal forma que el producto escalar de ambos debe dar la unidad, n n’ = 1. Si la función N(r) para el primero es

\displaystyle                 N(r) = \exp \left ( -\frac{2V_r}{c^2} \right ),  (1)

donde Vr es el potencial gravitatorio a la distancia r.

Entonces la función N’(r) para el segundo medio (antimateria) sería

\displaystyle        N'(r) = \exp \left ( \frac{2V_r}{c^2} \right ),  (2)

y vemos que efectivamente N(r) N'(r) = 1

Ahora surge otra interesante pregunta. Si un medio homogeneo, donde la velocidad local de la luz que se mide como c, se está haciendo más denso hacia el centro de masas, ¿significa eso que se está creando un vacío rarificado en la zona de su límite exterior, que se comporta como materia oscura?. La respuesta a esa pregunta debe ser SÍ. Ese fenómeno se puede observar en la formación de galaxias. La región exterior de cualquier galaxia está llena de “materia oscura “. Las regiones exteriores de cúmulos de galaxias están también llenas de “materia oscura“. Incluso nuestro Sistema Solar tiene también una pequeña cantidad de “materia oscura” en sus regiones exteriores. Materia oscura es por lo tanto un alias para una región donde la velocidad local de la luz es más grande que la estandar c.

mo

El proceso de emergencia de materia oscura en la formación de una galaxia es muy parecido a cómo construimos un castillo de arena en una playa totalmente lisa en principio. Elegimos el punto donde construir nuestro castillo de arena, mediante una pala escabamos en la arena húmeda y la amontonamos. El resultado de amontonar la arena produce un foso alrededor del montón. Es decir, el foso es un valle que está por debajo del nivel medio de la superficie llana de la playa. La superficie llana de la playa es considerada como el vacío, y el montón central es considerado como materia ordinaria. Por lo tanto el foso alrededor del montón es considerado como materia oscura. Las ondas electromagnéticas que atraviesan ese foso de materia oscura, en las zonas exteriores de las galaxias, se propagan a una velocidad mayor que la estándar c.

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | 10 Comments »

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz

Posted by Albert Zotkin en marzo 8, 2013

Ya dije en un antiguo post aquí que en la mecánica clásica existen referencias implícitas a fenómenos cuánticos.

Para la demostración necesitamos la siguiente interpretación de la mecánica cuántica:

la gravedad es un fenómeno no local cuántico que puede ser visto como un entrelazamiento cuántico de partículas con masa, de modo que cuando la función de onda colapsa se generan instantaneamente dos fuerzas distantes de igual magnitud pero opuestas en dirección. El colapso de la función de onda produce un nuevo entrelazamiento, y su función de onda asociada colapsará igualmente al cabo de cierto tiempo finito no nulo

¿Qué quiere decir esto?. Esto significa que aunque, la emergencia de las dos fuerzas gravitacionales opuestas, de igual magnitud, es instantánea, el proceso por el cual la función de onda asociada culmina en colapso no es un proceso instantáneo, sino que requiere cierto tiempo finito de propagación. Dicha propagación debe ser identificada con lo que se viene llamando la velocidad de la gravedad, la cual no es más que la velocidad de fase de una onda de materia (onda de De Broglie).

Desde esta interpretación de la mecánica cuántica, podemos expresar, por ejemplo, el potencial gravitatorio clásico V de la siguiente forma:

\displaystyle  V= -\cfrac{G\ M}{r}= -\cfrac{c^4}{c_p^2}  (1)
donde cp es la velocidad de la gravedad, y c es la velocidad de la luz en el vacio. Y si ahora recordamos la frecuencia de una onda de De Broglie y su longitud de onda podemos obtener la siguiente ecuación de dispersión:

\displaystyle  v\ c_p = c^2  (2)
donde obviamente v es la velocidad relativa entre las dos partículas masivas que estan interactuando gravitacionalmente.

Veamos ahora un caso particular del problema de dos cuerpos. Este caso será el del sistema Sol-Tierra. Aplicaremos la ecuación (1) para hallar el potencial gravitatorio de la Tierra en el campo gravitatorio del Sol. Una vez calculado dicho potencial V, usaremos los siguiente datos para el cálculo de cp:

\displaystyle    V = -886.205 \ \mathrm{km^2/s^2} \\ \\  c =  299792.458 \ \mathrm{km/s}           (3)

y el sencillo cálculo es como sigue:

\displaystyle  c_p = \frac{c^2}{\sqrt{-V}}  \\ \\ \\  c_p = \mathrm{3.01908 \times  10^9 \ km/s} \\  \\  c_p = 10070.6 \ c  (4)
Con lo cual queda demostrado fehacientemente que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz.


Apéndice 1:
Parece ser que este pequeño post ha suscitado algunas colisiones con lo políticamente correcto. Es más que obvio que lo escrito por mí en este blog no está para sumar alabanzas a la ciencia oficial de lo políticamente correcto. Si mi puesto de trabajo dependiera de si hago o no una retractación de mis ideas (hipótesis) entonces estaría en el reino de los mainstreamófilos, pero ese no es mi reino ni mi caso. Dicho esto, paso a refrescar nuestra memoria sobre algunas nociones básicas respecto a la velocidad de fase y velocidad de grupo de una onda de De Broglie:

Una velocidad de fase de De Broglie, cp de un cuerpo de masa m es:

\displaystyle c_p = \cfrac{E}{p} (5)
donde E es su energía total y p es su momento lineal. Por ahora, no voy a entrar al trapo de usar una teoría concreta (por ejemplo la relatividad especial Einsteniana) para explicitar la energía total en función de la velocidad relativa y la masa del cuerpo en cuestión. Y no entro ahora a ese trapo porque es irrelevante de momento qué teoría se use para el propósito que aquí se considera.
Por otro lado la velocidad de grupo, v, de De Broglie es:

\displaystyle v= \cfrac{dE}{dp} (6)

Es decir, v es la derivada completa de E respecto de p.

Ahora alguien puede alegar que la velocidad de fase de De Broglie cp no es ninguna velocidad de la gravedad, y tal alegación sería muy políticamente correcta. En cambio, afirmar que cp es efectivamente lo que se viene llamando velocidad de la gravedad sí que es una hipótesis maravillosamente incorrecta políticamente, y por lo tanto muy fructífera.
Veamos ahora cómo se obtiene la ecuación de dispersión de De Broglie. Multiplicamos (5) y (6), para obtener:

\displaystyle v c_p = \cfrac{E}{p} \ \cfrac{dE}{dp} (7)
Lo extraordinario de la ecuación (7) es que toda teoría que pretenda predecir correctamente fenómenos de dispersión debe dar como resultado el siguiente:

\displaystyle v c_p = \cfrac{E}{p} \ \cfrac{dE}{dp} = c^2 (8)
Ahora entraré al trapo: veamos por ejemplo en el contexto de la Relatividad Galileana Completa , donde la energía total se expresa como E = m c^2 \cosh (v/c) y el momento lineal como p = mc \sin(v/c). Por lo tanto la velocidad de fase de De Broglie será:

\displaystyle c_p = \cfrac{E}{p} = \cfrac{m c^2 \cosh(v/c)}{m c\sinh(v/c)} = c \ \coth(v/c) (9)

y la velocidad de grupo sería:

\displaystyle v_g = \cfrac{dE}{dp} = \cfrac{m c^2 \sinh(v/c)}{m c\cosh(v/c)} = c \ \tanh(v/c) (10)

Por lo tanto en esta teoría la ecuación de dispersión resulta ser:

\displaystyle v_g c_p = c^2 (11)
indicando cláramente que vg no es la velocidad relativa v del cuerpo, sino otra cosa.
Entremos ahora al trapo de la relatividad especial. En esta teoría, la velocidad de fase de una onda De Broglie quedaría así:

\displaystyle c_p = \cfrac{E}{p} = \cfrac{m c^2 \gamma}{m v \gamma} = \cfrac{c^2}{v} (12)

Y la velocidad de grupo sería:

\displaystyle v_g = \cfrac{dE}{dp} = \cfrac{m v \gamma }{m \gamma} =v (13)
Vemos con extrañeza que en la teoría de la relatividad especial la velocidad de grupo, vg de una onda de De Broglie coincide con la velocidad del cuerpo que tiene asociada esa onda. En cambio en la teoría de la relatividad Galileana Completa no existe tal coincidencia. Por lo tanto el experimento para discriminar entre una y otra reside básicamente en discriminar entre estas dos expresiones:

\displaystyle \sinh  \tfrac{v}{c} (14)
\displaystyle \cfrac{1}{ \sqrt{ \frac{c^2}{v^2}-1}}  (15)

O lo que es lo mismo, el momento lineal en relatividad especial se expresa así:

\displaystyle p =  \cfrac{m c}{ \sqrt{ \frac{c^2}{v^2}-1}}  (16)

mientras que la relatividad Galileana nos dice que ese momento lineal es:

\displaystyle p = m c \sinh(\tfrac{v}{c})  (17)

Apéndice 2:
Al lanzar la hipótesis de que la velocidad de la gravedad es precisamente la velocidad de fase de la onda de De Broglie asociada cada uno de los cuerpos del sistema gravitatorio estamos reinterpretando la mecánica cuántica. La primera evidencia que podemos señalar es que la luz posee aberración, mientras que la gravedad carece de aberración o los instrumentos de medida actuales son incapaces de apreciar alguna. ¿Qué significa que la luz tiene aberración y la gravedad no?. Parece indudable el hecho de que la luz tarda unos 8.3 minutos en llegar a la Tierra desde el Sol. Cuando vemos el sol en su posición aparente, en realidad está situado en una posición real avanzada de unos 20 segundos de arco. O sea, cuando transcurran esos 8.3 minutos, la posición aparente coincidirá con lo que ahora es su posición real. Y eso es equivalente a decir que la velocidad de la gravedad en el sistema Sol-Tierra es cp = 10070.6 c. Supongamos que el Sol es agitado por alguna fuerza titánica. ¿Cuánto tiempo tardará ese perturbación gravitatoria en ser sentida por los sismógrafos situados en el planeta Tierra?. Los que creen que los cambios gravitatorios se propagan a la velocidad de la luz responderán que dicha perturbación será sentida al cabo de 8.3 minutos, mientras que los que abrazamos la hipótesis de la variable oculta cp responderemos que tardará sólo unas 50 milésimas de segundo. O lo que es lo mismo, si esa sacudida fuera debida a que el Sol explotó como una supernova, la Tierra sería reventada por la onda acústica (onda gravitacional) en menos de 50 milésimas de segundo y después, al cabo de 8.3 minutos, sería abrasada por los rayos gamma de la supernova.

Posted in Relatividad | Etiquetado: , , , , , , , | 15 Comments »

 
A %d blogueros les gusta esto: