TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Mecánica Cuántica’

Supremacía cuéntica

Posted by Albert Zotkin on October 29, 2019

No, no me he equivocado en el título. He escrito cuéntica en lugar de cuántica a propósito, para resaltar que la supuesta supremacía cuántica es un cuento chino que nos están contando. Vamos, que “naranjas de la China“.

Cuando una computadora cuántica haga cosas que una computadora clásica no pueda hacer en tiempo y recursos razonables, entonces diremos que esa computadora ha alcanzado supremacia cuantica.

La revista Nature nos cuenta estos días que Google ha alcanzado oficialmente la supremacía cuántica. Hace poco, LIGO nos contó también que habían alcanzado la supremacía gravitacional, y lo anunciaron al mundo, como el gran hito científico del siglo XXI, y les concedieron hasta un Premio Nobel de Física, tú. “Naranjas de la China“, cuentos chinos. La única supremacía real que existe es la fanfarronería científica yanqui. Estamos asistiendo al triunfo de sofisticadas técnicas mediáticas para propagar ideas (supuestamente científicas), técnicas que Goebbels ya empleó con éxito para la propaganda Nazi.

Con la computación cuántica pasa lo mismo que con la fusión nuclear: son eternas promesas de hitos científico-técnicos que nunca llegan a ser una realidad. Los expertos ponen como excusa que es muy difícil evitar la decoherencia cuántica, para el primer caso, y conseguir un adecuado confinamiento de plasma, para el segundo. Pero, habría que empezar a pensar ya que el motivo por el que realmente no se han conseguido aún esos hitos científico-técnicos está más en la teoría científica, es decir, en los modelos teóricos, que en llevarlos a la práctica. Es muy probable que los modelos teóricos que predicen tanto la computación cuántica como la fusión termonuclear no sean correctos, o les falte algo insospechado. En cualquier caso, no parece razonable asistir a estos espectáculos de supuesta supremacía en no sé qué materias, como si fuera una competición olímpica donde todos los atletas estuvieran dopados.

Pero, ¿qué cuento chino nos está contando Google respecto a su supuesta supremacía cuántica conseguida, que dicen que ya es oficial y todo?: En el resumen del documento presentado nos dicen:

La esperanza en los computadores cuánticos es que ciertas tareas computacionales podrían ser realizadas exponencialmente más rápido con un procesador cuántico que con un procesador clásico. El reto fundamental consiste en construir un procesador de alta fidelidad capaz de ejecutar algoritmos cuánticos en un espacio computacional exponencialmente grande. En este documento presentamos un informe sobre el uso de un procesador cuántico con cubits programables de supercomputación para crear estados cuánticos en 53 cubits, representando un espacio computacional de dimensión 253 (aproximadamente 1016). Medidas de experimentos repetidos muchas veces proporcionan una muestra de la resultante distribución de probabilidad, la cual verificamos usando simulaciones clásicas. Nuestro procesador cuántico Sycamore tarda unos 200 segundos en muestrear una instancia de circuito cuántico, mientras que el mejor computador clásico actual tardaría en realizar esa misma tarea unos 10 mil años. Esta dramática mejora de la velocidad comprada con la de cualquier algoritmo clásico actual conocido resulta ser una realización experimental de supremacía cuántica, para esta tarea computacional específica, y presagia un cambio de paradigma en el campo de la computación.

O sea, que los chicos de Google han construido un procesador cuántico de 53 cubits (en principio eran 54, pero uno se estropeó), llamado Sycamore, y lo han programado para que ejecute un tarea específica, sabiendo de antemano que esa misma tarea, ejecutada en un procesador clásico, tardaría 10 mil años en ser completada.

Fig. 1: Procesador Sycamore.
a, Diseño del procesador, mostrando una matriz rectangular de 54 cubits (gris), cada uno conectado a sus cubits anejos mediando acopladores (azul). El cubit no operativo (estropeado), situado en la parte superior del esquema, está sólo perfilado (no relleno en color gris). b, fotografía del chip Sycamore.

Pero, ¿cómo construyen esos cubits?. Para provechar ciertas propiedades de los estados cuánticos, llamadas superposición y entrelazamiento, entre otras propiedades y efectos también bastante raritos, que describe la Mecánica Cuántica, usan átomos, y hay que conseguir, mediante temperaturas muy próximas al cero absoluto (-273,144 °C), que los electrones de esos átomos giren en un sentido y hacia el contrario al mismo tiempo. Ese sería el efecto de superposición cuántica. Es decir, no seria que unos electrones, dentro del mismo átomo, giraran en un sentido y otros en el contrario, sino que cada electrón girase en un sentido y el contrario a la vez. Algo impensable y absurdo para un cuerpo macroscópico, pero no tanto para las partículas subatómicas, que se rigen por reglas de la mecánica cuántica. El problema de la superposición está en que cuando se intenta medir el estado cuántico, aparece la decoherencia, el cubit de pronto se transforma en un simple bit clásico. Ese es el famoso quebradero de cabeza llamado problema de la medida

¿De verdad ha conseguido Google la supremacía cuántica?. Uno de los mayores expertos en computación cuántica es el murciano Dario Gil. Este murciano, director mundial de IBM Research, nada menos, opina que el procesador cuántico Sycamore de Google es una pieza especializada de hardware diseñada para resolver un solo problema y no un ordenador cuántico de propósito general, a diferencia de los desarrollados por IBM. Es decir, aunque podría ser cierto que habrían completado una tarea de muestreo en 200 segundos, mientras que el superordenador Summit de IBM habría tardado 10 mil años en completar esa misma tarea, el Sycamore sólo serviría para realizar esa tarea y ninguna otra más. Es como construir un ordenador que sólo supiera sumar 2+2, y nada más. Si Dario Gil tiene razón, que yo creo que la tiene, para resolver problemas reales mediante computación cuántica habría, no sólo que programar los algoritmos (software) cuánticos, sino construir físicamente el hardware especifico para ese problema en concreto. O sea, cada problema requeriría de un hardware especifico, y sólo valdría para ese problema. Por ejemplo, supongamos que queremos factorizar el número entero semiprimo RSA1024, que posee 1024 cifras binarias (309 cifras decimales). ¿Valdria la pena construir un procesador cuántico especifico para hallar, en un tiempo razonablemente corto, los dos números primos que multiplicados dan ese número RSA1024?. Si el premio es superior al coste, si valdría la pena 🙂 , pero hay que tener en cuenta que una vez factorizado ese número SRA concreto, nuestro costoso chip cuántico no valdría para nada más, y habría que tirarlo a la basura o aprovechar sus piezas para construir otro chip distinto para resolver otro problema distinto. Nuestro amigo murciano, Dario Gil, es un genio, y sabe muy bien de qué habla.

Pero, en mi opinión, lo que Google nos ha traído de momento, en lugar de supremacía cuántica, son naranjas de la China.

Saludos cordiales, y para nada supremacistas 😉

Posted in curiosidades y analogías, Física de partículas, Matemáticas, Mecánica Cuántica | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin on September 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin on September 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}} (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}} (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle a_n = \sqrt[3]{a_{n-1}^3} (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Un universo eterno y transfinito: una foliación conforme del espaciotiempo

Posted by Albert Zotkin on September 7, 2015

Foliación transfinita de la conciencia de Ridley

Foliación transfinita de la conciencia de Ridley

Nuestro universo podría poseer la forma de una hiperesfera transfinita. Para ver esto fijémonos en lo siguiente (que ya traté en un post anterior). La serie infinita N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + … es divergente ya que su suma es N = ∞. Pero, puede ser regularizada, como demuestro en el link anterior, para dar una suma de N = -1/2. Es decir, la función Zeta de Riemann toma el valor -1/2 cuando la variable es cero:

\displaystyle N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +\dots = \zeta(0) =-\frac{1}{2}\\
Esta suma nos sugiere que el infinito matemático, ∞, en la recta real, coincide con el número real negativo -1/2, y -∞ coincidiría simétricamente con 1/2. Si partimos de un sistema de referencia cartesiano de dos dimensiones, tendremos que los dos ejes ortogonales podrían ser recorridos, partiendo desde el origen de coordenadas, en dos posible direcciones. Para el eje de abscisas, podríamos alcanzar el infinito, por el camino largo (hacia la derecha) hasta llegar al punto (-1/2, 0). O también podríamos alcanzar dicho punto, que representa al infinito, por el camino más corto (andando hacia la izquierda). Sin embargo, si andamos en dirección derecha, desde el origen o cualquier punto de abscisa positiva, (x,0), no podríamos llegar a los puntos situados entre el punto (-1/2, 0) y el (x,0) ya que el infinito actuaria como barrera infranqueable para seguir el camino y cerrar el círculo.

Saludos transfinitos a todos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Fractales, Gravedad Cuántica, informática, Matemáticas, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Nuestro universo no es una simulación por ordenador pero tú sí

Posted by Albert Zotkin on January 14, 2015

La física teórica actual nos lleva a divagar sobre cuestiones tan absurdas como por ejemplo “¿somos una simulación de ordenador?”. Lo peor de todo esto es que se lo toman en serio, se crean debates por televisión, conferencias, simposios, talleres, se escriben artículos, muchos artículos, y dicen que todo es un debate científico. La culpa de todo este sinsentido la tiene una teoría llamada Mecánica Cuántica. Esa teoría en la que se basa la metateoría llamada Modelo Estándar permite que nuestra imaginación explote y se expanda hacia terrenos inhóspitos y “absurdos”. En el modelo cosmológico estándar, también llamado, modelo Lambda-CDM, ó ΛCDM (en inglés es Lambda-Cold Dark Matter), sí, ese que usa la teoría del Big Bang, existe un pequeño cabo suelto desde el cual los divagadores pueden proponer que nuestro universo fue creado (diseñado) por alguien (¿Dios?), y que ese alguien no sólo se conformó con crearlo sino que se “divierte” observando su creación (nos observa). Incluso hay quien afirma, que no sólo observa su creación sino que interactua de vez en cuando con ella (¿milagros?).

Todo esto sería muy gracioso si no fuera porque muchos se lo toman muy en serio. A mi me gusta respetar todas las creencias religiosas, pero cuando la ciencia intenta suplantar la religión, me da un ataque de risa. Obviamente los rezos y plegarias de muchos creyentes van dirigidos a su Dios (el creador de la simulación por ordenador) para que interactue con ellos y solucione sus problemas. Desgraciadamente, en este universo no existe la magia, y los milagros brillan por su ausencia. Todo obedece a las leyes naturales (leyes de la física), las cuales son inviolables, inexcusables, inexorables. Cuando una piedra cae por causa de la gravedad universal desde lo alto de una montaña hacia el valle, no podrá ser detenida con rezos ni ruegos, sólo con algo dentro de la ley natural que perturbe su trayectoria.
Múltiples universos dentro de un fractal

Múltiples universos dentro de un fractal

Nuestro universo no es una simulación por ordenador, sino que es real, por una sencilla razón ontológica: todo tiene una causa real y natural, y no existen causas incausadas. Imagina un personaje virtual que evoluciona en un mundo virtual (tipo Matrix). ¿Cómo podría saber ese personaje que en realidad vive en un mundo virtual, simulado?.

Si algunos sustituyen la religión por la ciencia para afirmar que vivimos en una simulación de ordenador, yo me arrogo el derecho a usar la lógica y el discurso de Bertrand Russell para afirmar que:

La religión se basa, principalmente, a mi entender, en el miedo. Es en parte el miedo a lo desconocido, y en parte, como dije, el deseo de sentir que se tiene un hermano mayor que va a defenderlo a uno en todos sus problemas y disputas. El miedo es la base de todo: el miedo a lo misterioso, el miedo a la derrota, el miedo a la muerte. El miedo es el padre de la crueldad y, por lo tanto, no es de extrañar que la crueldad y la religión vayan de la mano. […] Tenemos que mantenernos en pie y mirar al mundo a la cara: sus cosas buenas, sus cosas malas, sus bellezas y sus fealdades; ver el mundo tal cual es y no tener miedo de él. Conquistarlo mediante la inteligencia y no solo sometiéndonos al terror que emana de él. Toda nuestra concepción de Dios es una concepción derivada del antiguo despotismo oriental. […] Un mundo bueno necesita conocimiento bondad y valor; no necesita el pesaroso anhelo del pasado, ni el aherrojamiento de la inteligencia libre mediante las palabras proferidas hace mucho por hombres ignorantes. Necesita un criterio sin temor y una inteligencia libre. Necesita esperanza en el futuro, no el mirar hacia un pasado muerto, que confiamos que sea superado por el futuro que nuestra inteligencia puede crear.

Siguiendo la lógica y el conocimiento que Russell desplegó en su obra Why I Am Not a Christian, podemos aportar al menos tres argumentos en contra de la afirmación “vivimos en una simulación”:

Contra el argumento cosmológico que afirma que existe una Causa Primera Universal, podemos alegar que en el terreno de la ciencia ese argumento tiene poco peso. Si todo ha de tener alguna causa, entonces Dios debe tener una causa. Por el contrario, si puede haber algo sin causa, entonces bien podría nuestro universo no haber necesitado causa alguna para existir (universo eterno e infinito), por lo tanto no sería necesario ningún Dios para explicar ni su existencia ni su evolución (en esto piensa actualmente Stephen Hawking)

Para el argumento de las Leyes Naturales, podemos afirmar que si existe alguna causa por la que Dios dictó esas leyes naturales, entonces él mismo debe estar sometido a esa causa o ley externa y por lo tanto, Dios mismo sería un intermediario. Pero, entonces Dios no nos sirve porque no es el último que dicta la ley. Este argumento tampoco se sostiene.

En cuanto al argumento teleológico, que es una especie de principio antrópico, el cual afirma que todo en el mundo está hecho para que podamos vivir en él, y si el mundo variase un poco, no podríamos vivir. Es decir, este argumento dice que el mundo y todos nosotros estaríamos dentro de un Plan Divino. Pero entonces ese Plan Divino sería una autentica mierda, viendo la miseria y el sufrimiento que hay en el mundo. ¿En realidad alguien se cree que este mundo ha sido creado para vivir en él?. Yo podría diseñar un mundo mas confortable y feliz, donde las enfermedades, el sufrimiento y los fanatismos, producto de la irracionalidad y la animalidad, no pudieran existir por ley natural. ¿Qué clase de Dios tan imperfecto creó este valle de lágrimas?, ¿para qué?. Este argumento teleológico o antrópico tampoco sirve, se cae por su propio peso y su ingenuidad.

En resumen. Nuestro universo no es ninguna simulación por ordenador, aunque se le pueda parecer. Es un valle de lágrimas, donde reina la injusticia, y el sufrimiento. En realidad, este universo es bastante inhóspito, y parece casi un milagro que pueda existir algo siquiera parecido a lo que llamamos vida. Desde un punto de vista científico, ó más exactamente desde la termodinánica, los organismos vivos son sistemas que tienden a disminuir su entropía, en supuesta perfecta contradicción a las “leyes naturales”. ¿Cómo?, ¿dónde surgió la vida?, ¿por qué? ¿Quién ordenó esto? son preguntas que sólo la ciencia y no religión debe responder. Evidentemente, el principo antrópico es una especie de ingenuidad institucionalizada, una auténtica bobería. ¿Se pregunta una ameba por qué existe ella o por qué el universo es como es?. Nuestro universo es como es y punto, y si fuera de otra forma también sería como es.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , | 1 Comment »