TARDÍGRADOS

Ciencia en español

Archive for 26 agosto 2016

Armun, el exoplaneta de las auroras gigantes

Posted by Albert Zotkin en agosto 26, 2016

El alienígena Philip K. Dick nos regaló hace 63 años su relato corto titulado “The Variable Man” (el hombre variable, la variable hombre, el hombre del pasado, la guerra con Centauro, o como quieras traducirlo en español).
illo1-small

Según nos relató el alienígena Philip K. Dick, Terra está en guerra contra el imperio de Centauro, cuyo cuartel general está en el planeta Armun en Proxima Centauri, a tan sólo 4,2 años-luz del sistema Solar.

Hace tan sólo dos días, astrofísicos del Observatorio Europeo Austral (ESO), dirigidos por el genio español Guillem Anglada-Escudé, nos informaron del descubrimiento de Próxima B, el exoplaneta tipo Terra en zona habitable más cercano a nosotros. La zona habitable de Proxima centauri, está cerca de ella, porque es una estrella enana roja. Por esa razón, Armun (Próxima B) posee una órbita casi circular (<0.35 de excentricidad), con radio de unos 7,4 millones de kilómetros de su centro. Armun posee una masa de casi cuatro tercios la masa de la Tierra, y podría ser un planeta rocoso con densa atmósfera. En condiciones normales, la posible agua existente en su superficie podría estar en estado líquido en su mayor parte. Se ha calculado que posee un periodo orbital de 11,186 días. Pero, dada su proximidad a su estrella, y debido a las fuerzas de marea, es muy probable que el periodo de rotación y el orbital estén acoplados y sean aproximadamente el mismo. Es lo que se llama acoplamiento de marea. Es lo mismo que se pasa a la Luna orbitando alrededor de la Tierra. La Luna siempre nos presenta la misma cara. En el caso de Armun, es muy probable que al presentar la misma cara siempre hacia su estrella, esa zona estaría muy caliente, y la cara oculta relativamente fría y más oscura. Aunque si poseyera una densa atmósfera, el efecto invernadero contribuiría bastante suavizar las temperaturas extremas por toda la superficie del planeta.
La proximidad de Armun a su estrella, una enana roja muy activa, hace que lleguen a él intensas tormentas de rayos X, y radiación ultravioleta, por lo que las condiciones para la vida, tal como la conocemos, no serían muy idóneas con tan peligrosa radiación. Si Armún además, posee una densa atmósfera y una gran magnetosfera, se puede conjeturar que sus auroras boreales y australes serían inmensas, de gran intensidad y bastantes persistentes. Por lo que no sería raro que en la cara oscura de Armun, su zona de noche perpetua, estuviera iluminada en todo momento por la luz fluorescente de sus brillantes auroras gigantes.

Además, siendo Armun un planeta rocoso tipo Terra, y con densa atmósfera, es muy probable que sea un infierno muy semejante a Venus. Un planeta, que aunque está en zona de habitabilidad, sería inhabitable, por sus condiciones más venusianas que terrestres.
1447349597013

Evidentemente, si el genio Guillem Anglada-Escudé y su equipo científico, hubieran sabido de la existencia del alienígena Philip K. Dick y de su relato bélico interestelar “The Variable Man“, habrían llamado Armun a Proxima B, sin apenas dudarlo. En su descubrimiento usaron el método de la velocidad radial, también conocido como espectroscopia Doppler.

Veamos brevemente en qué consiste este método de espectroscopía Doppler: Mediante un espectógrafo, como por ejemplo el HARPS, instalado en el telescopio de 3.6 m de ESO, se obtiene el espectro de la estrella. Por ejemplo este:

1c6d27a73443b05b3de40bc49186d18b

donde se señalan algunas lineas espectrales de absorción de algunos elementos químicos, y hace un seguimiento espectral a lo largo de un periodo determinado de tiempo, para ver si existen variaciónes ( corrimientos) en esas mismas lineas espectrales. Así pues cuando la estrella se aleja de nosotros a cierta velocidad, las lineas espectrales se verán corridas ligeramente hacia el rojo, y cuando se esté acerca, observaremos cómo esas mismas lineas aparecen ligeramente corridas hacia el azul. Puesto que sabemos la longitud de onda de cada línea cuando la estrella esta en reposo, al aplicar nuestra fórmula del efecto Doppler podremos calcular fácilmente cual es su velocidad radial.

El genio Guillem Anglada-Escudé y su equipo pudieron calcular que la estrella se acerca y se aleja de nosotros con velocidades medias de aproximadamente 5 km/h, debido a que existe ese planeta llamado Armun, orbitando ambos alrededor de un baricentro común.
sin

Una vez que se ha medido el periodo orbital de la estrella, observando los desplazamientos cíclicos de las lineas espectrales, entonces se aplican las leyes de Kepler del movimiento orbital y las de Newton, para deducir la distancia r al baricentro, la velocidad radial VPL, y la masa MPL del planeta, puesto que estamos ante el simple problema gravitatorio de los dos cuerpos,

\displaystyle r^{3}={\frac {GM_{\mathrm {star} }}{4\pi ^{2}}}P_{\mathrm {star} }^{2}

\displaystyle  V_{\mathrm {PL} }={\sqrt {\frac{GM_{\mathrm {star} }}{r}}}

\displaystyle  M_{\mathrm {PL} }={\frac {M_{\mathrm {star} }V_{\mathrm {star} }}{V_{\mathrm {PL} }}}

donde Mstar es la masa de la estrella, que debe ser conocida por otros métodos astrofísicos. Y el parámetro VPL es la velocidad radial de la estrella, que se deduce de las mediciones del efecto Doppler sobre las variaciones de su espectro:

\displaystyle  K=V_{\mathrm {star} }\sin(i)

donde k es la velocidad, e i es la inclinación del plano orbital respecto a nuestro linea de visión. Esto constituye el mayor inconveniente del método de espectroscopía Doppler: que la determinación de la velocidad radial dependa de saber previamente el ángulo de inclinación del plano orbital de la estrella respecto al observador (que somos nosotros). Si aplicamos una fórmula Doppler clásica, y asumiendo una inclinación orbital de cero grados, tendremos, para cualquier longitud de onda λ0 de linea espectral que se observe con un valor distinto λ

\displaystyle \lambda = \lambda_0 \left(1-\frac{K}{c}\right) \\ \\ \\  K = c \left(1-\frac{\lambda }{ \lambda_0}\right) \\ \\ \\  V_{\mathrm {star}} = K

En resumen: posiblemente Armun sea un infierno, con temperaturas medias de más de 500 grados Kelvin, con días y noches eternas iluminadas con brillantes luces fluorescentes procedentes de gigantes auroras. Sólo un potente campo magnético podría actuar como escudo protector de los rayos x y demás radiación peligrosa para la vida y su diversidad en Armun.

Saludos armunianos a todos 😛

Anuncios

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , | 7 Comments »

El sueño del sofomoro: Las Series Mirabili de Johann Bernoulli

Posted by Albert Zotkin en agosto 20, 2016

EL matemático Johann Bernoulli fue un genio, autor de fascinantes descubrimientos matemáticos. Cuando en 1697 empezaba a trabajar sobre algunas integrales, halló lo que después él mismo llamó las “Series Mirabili“:

\displaystyle \int_0^1 x^x \, dx = 1-\frac{1}{2^2}+\frac{1}{3^3}-\frac{1}{4^4}+\frac{1}{5^5}-\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{(k+1)^{k+1}} \\ \\  \int_0^1 x^{-x} \, dx = 1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+\frac{1}{5^5}+\dots = \sum _{k=0}^{\infty } \frac{1}{(k+1)^{k+1}}\\ \\  \int_0^1 x^{x^2} \, dx = 1-\frac{1}{3^2}+\frac{1}{5^3}-\frac{1}{7^4}+\frac{1}{9^5}+\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{(2k+1)^{k+1}} \\ \\  \int_0^1 x^{\sqrt{x}} \, dx = 1-\left(\frac{2}{3}\right)^2+\left(\frac{2}{4}\right)^3-\left(\frac{2}{5}\right)^4+\left(\frac{2}{6}\right)^5-\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{\left(\frac{k}{2}+1\right)^{k+1}}

Es fácil ver (aunque no sé si demostrar también) que estas series Mirabili son casos particulares de esta otra, vislumbrada por mí 😛

\displaystyle  \int_0^1 x^{(sx)^r} \, dx = 1-\frac{s}{(r+1)^2}+\frac{s^2}{(2r+1)^3}-\dots = \sum _{k=0}^{\infty } \frac{(-s)^k}{(rk+1)^{k+1}}

para todo número real r, y para todo número real s. Igual que en el sueño del sofomoro, se puede demostrar, en general, esta última identidad. Sólo basta expresar

\displaystyle x^{(sx)^r} = \exp(s x^r \log x )

Saludos

REFERENCIAS:
Paul J. Nahin, Inside Interesting Integrals, Springer 2014, ISBN 978-1493912766.
A253300, A253299, A073009, A083648
William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, page 46-51.
Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988) page 146.

Posted in Matemáticas | Etiquetado: , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: