TARDÍGRADOS

Ciencia en español

Posts Tagged ‘exoplaneta’

Conexión entre la Conjetura de Kepler y los números primos através de la Constante tridimensional de Hermite

Posted by Albert Zotkin en septiembre 10, 2016

Hola amigos de Tardígrados. Hoy os voy a presentar un espectacular hallazgo matemático hecho por mí hoy mismo. Os lo presento sin dilación ya mismo:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\pi(i)-\pi(i-1)}}{i^2}= \frac{\pi}{3\sqrt{2}} (1)
donde π(x) es la función contador de números primos, no confundir con el número irracional trascendente π, el cual aparece en el lado derecho de la fórmula. Es decir, esa función contador nos dice cuántos número primos hay desde 0 hasta el número real x. La identidad que he hallado es simplemente la Constante de Hermite en tres dimensiones, o al menos se le aproxima mucho, pues esa fórmula la he comprobado hasta el término i = 1000000. Parece converger rápidamente hacia ese limite.

Respecto a la función contador de números primos expresada como diferencia:

\displaystyle \chi _{{{\mathbb  {P}}}}(n)=\pi(n)-\pi(n-1)

nos define exactamente una función característica χP(n) de números primos, es decir, una función tal que si n es primo entonces esa función es χP(n) = 1, y en caso contrario es χP(n) = 0.
En cuanto al número

\displaystyle  \frac{\pi}{3\sqrt{2}} = 0.740480489693061041169313495\dots

que es la llamada Constante de Hermite en tres dimensiones, es simplemente, la máxima densidad que se puede alcanzar empaquetando esferas tridimensionales, tal como se explica en la Conjetura de Kepler.

De igual forma que hemos definido una función característica de los número primos, también podemos definir una para los números no primos, es decir, para los números compuestos, así:

\displaystyle \chi _{{{\mathbb  {NP}}}}(n)=1-\pi(n)-\pi(n-1)

La función caracteristica χP(n) define una sucesión de ceros y unos, por lo que podemos considerar que representa a un número real expresado en sistema de numeración de base 2. Si la coma de ese número decimal la ponemos entre el primer digito a la izquierda y el siguiente tendremos en dicha base 2 el número:

\displaystyle \rho' =0.011010100010100010100010000\ldots _{2}

el cual, en base 10, se expresaría así:

\displaystyle \rho' =0.414682509851111660248109622\ldots

A este número real, el cual es fácil demostrar que es un número irracional, se le llama Constante Prima, y puede ser definida asi:

\displaystyle \rho' =\sum _{{p}}{\frac  {1}{2^{p}}}=\sum _{{n=1}}^{\infty }{\frac  {\chi _{{{\mathbb  {P}}}}(n)}{2^{n}}}

Podemos hacer lo mismo con los números compuestos y obtener la constante de los números compuestos asi:

\displaystyle \rho =\sum _{{n=1}}^{\infty }{\frac  {\chi _{{{\mathbb  {NP}}}}(n)}{2^{n}}} =0.085317490148888339751890377845692291634\ldots

Es fácil ver que \rho +\rho'=1/2. Pero, toda esta presentación de estas dos funciones características complementarias viene porque, al igual que hice al principio presentando la identidad (1), ahora también puedo hacer lo mismo, pero con la función caracteristica de los no primos, y obtenemos:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {NP}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{(-1)^{1-\pi(i)-\pi(i-1)}}{i^2}=-\frac{\pi}{3\sqrt{2}} (2)
Intentemos ahora simplificar un poco las identidades (1) y (2). Fijémonos que podemos expresar

\displaystyle (-1)^{\chi _{{{\mathbb  {P}}}}(i)}= 1- 2 \chi _{{{\mathbb  {P}}}}(i) (3)
por lo que (1) puede ser escrita así:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {P}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{1- 2 \chi _{{{\mathbb  {P}}}}(i)}{i^2}=
\displaystyle =\sum_{i=1}^\infty \cfrac{1}{i^2}- 2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} \\ \\ \\  \sum_{i=1}^\infty \cfrac{1}{i^2} =\zeta(2)=\frac{\pi^2}{6} \\ \\ \\  2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} = 2 \sum_{i=1}^\infty \cfrac{i\chi _{{{\mathbb  {P}}}}(i)}{i^3}=2 \sum_p \cfrac {p}{\pi(p)^3}
Por lo que, si la conjetura es cierta, tendremos que el siguiente sumatorio, que corre a lo largo de los infinitos números primos, está bastante relacionado con el número π:

\displaystyle \sum_p \cfrac {p}{\pi(p)^3} = \frac{\pi ^2-\pi \sqrt{2}}{12} (4)
donde, obviamente, π(p) es la función contador del número primo p, es decir, el orden que ocupa ese número primo en la sucesión de números primos.

Desafortunadamente la conjetura es falsa, ya que como demuestro en esta pregunta en math.stackexchange,

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {P}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{1- 2 \chi _{{{\mathbb  {P}}}}(i)}{i^2} = \sum_{i=1}^\infty \cfrac{1}{i^2}- 2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} = \\ \\ =\zeta(2)-2 \sum_p \cfrac{1}{p^2} = \zeta(2)-2 P(2)= \\ \\ \\ = 0.7404392267660954394593\ldots
donde P(2) es la función zeta prima de 2. Porque,

\displaystyle \frac{\pi}{3\sqrt{2}}\neq \zeta(2)-2 P(2)

y efectivamente,

\displaystyle \frac{\pi ^2 -\pi \sqrt{2}}{12}<P(2)

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , | Leave a Comment »

Armun, el exoplaneta de las auroras gigantes

Posted by Albert Zotkin en agosto 26, 2016

El alienígena Philip K. Dick nos regaló hace 63 años su relato corto titulado “The Variable Man” (el hombre variable, la variable hombre, el hombre del pasado, la guerra con Centauro, o como quieras traducirlo en español).
illo1-small

Según nos relató el alienígena Philip K. Dick, Terra está en guerra contra el imperio de Centauro, cuyo cuartel general está en el planeta Armun en Proxima Centauri, a tan sólo 4,2 años-luz del sistema Solar.

Hace tan sólo dos días, astrofísicos del Observatorio Europeo Austral (ESO), dirigidos por el genio español Guillem Anglada-Escudé, nos informaron del descubrimiento de Próxima B, el exoplaneta tipo Terra en zona habitable más cercano a nosotros. La zona habitable de Proxima centauri, está cerca de ella, porque es una estrella enana roja. Por esa razón, Armun (Próxima B) posee una órbita casi circular (<0.35 de excentricidad), con radio de unos 7,4 millones de kilómetros de su centro. Armun posee una masa de casi cuatro tercios la masa de la Tierra, y podría ser un planeta rocoso con densa atmósfera. En condiciones normales, la posible agua existente en su superficie podría estar en estado líquido en su mayor parte. Se ha calculado que posee un periodo orbital de 11,186 días. Pero, dada su proximidad a su estrella, y debido a las fuerzas de marea, es muy probable que el periodo de rotación y el orbital estén acoplados y sean aproximadamente el mismo. Es lo que se llama acoplamiento de marea. Es lo mismo que se pasa a la Luna orbitando alrededor de la Tierra. La Luna siempre nos presenta la misma cara. En el caso de Armun, es muy probable que al presentar la misma cara siempre hacia su estrella, esa zona estaría muy caliente, y la cara oculta relativamente fría y más oscura. Aunque si poseyera una densa atmósfera, el efecto invernadero contribuiría bastante suavizar las temperaturas extremas por toda la superficie del planeta.
La proximidad de Armun a su estrella, una enana roja muy activa, hace que lleguen a él intensas tormentas de rayos X, y radiación ultravioleta, por lo que las condiciones para la vida, tal como la conocemos, no serían muy idóneas con tan peligrosa radiación. Si Armún además, posee una densa atmósfera y una gran magnetosfera, se puede conjeturar que sus auroras boreales y australes serían inmensas, de gran intensidad y bastantes persistentes. Por lo que no sería raro que en la cara oscura de Armun, su zona de noche perpetua, estuviera iluminada en todo momento por la luz fluorescente de sus brillantes auroras gigantes.

Además, siendo Armun un planeta rocoso tipo Terra, y con densa atmósfera, es muy probable que sea un infierno muy semejante a Venus. Un planeta, que aunque está en zona de habitabilidad, sería inhabitable, por sus condiciones más venusianas que terrestres.
1447349597013

Evidentemente, si el genio Guillem Anglada-Escudé y su equipo científico, hubieran sabido de la existencia del alienígena Philip K. Dick y de su relato bélico interestelar “The Variable Man“, habrían llamado Armun a Proxima B, sin apenas dudarlo. En su descubrimiento usaron el método de la velocidad radial, también conocido como espectroscopia Doppler.

Veamos brevemente en qué consiste este método de espectroscopía Doppler: Mediante un espectógrafo, como por ejemplo el HARPS, instalado en el telescopio de 3.6 m de ESO, se obtiene el espectro de la estrella. Por ejemplo este:

1c6d27a73443b05b3de40bc49186d18b

donde se señalan algunas lineas espectrales de absorción de algunos elementos químicos, y hace un seguimiento espectral a lo largo de un periodo determinado de tiempo, para ver si existen variaciónes ( corrimientos) en esas mismas lineas espectrales. Así pues cuando la estrella se aleja de nosotros a cierta velocidad, las lineas espectrales se verán corridas ligeramente hacia el rojo, y cuando se esté acerca, observaremos cómo esas mismas lineas aparecen ligeramente corridas hacia el azul. Puesto que sabemos la longitud de onda de cada línea cuando la estrella esta en reposo, al aplicar nuestra fórmula del efecto Doppler podremos calcular fácilmente cual es su velocidad radial.

El genio Guillem Anglada-Escudé y su equipo pudieron calcular que la estrella se acerca y se aleja de nosotros con velocidades medias de aproximadamente 5 km/h, debido a que existe ese planeta llamado Armun, orbitando ambos alrededor de un baricentro común.
sin

Una vez que se ha medido el periodo orbital de la estrella, observando los desplazamientos cíclicos de las lineas espectrales, entonces se aplican las leyes de Kepler del movimiento orbital y las de Newton, para deducir la distancia r al baricentro, la velocidad radial VPL, y la masa MPL del planeta, puesto que estamos ante el simple problema gravitatorio de los dos cuerpos,

\displaystyle r^{3}={\frac {GM_{\mathrm {star} }}{4\pi ^{2}}}P_{\mathrm {star} }^{2}

\displaystyle  V_{\mathrm {PL} }={\sqrt {\frac{GM_{\mathrm {star} }}{r}}}

\displaystyle  M_{\mathrm {PL} }={\frac {M_{\mathrm {star} }V_{\mathrm {star} }}{V_{\mathrm {PL} }}}

donde Mstar es la masa de la estrella, que debe ser conocida por otros métodos astrofísicos. Y el parámetro VPL es la velocidad radial de la estrella, que se deduce de las mediciones del efecto Doppler sobre las variaciones de su espectro:

\displaystyle  K=V_{\mathrm {star} }\sin(i)

donde k es la velocidad, e i es la inclinación del plano orbital respecto a nuestro linea de visión. Esto constituye el mayor inconveniente del método de espectroscopía Doppler: que la determinación de la velocidad radial dependa de saber previamente el ángulo de inclinación del plano orbital de la estrella respecto al observador (que somos nosotros). Si aplicamos una fórmula Doppler clásica, y asumiendo una inclinación orbital de cero grados, tendremos, para cualquier longitud de onda λ0 de linea espectral que se observe con un valor distinto λ

\displaystyle \lambda = \lambda_0 \left(1-\frac{K}{c}\right) \\ \\ \\  K = c \left(1-\frac{\lambda }{ \lambda_0}\right) \\ \\ \\  V_{\mathrm {star}} = K

En resumen: posiblemente Armun sea un infierno, con temperaturas medias de más de 500 grados Kelvin, con días y noches eternas iluminadas con brillantes luces fluorescentes procedentes de gigantes auroras. Sólo un potente campo magnético podría actuar como escudo protector de los rayos x y demás radiación peligrosa para la vida y su diversidad en Armun.

Saludos armunianos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , | 7 Comments »

NO ESTAMOS SOLOS EN EL UNIVERSO

Posted by Albert Zotkin en junio 16, 2016

Existen muchas civilizaciones alienígenas más avanzadas tecnológicamente que la nuestra, saben que estamos aquí, pero no nos visitan porque no somos nada interesantes para ellos.
1. Búsqueda de Inteligencia Extraterrestre: Existen varios programas SETI de búsqueda de vida inteligente extraterrestre. Dicha búsqueda se hace de forma activa, enviando mensajes al espacio exterior, y de forma pasiva escuchando las señales que nos llegan y analizándolas para saber si tiene origen natural o artificial.
Pero, una civilización extraterrestre muy avanzada tecnológicamente, podría ser potencialmente un peligro inmenso para nuestra propia civilización si nos visitaran. Eso fue lo que nos dijo el prestigioso astrofísico y matemático inglés,Stephen Hawking. El cree firmemente en la existencia no sólo de vida extraterrestre, sino en la existencia de civilizaciones alienigenas muy avanzadas tecnológicamente. Piensa que no sólo la vida en la Tierra estaría en peligro, sino la misma Tierra como planeta, ante una potencial invasión de ingentes enjambres de naves alienígenas formados por cientos de miles de naves nodrizas interestelares, conteniendo cada una miles de drones equipados con armas letales de destrucción masiva. En concreto, el profesor Hawking confesó que: “Quizás esas civilizaciones alienígenas, que viven en colonias nómadas interestelares, estén en constante movimiento por toda la galaxia en busca de recursos materiales y energéticos para construir y mantener sus naves y todos sus sistemas de pervivencia. Una eventual visita a la Tierra de una de esas colonias nómadas resultaría en un cataclismo de proporciones bíblicas …
2. La ecuación de Drake: Según una primera estimación de la ecuación de Drake, existen en nuestra galaxia al menos diez civilizaciones alienígenas más avanzadas tecnológicamente que nosotros. La ecuación de Drake es la siguiente:

\displaystyle N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L

drake

y una primera estimación es la siguiente:

R^* =  10/año (10 estrellas se forman cada año)
f_p =  0.5 (la mitad de esas estrellas cuentan con planetas)
n_e =  2 (cada una de esas estrellas contiene dos planetas)
f_l =  1 (el 100 % de esos planetas podría desarrollar vida)
f_i =  0.01 (solo el 1 % albergaría vida inteligente)
f_c =  0.01 (solo el 1 % de tal vida inteligente se puede comunicar)
L =  10 000 años (Cada civilización duraría 10 000 años trasmitiendo señales)

N =10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
N =  10 posibles civilizaciones detectables.

3. La paradoja de Fermi: La Paradoja de Fermi nos dirá que si hay al menos 10 civilizaciones alienígenas en nuestra galaxia, ¿dónde están?, no nos han visitado, no dan señales de vida. Esta supuesta paradoja se resuelve muy fácilmente: No nos han visitado porque el planeta Tierra, y en particular la vida en él y nuestra civilización humana, no les motiva especialmente. Es como si nosotros visitamos un desierto donde no hay prácticamente nada de interés. ¿por qué tenemos que aventurarnos hacia lugares remotos si sabemos a ciencia cierta que no tienen nada nuevo allí que no sepamos?. La respuesta a la paradoja de Fermi implica que existe al menos una civilización alienígena cercana muy avanzada, una civilización muy antigua, que quizás ya esté extinguida, que alcanzó su cúspide de avances tecnológicos y científicos hace aproximadamente unos ocho mil millones de años, cuando el sistema solar aún estaba en su más temprana etapa de formación. Quizás, fue esa civilización alienígena la que “sembró” el planeta Tierra de vida, convirtiéndolo en un santuario.
fermi-paradox-660x330
4. No son como nosotros: ¿Te imaginas a un ser alienígena super inteligente poseyendo el cuerpo de un gusano pestilente del tamaño de una anaconda arrastrándose por el fango?. El contacto con esos seres no sería muy agradable para nosotros, sería algo vomitivo, y lo mismo sentirían ellos de nosotros. Nuestros cuerpos, nuestros hábitats, nuestras costumbres gastronómicas, serían para esos seres algo repulsivo. ¿Te imaginas a un inteligente y avanzado alien con un cuerpo muy semejante al de una cucaracha y del tamaño de un elefante, desprendiendo un insoportable y extraño hedor?. Como poder, sí se puede imaginar, pero no sería algo muy agradable de sentir cerca de nosotros, y ese ser alienígena sentiría algo muy parecido al vernos a nosotros.
alien-2
Saludos cucarachescos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Física de partículas, Gravedad Cuántica, Inteligencia artificial, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde φ‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) → x, cuando x << 1, y μ (x) → 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol,
\displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional,
\displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND
\displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz
\displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El proyecto Starshot a las estrellas

Posted by Albert Zotkin en abril 29, 2016

El Proyecto Breakbrough Starshot financiado por el multimillonario ruso Yuri Milner, el cual pondrá los 100 millones de dólares iniciales, consiste en enviar micronaves espaciales, de pocos gramos de peso cada una, hacia el sistema estelar Alfa Centauri, que se encuentra a 4,37 años-luz de la Tierra. La intención de enviar esas micronaves es explorar ese sistema estelar, hacer fotografias de alta resolución de posibles planetas y enviarlas a la Tierra. Y todo eso quieren hacerlo en una generación, es decir 20 años de viaje y 5 años para enviar las fotos.

Pero, existen pequeños detalles que podrían poner en peligro el éxito de esa misión. En primer lugar, una nave espacial como las que usualmente exploran nuestro sistema solar o como las que están actualmente escapando de él (Voyager, Pioneer) tardaría unos 80 mil años en llegar a las inmediaciones de Alfa Centauri, sin embargo, en el proyecto Starshot se pretende que lo hagan en 20 años, es decir que viajen a una velocidad del 20% de la velocidad de la luz. Para conseguir esa velocidad de 0.2c, una micronave, que dispondrá y desplegará unas velas solares, sería acelerada mediante un potente rayo láser de unos 100 gigavatios durante unos 30 minutos. Pero, el pequeño detalle es que aunque fuera posible acelerar hasta 0.2c la microsonda espacial, no habría forma de desacelerarla cuando llegase a las inmediaciones del destino. Luego, si su objetivo es fotografiar posibles exoplanetas de ese sistema estelar, la pregunta es cómo se consigue fotografiar con nitidez un objeto si la velocidad relativa entre él y la cámara es de 0.2c.

starshot-starchip-alpha-centauri-160412b-02

La idea Starshot es fascinante. Yo incluso propondría un láser de 1 teravatio (1000 gigavatios) para que esos chips estelares llegaran a Alfa Centauri no ya en 20 años sino en 5. Pero, el problema está en que ese proyecto es casi inviable por muchas razones, no solo los retos tecnológicos apuntados arriba. La principal razón es que se necesitarían más de 20 años de investigaciones y de patentes antes de siquiera construir un prototipo. Es decir, descontando los 20 años de singladura interestelar, habría que sumar al menos 50 años de investigaciones y avances tecnológicos para dispositivos y sistemas pertinentes con el proyecto. Podríamos sumar un siglo entero. ¿Quién es capaz de financiar un proyecto de un siglo de duración aportando 100 millones de dolares cada diez años, por ejemplo?. Lo que era un proyecto ilusionante por conseguir enviar una sonda a la estrella más cercana que haga fotos y nos las envíe a la Tierra en menos de 25 años, se convierte en un proyecto decepcionante porque no se conseguirían avances significativos en menos de un siglo. Los recursos financieros aportados del proyecto serían un auténticos desperdicio, y ni el multimillonario más multimillonario del mundo estaría dispuesto a gastarse más de 60 mil millones de dólares en un proyecto que en poco o en nada aportaría al progreso de la ciencia y de la humanidad, y lo peor, sería a fondo perdido. Además, puesto que Starshot es simplemente un disparo desde la Tierra hacia Alfa Centauri, la más mínima perturbación inicial implicaría un desvío significativo respecto del objetivo. Su trayecto caótico impediría alcanzar un objetivo tan remoto a largo plazo. Además, supongamos que hay fortuna y los científicos apuntan correctamente hacia el objetivo, entonces entraría en juego otro factor llamado posición aparente. Disparar a un objeto distante 4,37 años-luz que no está estático tiene el pequeño inconveniente de que si apuntas hacia su posición aparente (la posición que indica la luz que estás recibiendo de él en ese momento) entonces cuando la bala llegue a sus inmediaciones podría ocurrir con mucha probabilidad que el objeto no está donde se suponía que debía estar, y la bala pasaría muy alejada de la diana real.

Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él poseerían órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas.

Este sistema estelar se encuentra a tan sólo 41,3 billones de kilómetros (4,37 años-luz). Una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años.

En un párrafo anterior digo que la idea Starshot es fascinante. No sé si se me ha entendido bien la ironía, pero es evidente que a mi ese proyecto no me ilusiona, por dos motivos. El primero es que existen demasiadas barreras tecnológicas y presupuestarias, y el segundo es que el resultado del proyecto suponiendo que tuviera el éxito deseado sería únicamente la obtención de unas cuantas fotografías más o menos borrosas de algún exoplaneta o asteroide. La forma más ilusionante de explorar el espacio profundo de nuestra galaxia es el proyecto COINN (Colonias Interestelares de Naves Nómadas).

Posted in Astrofísica, Cosmología, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Exobiología: semillas alienígenas en microesferas espaciales y espermatozoides interestelares

Posted by Albert Zotkin en febrero 19, 2015

El otro día leí una curiosa noticia en un periódico digital, el titular decía: “¿Invasión extraterrestre? Descubren una bola de metal en la estratosfera… ¡con un extraño microorganismo!!” Se afirmaba que se había encontrado en la estratosfera una pequeña esfera de origen extraterrestre, la cual una vez examinada y analizada se vio que era metálica, compuesta de titanio y vanadio, con ciertos materiales filamentosos adheridos a su superficie, y rezumando de su interior una sustancia viscosa, quizás de materia biológica.
Los científicos de la Universidad de Buckingham, autores de tan sensacional y fantástico descubrimiento, afirman que ese microorganismo extraterrestre es sin duda una semilla enviada a la Tierra intencionadamente para propagar la vida alienígena en ella. Es decir, si no lo he entendido mal, esa pequeña esfera metálica es la capsula espacial con contenido biológico alienígena que unos seres extraterrestres muy inteligente de un exoplaneta esparcieron por toda la galaxia para perpetuarse como especie interestelar. Muy bien, razonemos esta noticia tan sensacional. O sea, la teoría de la panspermia en acción.
alien-spheres

Supongamos que esa pequeña esfera metálica existe realmente y que de su interior rezuma un fluido viscoso. Así, cualquiera que indague un poco sobre que pudiera ser esa microesfera metálica llegaría a la misma conclusión a la que he llegado yo: ¿Qué es realmente ese objeto?. Respuesta: basura espacial. Más concretamente, parte de una pequeña batería de níquel-hidrógeno perteneciente a un satélite artificial, probablemente ruso, que se destruyó hace poco al reentrar en la atmósfera. Es más que obvio que ese fluido que rezuma del núcleo de la esfera metálica, no es biológico, sino un polímero cuya misión era la de actuar como electrolito en la batería o de dieléctrico en un condensador eléctrico.

La teoría de la panspermia es una hipótesis muy bonita, pero en este caso parece que existe un origen algo más prosaico para ese objeto supuestamente de origen extraterrestre.

Saludos

Posted in curiosidades y analogías, Exobiología | Etiquetado: , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: