TARDÍGRADOS

Ciencia en español

Posts Tagged ‘galaxia’

Negacionismo del Big Bang, ¿qué es el tiempo?, elongación espacio temporal o mengua matérica universal

Posted by Albert Zotkin en octubre 6, 2016

Dicen que nuestro universo se expande. Peor aún, dicen que se expande aceleradamente, y nos muestran las evidencias. A menudo, en física y otras disciplinas, no sólo científicas, las evidencias son sólo interpretaciones o medias verdades. ¿Hacia dónde se expande nuestro universo?. Como la respuesta a eso es simplemente “hacia ningún sitio”, y como pretenden mantener como cierta la afirmación de que el universo se expande aceleradamente, sólo les queda argumentar que lo que se expande realmente es el espacio-tiempo, por lo que la materia que se encuentra enclavada en él formando cúmulos está en proceso de recesión relativa. Por lo tanto, la elongación espacio-temporal parece ser un hecho irrefutable, pero no, no es irrefutable. Ese supuesto hecho se basa en el desplazamiento hacia el rojo de las rayas espectrales de la luz de galaxias y cúmulos de galaxias que nos está llegando. Ese desplazamiento al rojo se interpreta como si fuera un efecto Doppler, y por lo tanto, se interpreta que existe una velocidad de recesión de cada galaxia que es aproximada y directamente proporcional a la distancia. Pero a mi me surgen muchas dudas sobre todas esas afirmaciones. La primera es si es cierto que el espacio-tiempo se expande y de forma acelerada ¿por qué han de separarse unas de otras las partículas materiales?. O dicho de otra forma. ¿Dónde y qué clase de ancla tiene cada partícula material clavada en ese espacio-tiempo para que sea arrastrada con su expansión?. Alguien puede argumentar con el ejemplo de un gas dentro de un recipiente. Si el recipiente se expande el gas se expande con él, enfriándose y disminuyendo su presión. Pero yo puedo argumentar también que ese gas se expande acompañando al recipiente porque las partículas de ese gas impactan y rebotan continuamente en las paredes del recipiente. Las partículas del gas intercambian calor continuamente con las paredes del recipiente. Pero, ¿dónde están las paredes de nuestro universo?, o peor aún, ¿alguien ha visto alguna vez que las galaxias reboten contra unas supuestas paredes universales?. Nuestro universo no posee bordes materiales, fronteras, barreras sobre las que impactar, colisionar. Parece ser un universo infinito espacial y temporalmente, por lo tanto, cualquier supuesta expansión del espacio-tiempo no arrastraría materia, no puede haber anclaje de la materia en el espacio-tiempo. Cuando matemáticamente sumas a infinito cualquier número real, sigue dando infinito.

big-bang-camelo

Esta reflexión nos lleva inexorablemente a la pregunta: ¿qué es el tiempo?. El tiempo es simplemente el método que utiliza nuestro cerebro para ordenar nuestras experiencias en la memoria. El tiempo es la acción de un librero numerando las páginas del libro de nuestra vida. Objetivamente, el tiempo no existe. En la naturaleza sólo hay presente, y no hay ni futuro ni pasado. Por esa razón los viajes en el tiempo (como los de las pelis de ciencia-ficción) son realmente imposibles. No se puede viajar a un tiempo futuro por la sencilla razón de que no se puede viajar hacia algo que aún no existe. Igualmente, no se puede viajar a un tiempo pasado por la sencilla razón de que ese tiempo pasado no existe. Evidentemente si pudieras viajar a un tiempo pasado te encontrarías con una duplicación de materia, salida de la nada. Pero no hay atajos ni caminos por los que pueda transcurrir la materia hacia tiempos pasados o futuros. Cuando los físicos teóricos actuales entiendan mejor qué es el tiempo y por qué el tiempo no es sólo esa cosa que miden los relojes, estarán en mejores condiciones de elaborar teorías más certeras sobre la naturaleza. Otra característica que define al tiempo es su inexorabilidad: dime cualquier fecha en el pasado y siempre es imaginable saber que esa fecha ocurrió realmente. Dime cualquier fecha en el futuro y te puedo asegurar que esa fecha llegará. Es como el juego de escribir un número real, siempre podemos escribir otro número real mayor o menor que ese. O al escribir dos números reales, siempre podemos encontrar otro distinto entre ambos. Por lo tanto, el tiempo es cuantificable, y para ello usamos los relojes.

Respecto a la pregunta ¿qué es el espacio?, cabe responder de una forma muy análoga a como lo hemos hecho con el tiempo. Pero el espacio no se nos presenta como el tiempo. Nuestros cerebros no ven al espacio como algo que transcurre, sino literalmenete como un recipiente donde están las cosas que percibimos. El tiempo pasa (siempre hay tiempo pasando, nunca se acaba), el espacio permanece. Percibimos el tiempo como algo dinámico y al espacio como algo estático. Pero ambas cosas son productos imprescindibles para ordenar nuestra experiencia.

¿Por qué percibimos el espacio como poseyendo tres dimensiones?. Cuando algunos físicos teóricos nos hablan de otras dimensiones espaciales extra, además de las tres clásicas (ancho, alto y profundo), para esconder su falta de evidencia científica, nos cuentan que esas dimensiones están como enrolladas sobre sí mismas, plegadas microscópicamente y por eso no podemos verlas. Todos sabíamos desde el principio, porque lo aprendimos bien, que lo que caracteriza a un sistema espacial de referencia es la ortogonalidad de sus ejes. Si una dimensión está plegada, retorcida microscópicamente, creo yo que no es una buena opción para un sistema espacial de referencia, porque ese “enrollamiento” no es precisamente la mejor definición de ortogonalidad. Evidentemente, nuestro espacio puede ser descrito matemáticamente mediante muchos ejes (no sólo tres) que no sean ortogonales, pero todos pueden ser reducidos a tres ejes ortogonales desde los que nuestras ecuaciones se simplifican drásticamente para describir lo mismo con igual éxito. El espacio que percibimos posee infinitas direcciones desde las que nos puede llegar el peligro o la salvación. Son infinitas direcciones por las que podemos huir del peligro, o estar alerta, por las que nos puede llegar el depredador a cazarnos. Nuestras tres dimensiones espaciales tienen mucho más que ver con las características de nuestro cerebro (de nuestra mente), que de algo externo. Nuestros antecesores, simios arborícolas, vivían casi todo el día encaramados a sus ramas, y el alimento lo conseguían desplazándose de rama en rama, al mismo tiempo que miraban en todas direcciones para estar alerta de los acechadores. Nuestro sentido de la vista es capaz de percibir con tres colores básicos de los que se derivan todos los demás. Eso es así por evolución natural. Nuestros parientes ancestrales necesitaban distinguir qué fruta estaba madura por su color, qué alimento era aparentemente comestible por su color y cual no. Del mismo modo que nuestro cerebro y nuestros órganos sensoriales han evolucionado para percibir todos los colores de las cosas que pueden ser expresados mediante esos tres colores básicos, una evolución similar se ha producido para percibir lo que llamamos el espacio. Al igual que los tres colores básicos desde los que podemos percibir cualquier otro color, nuestro cerebro percibe el espacio desde tres direcciones básicas, y cualquier otra dirección puede ser expresada mediante ellas. Así pues, cuando nos preguntamos por qué tres dimensiones espaciales, hay que preguntarse por qué tres colores básicos, y la respuesta es más de fisiología humana que de física universal.

El llamado espacio-tiempo, es pues un constructo, algo más teórico que real. Nuestro cerebro casa muy mal el espacio y el tiempo como un espacio de cuadro dimensiones. Nuestro cerebro no admite como muy natural que el tiempo sea un eje más como los otros tres ejes espaciales. Notamos muy bien qué es intuitivamente el tiempo, y por qué no puede ser una dimensión espacial más. La flecha del tiempo es algo muy subjetivo. El futuro es algo que aún no existe y por lo tanto no puede ser apuntado por ninguna fecha con certeza. El pasado es algo que ya no existe, y por lo tanto ninguna flecha pudo apuntar con certeza hacia nuestro presente.

Y por ultimo. ¿Qué hacemos con el Big Bang?. Puesto que toda la evidencia nos viene de supuestos desplazamientos al rojo de lineas espectrales, y que los santones del paradigma cosmológico actual se han encargado de darnos de comer ese fenómeno como si fuera un efecto Doppler cosmológico, lo que tenemos es un universo en creciente estampida. Pero si pensamos un poquito vemos, que ese efecto Doppler, que también se da en las diferencias de potencial gravitatorio, es simplemente algo relativo, de perspectiva, de horizonte, más que ningún supuesto Big Bang. La distancia a escala cosmológica produce sencillamente una diferencia de potencial gravitatorio, pero esa diferencia de potencial no significa ninguna expansión ni ningún alejamiento de las galaxias. Toda la materia permanecería esencialmente estática en nuestro universo, y lo único que cabría explicar es ¿por qué la distancia cosmológica produce diferencias relativas de potencial gravitatorio?. Cuando dibujamos la gráfica de un potencial gravitatorio producido por una masa puntal, lo solemos hacer como una curva en forma de campana invertida cuyos bordes se aproximan infinitamente hacia un eje horizontal, el cual marca un potencial nulo (potencial cero). Es decir, ese potencial es una curva gaussiana invertida, que posee valores negativos, y que se hacen menos negativos a medida que se aproximan al eje horizontal de potencial cero. Pero a escala cosmológica, esa linea de potencial cero podría ser más un arco de circunferencia que una recta real, por lo que además de las diferencias locales de potencial debido a la presencia cercana de materia, existirían diferencias relativas de potencial gravitatorio debido a la distancia.

Supongamos que un Radio de Hubble, es la mayor distancia cosmológica de la que nos puede llegar luz. Existe pues un horizonte cósmico, que podemos cuantificar de la siguiente forma: Supongamos que el potencial cosmológico es la superficie lisa de una esfera, y que los potenciales gravitatorios locales son pequeños montículos que destacan sobre esa superficie. Cuando nos situamos en un montículo se crea un horizonte desde el cual podemos percibir luz procedente de puntos de otros montículos. Si nos situamos en un punto de la superficie el radio de nuestro horizonte se reduce, y solo podremos ver luz procedente de montículos muy promimentes y cercanos. Pero, si nos situamos en una montaña de potencial local muy grande, nuestro horizonte para ver luz será muy grande. Esto resuelve la Paradoja de Olbers. En otras palabras, vemos el número de estrellas y galaxias que vemos por nuestra posición peculiar dentro de nuestra galaxia. Si estuvíéramos en una región remota, muy alejada de cúmulos grandes de materia, como son las galaxias, es decir, en una región muy cercana al potencial cero, veríamos muy pocas estrellas y galaxias en el cielo, menos de las que somos capaces de ver, porque nuestro horizonte observacional sería mas reducido.

Esto significaría que cuanto más cercanos estamos de una gran masa nuestro horizonte cósmico (observacional) será mas grande. Así, nuestra distancia al nuestro horizonte será:

\displaystyle  d={\sqrt {(R+h)^{2}-R^{2}}} \\ \\  s=R\arccos {R \over R+h} (1)
donde R el radio de Hubble, h nuestra altura local de potencial gravitatorio, s la distancia real al punto H, d la distancia tangencial que recorre la luz.

Figura 1

Figura 1

Esto significa que, según esta teoría del potencial cosmológico, que me estoy inventando, no sólo existe por la misma linea de vision el punto H del horizonte, sino otros más remotos, H1, H2, etc, si están situados sobre potenciales gravitatorios de cierta altura.

Luego en una esfera universal, sin defectos topológicos (como los campos gravitatorios locales), el potencial de deriva cósmica vendrá expresado por la ecuación:

\displaystyle  \phi (r) = c^2  \left (1-\sqrt {1- \frac{r^2}{R^2}}\right ) \\ \\   (2)

cuya gráfica es la siguiente:
hemi-circle

Obviamente, si r es muy pequeña respecto a R, ese potencial de deriva cósmica se reduce a cero. Y cuando r tiende a R, el potencial φ tiende a c². En un campo de potencial gravitatorio local, los valores son escalares negativos que crecen con la distancia hacia cero. Pero, en el campo de potencial de deriva cósmica los valores escalares son positivos y tienden con la distancia r hacia el cuadrado de la velocidad de la luz en el vacío.

Desde esa expresión explicita de potencial de deriva cósmica es fácil descubrir que el desplazamiento al rojo de las rayas espectrales de la luz de galaxias remotas es el siguiente:

\displaystyle  z=\frac{\Delta\lambda}{\lambda} = \exp\left( \frac{\phi (r)}{c^2}\right) -1 (3)
donde λ es la longitud de onda original (emitida), y Δλ es la diferencia entre la longitud de onda observada y la emitida. Y si queremos expresar la distancia r en función del desplazamiento al rojo z y del radio de Hubble, tendremos:

\displaystyle  z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\  \ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle  r = R\sqrt{2\ln (z+1)-\ln^2 (z+1) } (4)
Esto cambia drásticamente las distancias estándar calculadas hasta ahora para las galaxias y cúmulos remotos. Por ejemplo, se ha observado que los desplazamientos al rojo más grandes corresponden a unos extraños objetos remotos que se llaman cuásares. Estos extraños objetos nos ofrecen desplazamientos al rojo que van de z = 0.16 hasta z = 3.53. Lo cual, según mi hipótesis, implica distancias entre r = 0.524R y r = 0.875R.

Mi hipótesis tiene una serie de ventajas frente a las teorías del Modelo Cosmológico Estándar. En mi hipótesis:

  1. No existe recesión de galaxias y demás objetos remotos, sino que permanecen esencialmente en reposo. Ese desplazamiento al rojo se debe casi en su mayoría a la diferencia de potencial de la deriva cósmica. Después hay que sumar o restar otros efectos Doppler, debidos a potenciales gravitatorios locales, y/o a velocidades cinemáticas.
  2. La localización de la fuente emisora y la del observador en sus respectivos potenciales gravitatorios locales contribuyen al efecto de desplazamiento al rojo, ya que hay que calcular sobre la diferencia neta de potencial (sumando y/o restando potenciales locales y cinemáticos al potencial cosmológico).
  3. La Radiación de fondo de Microondas sería según mi hipótesis vulgares fotones emitidos mayoritariamente por átomos de hidrógeno procedentes de galaxias y cúmulos en el horizonte H, incluso más allá de él, en una franja cercana. Es decir de puntos H1, H2, etc, tal como los he dibujado en la figura 1.
  4. Los cuásares serían, ni más ni menos que galaxias y cúmulos con alta acumulación de materia y muy cercanos al horizonte cósmico H, pero dentro (no fuera) de la esfera de Hubble.
Por lo tanto, según mi hipótesis cosmológica, nuestro universo observable sería tan sólo un hemisferio de la gran esfera cósmica, esfera universal (no confundir con la esfera de Hubble), que tendría cuatro dimensiones espaciales. El otro hemisferio quedaría inaccesible, en su mayor parte, a nuestra observación de ondas electromagnéticas. Esa cuarta dimensión espacial es sobre la que se curva la linea de potencial cero. Es decir, nuestro universo (el observable y el no observable) sería simplemente la superficie de una hiperesfera de cuatro dimensiones espaciales.

figura 2 (Esfera universal)

Figura 2 (Esfera universal)

Si queremos traducir los potenciales a velocidades de recesión o viceversa debemos establecer la siguiente equivalencia, la cual es posible porque se usan coordenadas cosmológicas:

\displaystyle   \exp\left( \frac{v}{c}\right) =z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\   \frac{v}{c}=\ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle   v =c \ln (z+1) =  c \left(1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\ (5)
Por ejemplo. Se observó que la galaxia 8C1435+635 posee un corrrimento al rojo de z = 4.25, que es el más grande que se ha conseguido ver hasta ahora. Así desde el Modelo Estándar, ese desplazamiento correspondería a una velocidad de recesión de v = 0.93c. Pero, si usamos las coordenadas cosmológicas tenemos una velocidad de recesión de:

\displaystyle   v = c \ln (z+1) = = c \ln (5.25) = 1.70475 c (6)
es decir, una velocidad superlumínica. Y en terminos de diferencia de potencial cosmológico tendriamos:

\displaystyle  \Delta\phi = c^2\ln(z+1) = 1.70475 c^2 (7)
Por lo que esta lejana galaxía estaría algo más allá de nuestro horizonte cósmico. Pero nuestros telescopios la pueden ver porque es una gran acumulación de materia, ya que su altura de potencial gravitatorio sobresaldría un poco por encima de nuestro horizonte cósmico. Toda galaxia o cúmulo más allá de nuestro horizonte que no posea suficiente altura de potencial para destacar, sino que estuviera a ras de él. solo puede ser vista como formando parte de la Radiacíón Cósmica de Fondo. Esto significa que cuando una fuente emisora de luz cercana al horizonte posee poca altura de potencial, no sólo su luz nos llegaría con desplazamiento al rojo, sino con poca intensidad (pocos fotones), y cuanto más grande sea su potencial gravitatorio local más intensa veremos su luz y bien diferenciada del ruido de fondo cósmico.

Saludos

Anuncios

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

NO ESTAMOS SOLOS EN EL UNIVERSO

Posted by Albert Zotkin en junio 16, 2016

Existen muchas civilizaciones alienígenas más avanzadas tecnológicamente que la nuestra, saben que estamos aquí, pero no nos visitan porque no somos nada interesantes para ellos.
1. Búsqueda de Inteligencia Extraterrestre: Existen varios programas SETI de búsqueda de vida inteligente extraterrestre. Dicha búsqueda se hace de forma activa, enviando mensajes al espacio exterior, y de forma pasiva escuchando las señales que nos llegan y analizándolas para saber si tiene origen natural o artificial.
Pero, una civilización extraterrestre muy avanzada tecnológicamente, podría ser potencialmente un peligro inmenso para nuestra propia civilización si nos visitaran. Eso fue lo que nos dijo el prestigioso astrofísico y matemático inglés,Stephen Hawking. El cree firmemente en la existencia no sólo de vida extraterrestre, sino en la existencia de civilizaciones alienigenas muy avanzadas tecnológicamente. Piensa que no sólo la vida en la Tierra estaría en peligro, sino la misma Tierra como planeta, ante una potencial invasión de ingentes enjambres de naves alienígenas formados por cientos de miles de naves nodrizas interestelares, conteniendo cada una miles de drones equipados con armas letales de destrucción masiva. En concreto, el profesor Hawking confesó que: “Quizás esas civilizaciones alienígenas, que viven en colonias nómadas interestelares, estén en constante movimiento por toda la galaxia en busca de recursos materiales y energéticos para construir y mantener sus naves y todos sus sistemas de pervivencia. Una eventual visita a la Tierra de una de esas colonias nómadas resultaría en un cataclismo de proporciones bíblicas …
2. La ecuación de Drake: Según una primera estimación de la ecuación de Drake, existen en nuestra galaxia al menos diez civilizaciones alienígenas más avanzadas tecnológicamente que nosotros. La ecuación de Drake es la siguiente:

\displaystyle N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L

drake

y una primera estimación es la siguiente:

R^* =  10/año (10 estrellas se forman cada año)
f_p =  0.5 (la mitad de esas estrellas cuentan con planetas)
n_e =  2 (cada una de esas estrellas contiene dos planetas)
f_l =  1 (el 100 % de esos planetas podría desarrollar vida)
f_i =  0.01 (solo el 1 % albergaría vida inteligente)
f_c =  0.01 (solo el 1 % de tal vida inteligente se puede comunicar)
L =  10 000 años (Cada civilización duraría 10 000 años trasmitiendo señales)

N =10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
N =  10 posibles civilizaciones detectables.

3. La paradoja de Fermi: La Paradoja de Fermi nos dirá que si hay al menos 10 civilizaciones alienígenas en nuestra galaxia, ¿dónde están?, no nos han visitado, no dan señales de vida. Esta supuesta paradoja se resuelve muy fácilmente: No nos han visitado porque el planeta Tierra, y en particular la vida en él y nuestra civilización humana, no les motiva especialmente. Es como si nosotros visitamos un desierto donde no hay prácticamente nada de interés. ¿por qué tenemos que aventurarnos hacia lugares remotos si sabemos a ciencia cierta que no tienen nada nuevo allí que no sepamos?. La respuesta a la paradoja de Fermi implica que existe al menos una civilización alienígena cercana muy avanzada, una civilización muy antigua, que quizás ya esté extinguida, que alcanzó su cúspide de avances tecnológicos y científicos hace aproximadamente unos ocho mil millones de años, cuando el sistema solar aún estaba en su más temprana etapa de formación. Quizás, fue esa civilización alienígena la que “sembró” el planeta Tierra de vida, convirtiéndolo en un santuario.
fermi-paradox-660x330
4. No son como nosotros: ¿Te imaginas a un ser alienígena super inteligente poseyendo el cuerpo de un gusano pestilente del tamaño de una anaconda arrastrándose por el fango?. El contacto con esos seres no sería muy agradable para nosotros, sería algo vomitivo, y lo mismo sentirían ellos de nosotros. Nuestros cuerpos, nuestros hábitats, nuestras costumbres gastronómicas, serían para esos seres algo repulsivo. ¿Te imaginas a un inteligente y avanzado alien con un cuerpo muy semejante al de una cucaracha y del tamaño de un elefante, desprendiendo un insoportable y extraño hedor?. Como poder, sí se puede imaginar, pero no sería algo muy agradable de sentir cerca de nosotros, y ese ser alienígena sentiría algo muy parecido al vernos a nosotros.
alien-2
Saludos cucarachescos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Física de partículas, Gravedad Cuántica, Inteligencia artificial, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde φ‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) → x, cuando x << 1, y μ (x) → 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol,
\displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional,
\displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND
\displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz
\displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle  I = Mr^2   (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle  I = \sum m_ir_i^2   (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle  r = \cfrac{2GM}{c^2}  (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle  r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle  \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\   \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\   v_e = \sqrt{\frac{2GM}{r}}  (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

La curvatura del espacio-tiempo contradice el Principio de Fermat

Posted by Albert Zotkin en julio 24, 2014

El Principio de Fermat establece que la luz sigue la trayectoria de tiempo mínimo entre la fuente emisora y el observador. La Teoría General de la Relatividad de Einstein predice la existencia del efecto de lente gravitacional, afirmando que ese efecto es causado por la curvatura del espacio-tiempo ante la presencia de materia y/o energía en las inmediaciones. Realmente, esos dos efectos son el mismo. Lo único que tenemos que hacer es repensar lo que entendemos por vacio y cómo es posible que un fotón pueda viajar en el vacio.
refraccion
Si la velocidad de la luz es diferente en diferentes medios, ¿significa eso que hay un cuerpo masivo en la zona limítrofe de ambos medios que hace que el espacio-tiempo se curve ahí? La respuesta debe ser obviamente no. La respuesta correcta es que los átomos y moléculas en un medio deben de retransmitir la señal: si un medio es ópticamente más denso, la velocidad de la luz sería más pequeña. Por lo tanto, el concepto de curvatura del espacio-tiempo es sólo un pseudo-concepto que se refiere implícitamente a la variación de la velocidad de la luz. No se puede afirmar por un lado que el espacio-tiempo se curva y por otro lado que existe una velocidad de la luz localmente variable. Se debe elegir entre una afirmación o la otra, pero no ambas. El problema que nos produce la Relatividad General es que en ella coexisten ambas afirmaciones sin contradicción alguna. y eso es un absurdo.

lente

Está claro que si existe un cuerpo masivo intermedio entre la fuente de luz y el observador, el vacio (medio) se hace gradualmente denso e inhomogéneo, ofreciendo diferentes índices de refracción, no sólo en el sitio de la fuente y en el del observador, sino por todo el espacio. Por lo tanto, surge otra pregunta. ¿Cómo curvaría la antimateria la trayectoria de la luz?. Si la materia ordinaria curva dicha trayectoria hacia el centro del cuerpo masivo intermedio, la antimateria debería curvar la trayectoria de la luz en la dirección opuesta. La antimateria es por lo tanto un alias para referirnos a un medio que posee indices inversos de refracción graduada. Es decir, si un cuerpo masivo de materia ordinaria produce un indice de refracción graduada con la distancia r, n = N(r), entonces un cuerpo masivo de antimateria de la misma clase produciría , n’ = N’(r), de tal forma que el producto escalar de ambos debe dar la unidad, n n’ = 1. Si la función N(r) para el primero es

\displaystyle                 N(r) = \exp \left ( -\frac{2V_r}{c^2} \right ),  (1)

donde Vr es el potencial gravitatorio a la distancia r.

Entonces la función N’(r) para el segundo medio (antimateria) sería

\displaystyle        N'(r) = \exp \left ( \frac{2V_r}{c^2} \right ),  (2)

y vemos que efectivamente N(r) N'(r) = 1

Ahora surge otra interesante pregunta. Si un medio homogeneo, donde la velocidad local de la luz que se mide como c, se está haciendo más denso hacia el centro de masas, ¿significa eso que se está creando un vacío rarificado en la zona de su límite exterior, que se comporta como materia oscura?. La respuesta a esa pregunta debe ser SÍ. Ese fenómeno se puede observar en la formación de galaxias. La región exterior de cualquier galaxia está llena de “materia oscura “. Las regiones exteriores de cúmulos de galaxias están también llenas de “materia oscura“. Incluso nuestro Sistema Solar tiene también una pequeña cantidad de “materia oscura” en sus regiones exteriores. Materia oscura es por lo tanto un alias para una región donde la velocidad local de la luz es más grande que la estandar c.

mo

El proceso de emergencia de materia oscura en la formación de una galaxia es muy parecido a cómo construimos un castillo de arena en una playa totalmente lisa en principio. Elegimos el punto donde construir nuestro castillo de arena, mediante una pala escabamos en la arena húmeda y la amontonamos. El resultado de amontonar la arena produce un foso alrededor del montón. Es decir, el foso es un valle que está por debajo del nivel medio de la superficie llana de la playa. La superficie llana de la playa es considerada como el vacío, y el montón central es considerado como materia ordinaria. Por lo tanto el foso alrededor del montón es considerado como materia oscura. Las ondas electromagnéticas que atraviesan ese foso de materia oscura, en las zonas exteriores de las galaxias, se propagan a una velocidad mayor que la estándar c.

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | 10 Comments »

Inteligencia alienígena: Sorprendente resolución de la paradoja de Fermi

Posted by Albert Zotkin en febrero 21, 2014

Buenos días amigos incondicionales de tardigrados. Hoy voy a hablar un poco sobre una sorprendente solución a la paradoja de Fermi. La paradoja de Fermi puede ser formulada sucintamente así:

“si se supone que existen muchas civilizaciones alienígenas inteligentes, con nivel tecnológico muy avanzado, ¿porqué aún no tenemos noticias de ellas ni nos han visitado?”

Una resolución a tal paradoja, se me ocurrió hace poco cuando escribia el post ¿Por qué en nuestro universo observable hay más materia que antimateria?. La mayor parte de las civilizaciones alienígenas inteligentes habitarían en la cara de la antimateria, es decir su “materia ordinaria” seria lo que para nosotros es la antimateria, y por lo tanto sus “ondas electromagnéticas” no serian detectables por nuestros detectores hechos con materia ordinaria. Una nave alienígena no podria aproximarse a nuestro sistema solar porque colisionaria con la materia que va encontrando a su paso y por lo tanto acabaría desintegrada. Para protegerse necesitaría de un escudo de “materia ordinaria”. Pero igual que para nosotros es dificilísimo obtener un gramo de átomos de anti-hidrógeno, para esa supuesta civilización alienígena no sería menos difícil.

ejemplar de la especie Obzzkoj

ejemplar de la especie Obzzkoj

Sin embargo, si una civilización alienígena y sus veleros interestelares, se encuentra a suficiente distancia de nosotros, no necesitaría vivir en el lado de la antimatería, sino que, como digo en ¿Por qué en nuestro universo observable hay más materia que antimateria?, la materia ordinaria conjuga su carga respecto a nosotros cuando supera un Radio de Hubble . Igualmente una civilización alienígena en el lado de la antimateria que se encontrara a más de 1 radio de Hubble, podría ser “visible” desde nuestra ubicación porque su luz nos llegaría como ondas electromagnéticas ordinarias, como las produce la materia ordinaria. Esta hipótesis nos lleva a algo aún más espectacular, y es postular que lo que en astronomía llamamos quasars, podrían ser realmente galaxia de antimateria, que por su lejanía se hacen visibles a nuestros ojos, como si fueran galaxias de materia ordinaria, pero su luz nos llegaria difusa debido a esa lejania y nos impediría observar sus detalles de estructura interna.

Reflexionando un poco más sobre la discriminación entre materia y antimateria, es ahora más evidente el hecho de que la naturaleza no puede distinguir entre carga eléctrica negativa y carga eléctrica positiva. ¿Cómo saber que dos partículas que se repelen por sus cargas eléctricas corresponde a una interacción entre dos cargas negativas o dos cargas positivas?. Puesto que en la naturaleza no existe esa discriminación, ambas cargas deben ser lo mismo pero actuando desde caras opuestas de un espacio dual, el cual a largas distancias se cierra como una banda de de Möbius, resultando en un espacio de una única cara y sin bordes.

Saludos anti-matéricos a todos

Posted in Astrofísica, Cosmología, Exobiología, Uncategorized | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

La materia oscura no existe: propulsión Star Trek o la ecuación del cohete de Tsiolkovski

Posted by Albert Zotkin en abril 18, 2013

Hoy voy a hablar de algo que los físicos llaman materia oscura. Ese alias tan desafortunado fue propuesto para referirse a una hipotética materia que rodearía a las galaxias o cúmulos de galaxias, y cuya existencia real explicaría la anomalía de que las estrellas en las galaxias, y las galaxias en cúmulos, parecen orbitar a velocidades mas altas de las que predice la teoría. ¿Cuánta cantidad de materia oscura debe de existir en una galaxia para que lo observado coincida con la predicción teórica?. Según mis últimas investigaciones y reflexiones sobre este asunto, dicha anomalía en la velocidad de rotación de las estrellas mas exteriores en las galaxias obedece al hecho, bastante prosaico, de que la materia ordinaria posee una forma muy peculiar de hacer de “pantalla” a la misma materia ordinaria que se encuentra mas alejada del centro de masas. Las consecuencia inmediata de ese “apantallamiento” es que el centro de masas del sistema gravitatorio es visto por la partícula gravitatoria test como si estuviera situado más cerca de lo que realmente está, y por lo tanto eso genera una falsa apariencia de que debe de existir mas masa de la que existe. Veamos con matemáticas de qué estoy hablando.

El exceso \Delta v de velocidad orbital que da lugar a la anomalía puede ser expresado así:

\displaystyle  \Delta v = c \ln \frac{m_0}{m}  (1)
donde c la velocidad de la luz en el vacio, m0 es la masa real del sistema y m es la masa aparente del sistema que “ve” la partícula test. Ocurre siempre que m ≤ m0. Es decir, la partícula test “ve” menos masa de la que hay, y eso ocasiona que el centro de masas está para dicha partícula situado más cerca del real. Ese es el origen de que existan los brazos en espiral de muchas galaxias. Esas espirales se forman porque las estrellas exteriores que orbitan en los halos, orbitan siempre alrededor de sus respectivos centros “aparentes” de masas. Por lo tanto, tenemos

\displaystyle  m=m_0 \exp(-\frac{\Delta v}{c}), \\  m_0=m \exp(\frac{\Delta v}{c})  (2)
esto significa, que la cantidad de esa hipotética materia oscura sería de

\displaystyle  \Delta m = m_0 - m \\ \\ \Delta m=m_0 (1-  \exp(-\frac{\Delta v}{c}))  (3)
Estas ecuaciones son análogas a las empleadas por Tsiolkovsky para describir el movimiento de un cohete, pero en este caso sirven para explicar la anomalía llamada materia oscura. Como digo, la masa m0 es la masa total del sistema, mientras que la masa m es la que, para una determinada partícula orbital test, interviene en su interacción gravitatoria. Mi hipótesis es pues que en todo sistema gravitatorio donde existe una alta densidad de masa, las partículas más profundas (aquellas situadas detrás de una gran densidad de materia) ya no contribuyen significativamente a la fuerza gravitacional con el inverso del cuadrado de la distancia, sino de otra forma debido a que su influencia sobre la partícula test se ve atenuada por las demás partículas intermedias. Para entender mejor mi hipótesis dibujaré dos esquemas de centro de masas, uno el clásico Newtoniano y el otro el que explica mi hipótesis,

esquema1

en este esquema vemos tres partículas test orbitando alrededor de un enjambre, y el centro de masas clásico está señalado como punto rojo.

esquema2

en este esquema se plantea ahora la hipótesis de que cada partícula test ve el centro de masas más cerca, debido a un apantallamiento másico de las partículas del enjambre que están detrás de la maxima densidad de materia. Por lo tanto, cada partícula test tiende a orbitar sobre su respectivo centro de masas. Esa dinámica orbital produce con el tiempo las configuraciones de los brazos en espiral de muchas galaxias.

¿ Por qué lo que afirmo como hipótesis no es ninguna tonteria?. Veamos sucíntamente, por ejemplo qué asume la teoria MOND (Modified Newtonian dynamics = Mecánica Newtoniana Modificada). Esta teoría afirma que no existe materia oscura, sino que la gravedad Newtoniana se desvía del modelo del inverso de la distancia al cuadrado para estrellas en halos galácticos (muy alejadas del centro de la galaxia). Matemáticamente desde MOND, la velocidad v orbital de las estrellas en los halos galácticos se expresa así

\displaystyle  v = \sqrt[4]{G\ M\ a_0}  (4)
donde a0 es una constante. Por lo que vemos que dicha velocidad v no depende de la distancia r al centro de masas del sistema gravitatorio, sino sólo de la masa total M y del valor de la constante a0.
Obviamente, MOND afirma que para estrellas más cercanas al centro de masas del sistema, la velocidad orbital obedece la conocida ley Newtoniana, donde existe dependencia de la distancia r,

\displaystyle  v = \sqrt{\frac{G\ M}{r}}  (5)
Así, para comprender mejor la hipótesis que estoy proponiendo aquí, fijémonos en esta última ecuación clásica (5). Si resulta que para una partícula test, que orbita a una distancia r del centro de masas, existe otro centro efectivo r’ de masas, tal que r’r, permaneciendo M constante, entonces es más que obvio que no necesitamos la existencia de materia oscura, pues obtenemos una velocidad orbital v’v para distancias suficientemente grandes respecto del centro galáctico.

\displaystyle  v' = \sqrt{\frac{G\ M}{r'}}\ge \sqrt{\frac{G\ M}{r}}  (5)

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: