TARDÍGRADOS

Ciencia en español

Posts Tagged ‘velocidad de la luz’

LIGO engaña: Las ondas gravitacionales no han sido observadas, es sólo ruido ‘mainstreamófilo’ [Contrarréplica a las respuestas oficiosas de LIGO a las críticas a su análisis de GW150914]

Posted by Albert Zotkin en junio 28, 2017

El texto que sigue es la traducción del publicado en la página oficial de los científicos James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, del Instituto Niels Bohr de la Universidad de Copenhagen. Estos científicos escribieron el valiente preprint “‘On the time lags of the LIGO signals’, el cual pone en serias dudas los tres supuestos eventos de ondas gravitacionales que, de forma muy rotunda y autoritaria, LIGO afirma haber observado.

Comentarios a nuestro documento “On the time lags of the LIGO signals”

James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky

Nuestro reciente preprint arXiv:1706.04191 “On the time lags of the LIGO signals” ha generado un considerable interés – tanto positiva como negativamente. Ese interés se puede entender dada la gran magnitud de la afirmación de que se han detectado ondas gravitacionales provenientes de la mezcla (unión) de pares de agujeros negros. Nuestra opinión es que un descubrimiento de tanta importancia merece rigurosos análisis independientes de los datos. El principal objetivo de nuestro documento es mostrar un análisis de esos datos que LIGO hizo públicos y disponibles para todo aquel que quiera examinarlos. LIGO no sólo publicó los datos, sino los métodos y plantillas que pueden usarse para llegar a los resultados a los que llegó LIGO. Nosotros hemos usado esos datos, métodos y plantillas de tal forma que se han ajustado lo más posible a los usados por el equipo de LIGO. Nuestro estudio se centró principalmente en el primer evento, el GW150914, con especial atención en los retardos entre los tiempos de llegada de la señal a los detectores de Hanford y Livingston. Desde nuestro punto de visto, si hemos de concluir fidedignamente que esa señal se debió a un verdadero evento astrofísico, descontando las correlaciones casuales, no debería haber correlaciones entre los registros temporales ·residuales de ambos detectores de LIGO, el de Hanford y el de Livingston. Los registros residuales se definen como las diferencias entre el registro limpio y la mejor plantilla GW de LIGO. Los registros residuales deberían por lo tanto estar dominados enteramente por ruido, y deberían mostrar la inexistencia de correlaciones entre Hanford y Livingston. Nuestra investigación revela que esos residuos está de hecho fuertemente correlacionados. Es más, el retardo de esas correlaciones coincide con los 6.9 ms de retardo hallado para la supuesta señal del evento mismo.

Como miembro de la colaboración LIGO, Ian Harry afirmó que él “había intentado reproducir los resultados citados en ‘On the time lags of the LIGO signals'”, pero, según él, no pudo reproducir esa correlación que afirmamos en la sección 3 del documento. Posteriores discusiones sobre el asunto con Ian Harry revelaron que ese fallo se debía a varios errores en el código de sus programas en Python (puedes consultar esos códigos aqui, en HitHub). Las versiones posteriores de sus códigos en HitHub ya las ha actualizado. Pero, en relación a los resultados que presentamos, ofrecemos una única versión de nuestro script, sólo para compararla.

El proceso de separar de forma fidedigna la señal del ruido es siempre difícil, pero es especialmente duro cuando el ruido no es ni gaussiano ni estacionario, como es el caso que tratamos. Es esencial entender completamente “el diálogo cruzado” entre detectores del sistema, para que las técnicas de limpieza sean seguras y ofrezcan las mejores y más fiables extracciones de la señal. En lo que sigue a continuación, describiremos un análisis seguro basado en los datos de LIGO que fueron hechos públicos y disponibles. Este análisis mostrará una fuerte correlación entre los residuos de Hanford y Livingston.

1. Correlaciones cruzadas

El evento GW150914 se caracteriza por su forma y por su casi aparición simultanea en los detectores de Hanford y Livingston, con un retardo de tan solo 6.9 ms (milisegundos). Aquí, reseñaremos brevemente un método para confirmar ese retardo, con la ayuda de correlaciones cruzadas, para más tarde aplicarlo al ruido residual en las inmediaciones del evento GW150914.

A los datos de tensión de la señal en hanford, H(t), y a los de Livingston. L(t), dentro del intervalo de tiempo ta < t < tb, los llamaremos H_{t_a}^{t_b} y L_{t_a}^{t_b} respectivamente. Seleccionemos un trozo cualquiera de los datos de tensión de Livingston y desplacémoslo respecto a los de Hanford un tiempo de retardo τ tal que permita la correlacion cruzada como función de esa τ. Puesto que la señal no es estacionaria, deseamos incluir sólo valores dentro de un intervalo seleccionado, asegurado por el método que esbozamos más abajo. Por lo tanto, nuestra asunción es que, dentro de una ventana de tiempo suficientemente pequeña, el ruido residual se comporta de una forma estacionaria.


Figura 1: Ilustración del procedimiento de cálculo de la correlación cruzada entre Hanford y Livingston en función del retardo τ

Usando el esquema de arriba, definimos el coeficiente de correlación cruzada,

\displaystyle  C(t,\tau,w) = {\rm Corr}(H_{t+\tau_0 + \tau}^{t-\tau_0+\tau+w},L_{t+\tau_0}^{t-\tau_0+w}), ;

donde τ0 es elegido para asegurar que sólo se incluyen valores dentro del intervalo seleccionado [t, t, w]. (hacemos notar que la señal GW150914 apareció primero en Livingston y fue vista en Hanford unos 6.9 ms después. Por lo tanto, la ecuación de arriba es tal forma que t es positivo para GW150914. Restringiremos el tiempo de retardo a -10 ≤ τ ≤ 10 ms porque esa es la única región de interés para la detección de ondas gravitacionales. Por consiguiente, elegimos τ0 = 10 ms. Aqui Corr(x,y) es la función de correlación cruzada de Pearson estándar entre los registros X e Y definidos de tal forma que caen dentro de la ventana W:

\displaystyle  {\rm Corr}(x_{t+\tau}^{t+\tau+w},y_{t}^{t+w}) = \frac{{\rm Cov}(x_{t+\tau}^{t+\tau+w},y_{t}^{t+w})}{\sqrt{{\rm Cov}(x_{t+\tau}^{t+\tau+w},x_{t+\tau}^{t+\tau+w}) \cdot {\rm Cov}(y_{t}^{t+w},y_{t}^{t+w})}}, ;

donde {\rm Cov}(x,y) es la ususal covarianza definida como {\rm Cov}(x,y)=\langle (x-\langle x \rangle)(y - \langle y \rangle) \rangle , y donde \langle ... \rangle es la media dentro de la ventana considerada.

2. Ruido residual

Empezamos nuestra búsqueda de correlaciones, en el ruido residual, con un simple test de correlación cruzada ( que llamaremos CC-test) entre los registros de Hanford y Livingston, y para ello usaremos los datos facilitados por la colaboración LIGO:

https://losc.ligo.org/s/events/GW150914/P150914/fig1-residual-H.txt
https://losc.ligo.org/s/events/GW150914/P150914/fig1-residual-L.txt

En el resgitro de 0.2 segundos que incluye el evento GW, los componentes del ruido residual se calculan como H_n=H-H_{\rm tpl} y como L_n=L-L_{\rm tpl}. Donde H_{\rm tpl} y L_{\rm tpl} son las plantillas limpiadas de la misma forma precisa como lo fueron los datos en crudo para dar los registros limpios, H y L. Para resaltar propiedades generales de la señal limpia GW150914, las plantillas de relatividad numérica y los residuos, antes de volver al CC-test, mostramos abajo las amplitudes de Fournier para los diferentes componentes, tanto para el detetcor de Hanford como para el de Livingston, y describimos brevemente sus peculiaridades.

In order to highlight general properties of the cleaned GW150914 signal, the numerical relativity templates and the residuals, before turning to the CC-test, we show below the Fourier amplitudes for these various components for both Hanford and Livingston detectors, and briefly describe their peculiarities.

Figura 2: Panel izquierdo: El espectro de potencia para el registro limpio (en rojo) del evento GW150914 de Hanford, así como la correspondiente plantilla que mejor encaja / en negro) y los residuos (en azul), as well as the Panel derecho: Lo mismo que en el panel izquierdo, pero para el registro de Livingston, también con lineas coloreadas.

Primero, para ambos detectores, las plantillas y los datos limpios muestran un pico bastante pronunciado, en las amplitudes de Fourier cerca de los 50 Hz, que está asociado al filtro paso banda que selecciona la región entre los 35 y los 300 Hz. Segundo, las amplitudes de los residuos de Hanford decrecen rápidamente para f < 70 Hz, mientras que las amplitudes residuales de Livingston tienen un valor máximo cerca de los 40 Hz, que coincide con un pico en el registro limpio. Tercero, como se puede leer fácilmente de las figuras, para frecuencias f > 270 Hz, los datos limpios están dominados por los residuos para los detectores de H como para los de L. Es más, hemos encontrado amplitudes en los registros limpios que son sustancialmente más bajas que las de las platillas. Por ejemplo, la frecuencia en el rango 100 < f < 150 Hz. Especialmente, merece ser resaltada esta peculiaridad en Hanford , donde las amplitudes de los datos limpios caen incluso por debajo de las de los residuos en frecuencias entre 70 y 120 Hz. Debemos tener en cuenta, sin embargo, que estas "anomalías" describen propiedades de los residuos para detectores individuales, y no necesariamente conducen a correlaciones cruzadas entre residuos de H y L. Este “diálogo cruzado” de estos registros es el tema de nuestro documento, y está resumido abajo.

3. El CC-test para ±10 ms en dominio restringido de tiempo

La correlación cruzada de Hn y Ln es calculada como función del tiempo de retardo τ. La condición |τ| < 10 ms viene impuesta por las condiciones físicas de la llegada de la señal GW. Todas las correlaciones se calculan en el dominio de tiempo, como se describen en la sección de arriba de las correlaciones cruzadas, es decir:

  • Elige cierto intervalo de tiempo [t, t + w].
  • Desplaza el registro de Livingston un espacio en la cuadrícula, dos espacios, etc (cada uno correspondiente a los registros de tiempos de retardo y residuos después de restar la plantilla de relatividad numérica. El panel de la izquierda muestra los datos originales, y el de la derecha muestra lo de Livingston desplazados 7 ms e invertidos. El area sombreada marca un rango de 0.39 a 0.43 segundos, dentro del cual calculamos la función de correlación cruzada presentada abajo.

Figura 3: Paneles superiores: Los registros de Hanford (azul) y Livingston (rojo) y sus residuos después de restar de las plantillas respectivas, antes (izquierda) y después (derecha) de desplazar los registros de Livingston 7 ms e invertirlos. Panel de abajo: la correlación cruzada C(t, τ, w) para los registros de ruido como función del tiempo de retardo τ para varios registros de tiempo como se indica en la leyenda.

Como se puede ver, los cálculos se pueden repetir para una gran variedad de intervalos de tiempo indicados en la leyenda. La figura muestra una correlación cruzada sorprendentemente larga de -0.81 para la ventana óptima de 0.30 a 0.43 s. El hecho de que este valor sea negativo es una consecuencia del hecho de que la señal de Livingston debe estar invertida. Esta es la región en la que el efecto “chirp” (chasquido) es más pronunciado. Observamos que la correlación cruzada entre los residuos de Hanford y Livingston tiene una magnitud superior a 0.12 para los cuatro rangos mostrados arriba. Incluso es más relevante hacer notar que se obtiene una fuerte correlación negativa para un tiempo de retardo de aproximadamente 7 ms para cada una de las ventanas de tiempo consideradas. Aunque en nuestro documento actual no hemos profundizado mucho, haremos futuras investigaciones con más profundidad y detalle sobre este mismo tema.

Debe remarcarse que la plantilla usada aqui es la de onda de máxima-probabilidad. Sin embargo, se puede encontrar una familia completa de esta clase de ondas que se ajustan a los datos igual de bien. (lo podemos ver, por ejemplo, en los paneles de la segunda fila de la figura 1 del documento LIGO’s detection paper of GW150914). Para ofrecer una estimación grosso modo de esta incertidumbre, hemos explorado también la posibilidad de una escala libre de ±10% de la amplitud de las plantillas, de tal forma que H_n=H-(1 \pm 0.1)H_{\rm tpl} y L_n=L-(1 \pm 0.1)L_{\rm tpl}. (Esta estimación a vuelapluma de las incertidumbres cambiarán tanto las magnitudes como las fases de las amplitude Fourier de los residuos). Las correlaciones cruzadas resultantes son virtualmente idénticas a los resultados mostrados arriba. Dado que el ruido residual es significativamente más grande que la incertidumbre introducida por la familia de plantillas, el resultado no es sorprendente.

Podría parecer que los 7 ms de tiempo de retardo asociado con la señal GW150914 es también una propiedad intrínseca del ruido. El propósito de tener dos detectores independientes es precisamente asegurarse de que, después de una limpieza suficiente, las únicas correlaciones reales entre ellos se deban únicamente a efectos de ondas gravitacionales. Los resultados presentados aquí sugieren que este nivel de limpieza no ha sido aun obtenido, y que la identificación de los eventos GW necesita ser revaluada con consideraciones más cuidadosas de las propiedades del ruido.

Esperamos que nuestro comentario sirva para mejorar el entendimiento de los principales resultados de nuestro documento. Agradecemos a Alessandra Buonanno y a Ian Harry por sus discusiones científicas, y por hacer que sus scripts en Pythom sean accesibles a toda la comunidad científica y a nosotros en particular.

Este texto, que resalto sobre fondo amarillo, es mi opinión respecto del texto traducido de arriba, y por extensión de todo lo que viene pasando con el tema LIGO a los largo ya de dos años, sin que la comunidad científica abra los ojos y siga obstinada en ser timada por grupos de élite sin escrúpulos. Porque no nos engañemos, los líderes de LIGO es un grupo de élite, que está fraguando uno de los fraudes más escandalosos que será glosado en los anales de la historia. El hecho de que en el equipo de LIGO hayan existido más de 1300 colaboradores ni resta y suma credibilidad al trabajo, más bien lo que hace es dificultar el escrutinio para encontrar la verdad. Así no trabaja la ciencia. Los hallazgos científicos no se votan democráticamente. El consenso oficial no es necesariamente la verdad científica. Además, alguien que cobra de su jefe fácilmente consensúa resultados con él (quien contradice al jefe no cobra). La mayoría de colaboradores LIGO sólo hacían sus tareas específicas integrados dentro de sus equipos, eran auténticos “mandados”. Esa fue la inteligente estrategia del grupo de élite LIGO desde el principio: “gastar mucho dinero del proyecto en comprar voluntades de todas las universidades del mundo”, de modo que los resultados del proyectos estuvieran “avalados” por una retahíla interminable de nombres de científicos, técnicos, empresas y universidades. Toda esa amalgama de nombres avaladores constituye el meollo de la credibilidad artificial, diseñada con esmero por sus líderes. Si de LIGO sale como resultado final que han detectado la existencia de “elefantes voladores verdes con trompas color rosa enrolladas en espiral, y con alas de murciélago en sus lomos“, a ver quién es el valiente que se atreve a contradecirles. Me gusta la cita que hizo Abrahan Lincoln, es muy pertinente para este asunto, la repito:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

Pronto se sabrá que esa correlación de ruido residual, hallada por este equipo danés independiente, entre los detectores de Hanford y Livingston, es muy, pero que muy sospechosa. Que la supuesta señal sea observada por ambos detectores, pero que con la señal viaje también ruido residual que nada tiene que ver con esa señal, es muy pero que muy sospechoso. La única explicación que nos dejan es que se inyectaron señales simuladas que ya estaban randomizadas por software. Dichas señales simuladas (con ruido incorporado, también simulado) fueron debidamente promediadas con los respectivos ruidos locales en ambos detectores. Y guardando la debida distancia temporal de retardo sincronizado, para simular también que la supuesta señal se propagó a la velocidad de la luz con cierto ángulo proveniente de una supuesta fuente extraterrestre. Y eso no lo hicieron una única vez, en el supuesto evento GW150914, lo han hecho dos veces más, con los supuestos eventos GW151226 y GW170104. Es decir, han sido reincidentes. ¿Qué habrá que hacer con esos líderes responsables de ese fraude tan brutal cuando se demuestre definitivamente que están inyectando en LIGO señales simuladas y las están haciendo pasar por verdaderas? ¿Todo se arreglará con sus dimisiones?. ¿Qué pasará con el dinero de Premios que les han ido dando a lo largo de estos años, y con el dinero del Premio Nobel de 2017, si es que logran engañar a ese comité también?. ¿Bastará con que dimitan?. ¿Por qué no está penado el fraude científico con cárcel y multas millonarias?. ¿Qué le ocurre al prestigio de un supuesto científico sin escrúpulos que engañó al mundo entero, pero que se llevó sus millones de dólares y los puso a buen recaudo?. En España tenemos dolorosos ejemplos de personas sin escrúpulos (con mucha jeta) que han engañado a la comunidad, explotando fraudulentamente desde los mass media el filón de la solidaridad, fingiendo, ellos o algún familiar suyo, padecer alguna enfermedad grave y no tener recursos económicos para tratarla.

¿Qué ocurre con el observatorio VIRGO ?. Se supone que ese “observatorio” de ondas gravitacionales debería ser independiente de LIGO, es decir, él solo debería ser capaz detectar esas supuestas ondas. Pero, los líderes de LIGO, inteligentemente, han conseguido que VIRGO se asocie con ellos. Aunque más que una asociación parece una subordinación. Es decir, los lideres de LIGO quieren tener todo el control de VIRGO, que sea un detector más del sistema, igual que lo son los de Hanford y Livingston. Los líderes timadores de LIGO quieren total control sobre VIRGO, ¿para qué?. Pues, sencillamente para seguir inyectando impunemente sus señales simuladas (ahora también via satélite hacia VIRGO), y que la triangulación sea perfecta, y de esa forma consolidar y blindar el engaño indefinidamente. La forma de pensar de esos delincuentes es la siguiente: “nosotros nos llevamos el dinero, y cuanto más se tarde en descubrirse el pastel mejor. Porque al final todos calvos, coge el dinero y corre muchacho, y que te llamen criminal“. Les llamo delincuentes, a los responsables de LIGO, porque el fraude es un delito, no porque ya hayan sigo juzgados por algún juez.

Está bien, seamos un poco más benévolos con esos responsables de LIGO. Supongamos que sólo se están engañando ellos mismos, al hacer cálculos estadísticos erróneos, y al no tener bien ajustados los diferentes dispositivos y sistemas para limpiar bien los registros de ruido residual. Si son honestos, devolverán todo el dinero que les han ido dando por demérito, dimitirán de sus cargos y retractarán todos y cada uno de los documentos publicados. Si esos responsables son honestos, pedirán perdón públicamente avergonzados de su estupidez y su contumacia. Seamos benévolos, concedámosles el beneficio de la duda, pensemos que todo ha sido un lamentable malentendido, pensemos que no existe la maldad en el mundo, que el dinero es solo un humilde medio en si mismo, no un fin, que los Premios Nobel no poseen dotación económica, solo dotación prestigiosa. Les vamos a perdonar la vida señores, y les diremos que no se vuelva a repetir. Les diremos amablemente que sean felices, que sigan ilustrándonos con su sapiencia. Les diremos que no hace falta que devuelvan el dinero que indebidamente les ha sido entregado, que disfruten de él. Les diremos que las ondas gravitacionales existen y que no hace falta que nos demuestren su existencia, que nosotros somos creyentes en la fé.

Amen

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Espejismo Gravitacional: Las ondas gravitacionales detectadas por LIGO son sólo ruido mediático

Posted by Albert Zotkin en junio 20, 2017

Ola amigos de Tardígrados. Si, ola sin “h”. No, no es ninguna falta de ortografía. Esa palabra la he escrito intencionadamente así sin “h” para indicar que el asunto de las ondas gravitacionales se parece más a una ola mediática, o a una ola espuría. Los altos dirigente del “observatorio/experimento” LIGO estaban todos calladitos para ver si el mundo entero les “hacía la ola” hacia el Premio Nobel, que era su último y primer (y único) objetivo. Hacer la ola significa aqui que todo el mundo (sobre todo los medios de comunicación de masas) colabore como lobby de presión sobre el Comité de los Premios Nobel. Parece ser que los españoles somos de los primeros siempre en ser timados. Sí, les hemos concedido el Premio Princesa de Asturias a los ricachones del LIGO por su sensacional descubrimiento fraudulento. ¿Qué ocurrirá cuando antes de que les den el Premio Nobel se descubra todo el pastel y la detección de las ondas gravitaciones quede toda en aguas de borrajas?. O después. Imagina por un momento que los tres timadores generales de LIGO se presentan a recoger el suculento cheque del Premio Princesa de Asturias, y al día siguiente se demuestra que todo eso fue en el mejor de los casos, un simple error sistemático al calcular las frecuencias transformadas de Fourier, por no decir la fea palabra timo. ¿En qué lugar queda la Princesa de Asturias. ¿En qué lugar queda Asturias?. ¿En qué lugar queda España?. Bueno, no pasa nada. Los españoles estamos ya muy acostumbrados a que nos la “metan doblada” por todos los lados. Yo diría que hasta nos gusta. Que vengan aquí los ingleses de turismo y nos timen, nos gusta. Se tiran casi un mes de orgías en Benidorm, todo a cuerpo de rey, y después cuando vuelven a su país denuncian (falsa denuncia) al hotel. Dicen que se intoxicaron con la comida o la bebida que estaba supuestamente en mal estado. El resultado es que son indemnizados por el hotel, saliéndoles las vacaciones más que gratis. Ese timo, y otros igual de injustos o más, nos produce a los españoles, cuando nos lo hacen a nosotros, casi un orgasmo cósmico. Pero los miembros del Comité de los Premios Nobel no son tan idiotas, ellos saben que para premiar un descubrimiento de Fundamentos de la Física, hay que ser muy paciente y riguroso, no hay que precipitarse. Si el descubrimiento fue real, está claro que podrá ser observado muchas veces en el futuro. No hay que dar el premio a la primera vez que se observa. Hay que esperar a que otros observatorios independientes lo observen también muchas veces, hasta llegar al aburrimiento. De momento, que sepamos, las ondas gravitacionales han sido supuestamente observadas tres veces, pero por el mismo “observatorio”, y no han sido constatadas por ningún observatorio independiente. Dar un Premio Nobel a un descubrimiento que sólo presenta tres eventos sin constatación independiente es demasiado arriesgado y prematuro. El prestigio de los Premios Nobel volaría por los aires si se viera después que todo eso de LIGO, fue en el mejor de los casos, sólo un espejismo.

Los cientificos son seres humanos, pero los seres humanos tenemos virtudes y defectos. Uno de los defectos más perniciosos del ser humano, cuando se dedica a hacer ciencia, es el llamado sesgo de conocimiento . En cualquier experimento científico, el sesgo de conocimiento (ó prejuicio cognitivo) influye catastróficamente sobre los resultados del mismo, y de la peor forma posible. El experimentador poda irracional e inconscientemente de los resultados muchos de los datos que no contribuirán a confirmar la hipótesis científica que en el experimento se está poniendo a test. Esa poda irracional de datos es debida a su prejuicio cognitivo, pero eso no es todo. Aquellos datos que él piensa que sí contribuyen a confirmar la hipótesis son favorecidos. Al final, el resultado del experimento se parece más a la decisión injusta y prevaricadora de un juez o un jurado altamente manipulable.

Veamos las ultimas noticias sobre LIGO: Hace unos días se presentó un análisis independiente sobre los eventos GW que publicó LIGO. Los eventos son GW150914, GW151226 y GW170104, cada uno muy bien documentado. Ese análisis fue realizado por cinco científicos, James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, todos del Instituto Niels Bohr. El análisis lo puedes ver en este preprint arXiv:1706.04191. Y la conclusión de ese análisis en resumen, y en pocas palabras, es que todo lo que afirman los de LIGO que se había detectado resulta ahora que sólo es ruido, y por lo tanto no hay señales de ondas gravitacionales ahí. Ahora viene el juego de los prejuicios cognitivos. Los que crean que las ondas gravitacionales no existen tenderán a creer a más a estos cinco científicos daneses que a los de LIGO. Los que crean más en LIGO tienden a pensar que estos científicos daneses están equivocados, y muchos hasta escribirán ( si no lo han hecho ya) precipitadas respuestas para demostrar que “estos cinco oportunistas tienen que estar equivocados”. Pero, como dijo una vez Abraham Lincoln:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

.

Los del sesgo cognitivo inclinado hacia LIGO se precipitan a escribir contra los “cinco oportunistas daneses”. La bloquera y científica Sabine Hossenfelder nos lo cuenta rápidamente en su artículo, de la revista Forbes, Was It All Just Noise? Independent Analysis Casts Doubt On LIGO’s Detections. Y al final viene a decirnos ” es muy probable que esos daneses hayan cometido algún error”. He ahí el sesgo cognitivo de Sabine. ¿Por qué, según ella, es tan probable que hayan cometido un error?. Pues simplemente porque tiene la creencia de que LIGO si ha detectado realmente ondas gravitacionales. Como en su mente ese supuesto descubrimiento es una verdad incuestionable, todo lo que contribuya a derrumbar esa “verdad” debe ser un error. Sabine da la noticia, pero es escéptica con las conclusiones de ese análisis independiente. Lo mismo le ocurre al prolífico bloguero y cientifico Luboš Motl, que en su artículo de su blog califica el análisis de esos daneses directamente como bazofia. Una respuesta algo mas elaborada, pero igual de precipitada, de los creyentes de LIGO, es la del científico Ian Harry perteneciente al equipo de LIGO, que fue publicada en el blog de Sean Carroll. Este especialista viene a decirnos, en resumen, que esos daneses están equivocados porque no saben hacer análisis de datos con transformadas de Fourier. O sea, un error que no comete ni un principiante de Fisicas de primer año sí lo cometen estos cientificos daneses. ¡Vamos!, ¡eso no se lo cree ni “el que asó la manteca“, colega!. De hecho, ya están tardando en responderle a Ian harry, o quizás es el propio Sean Carroll el que esté censurando en su blog (the preposterous Universe) aquellas respuestas que puedan desmantelar todo ese tinglado de LIGO, y sólo filtra las que son benévolas o las que lo favorecen descaradamente.

¿Qué es lo que pienso yo al respecto?. Puesto que yo poseo la profunda convicción de que las ondas gravitacionales, si es que existen realmente, no pueden ser detectadas por interferómetros como el de LIGO, poseo un sesgo cognitivo anti-LIGO, y por lo tanto, todo lo que escribo y pienso tiende a favorecer mi hipótesis. Puesto que yo conozco mis limites, y sé analizar cómo pueden mis razonamientos estar contaminados de ese prejuicio, estoy en las mejores condiciones de ser algo más objetivo que una defensa ciega a favor o en contra. Mis conclusiones sobre LIGO por lo tanto son estas:

Los científicos daneses, en su análisis On the time lags of the LIGO signals, han descubierto algo muy profundo que ni ellos mismo siquiera sospechan. Ellos afirman algo sorprendente, que el ruido está correlacionado, y también la supuesta señal. Es decir, en los dos observatorios de LIGO, el de Livingston y el de Hanford, al analizar los datos han observado que los dos ruidos de fondo están correlacionados, y por lo tanto no hay forma de destacar una señal sobre el ruido. Pero, eso no puede ocurrir en la realidad, el ruido es ruido, no puedes observar secuencias aleatorias repetidas que sean muy largas en más de un sitio a la vez. La correlación de ruido indica error sistemático. Por lo tanto, lo que estos científicos han descubierto, y no saben aún que lo han descubierto, es un método para detectar inyecciones ciegas de señales que fueron usabas para suplantar a supuestas señales reales. Hasta ahora se venía diciendo que una inyección ciega de señal en LIGO no podía diferenciarse de una señal real, y eso era aprovechado para adiestrar a los científicos (engañarles) en su búsqueda de señales reales. Lo que estos cinco científicos han descubierto sin saberlo, y pronto será el notición mundial, es que a partir de ahora ya existe un método objetivo para descubrir qué señales en LIGO son reales y cuales son simuladas. Y que estas tres señales, que LIGO afirma que son reales, se ha descubierto que son simuladas (alguien las inyectó deliberadamente), porque los ruidos están correlacionados.

Saludos correlacionados a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin en mayo 12, 2017

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  2. Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

  3. El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

  4. El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:

    distance

    \displaystyle  \theta= \frac{s}{r} \\ \\  x = r \cos \theta \text{;} \;  y = r \sin \theta \\ \\  d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\   d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  5. La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

  6. Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.
Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle    ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle     0 = -c^2 dt_x^2 +(1+h) dx^2  \\ \\   dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle  \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\   dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\    t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\    2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\  2 t_x - 2 t =  \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c}  \\ \\ \\   2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle     0 = -c^2 dt_y^2 +(1-h) dy^2  \\ \\   dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle  2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle  \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\    \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle  \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\   \Delta\phi =  \frac{4 \pi  L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle  h = \cfrac{\lambda_x -  \lambda}{ \lambda} \\ \\   \lambda_x = (h+1)\lambda \\ \\ \\ \\  -h = \cfrac{\lambda_y -  \lambda}{ \lambda} \\ \\   \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle  2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\  c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle  c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle  \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda  \\ \\   \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde φ‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) → x, cuando x << 1, y μ (x) → 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol,
\displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional,
\displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND
\displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz
\displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin en marzo 10, 2016

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  • Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

 

  • El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

 

  • El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:distance
    \displaystyle  \theta= \frac{s}{r} \\ \\  x = r \cos \theta \text{;} \; y = r \sin \theta \\ \\  d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\  d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  • La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

 

  • Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.

 

Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle    ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle    0 = -c^2 dt_x^2 +(1+h) dx^2 \\ \\  dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle  \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\  dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\    2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\  2 t_x - 2 t = \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c} \\ \\ \\  2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle    0 = -c^2 dt_y^2 +(1-h) dy^2 \\ \\  dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle  2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle  \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\  \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle  \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\  \Delta\phi = \frac{4 \pi L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle  h = \cfrac{\lambda_x - \lambda}{ \lambda} \\ \\  \lambda_x = (h+1)\lambda \\ \\ \\ \\  -h = \cfrac{\lambda_y - \lambda}{ \lambda} \\ \\  \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle  2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\  c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle  c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle  \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda \\ \\  \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Es posible superar la velocidad de la luz en el vacío? Diferencias entre electrón, muón y tau leptón

Posted by Albert Zotkin en agosto 14, 2015

limite maximo

Hola amigos de Tardígrados. Hoy vamos a intentar viajar a una velocidad superior a la de la luz en el vacío. Es decir, subiremos a nuestro cohete a reacción e intentaremos acelerar hasta una velocidad superior a c = 299.792.458 km/s. ¿Lo conseguiremos?. Sí. Pero las consecuencias no serán tan bonitas como pensamos.

Según la Teoría de la Relatividad Especial, para acelerar un cohete hasta la velocidad de la luz en el vacío haría falta una cantidad infinita de energía, es decir, sería imposible, porque en el universo no hay disponible para nosotros una cantidad infinita de energía. Pero claro, eso es lo que predice esa teoría. Yo podría proponer otra teoría más “bonita” desde la cual sí sería posible superar ese límite máximo, aunque con algo que sería inesperado y decepcionante para los amantes de los viajes interestelares.

La teoría que propongo dice que al superar la velocidad de la luz en el vacío se produce una conjugación de la paridad, es decir, la partícula superlumínica sería vista viajando en dirección opuesta con una velocidad sublumínica. Así nuestro cohete al igualar la velocidad de la luz sería visto como estacionario (parado) en cierto punto, y al superar dicha velocidad sería visto viajando en dirección opuesta. Sería algo muy parecido a su imagen especular. De esta forma tan rocambolesca, podemos superar la velocidad de la luz cuantas veces queramos, porque dicha velocidad no sería algo absoluto sino algo cíclico. Estas consideraciones ya las apunté en un antiguo post titulado ¿Es cierto que la velocidad de la luz en el vacío es la máxima velocidad que una partícula puede alcanzar?. Efectivamente, todo esto tiene que ver con el fenómeno de la interferencia de ondas. Y parafraseando un conocido eslogan de una famosa franquicia de pizzas, podemos afirmar que “el secreto está en la masa“.

Así un electron y un muón, ambos vistos en reposo, poseen distintas masas. ¿Qué ocurre?. Pues muy fácil, un muón es un electrón que ha superado un ciclo de la velocidad de la luz. ¿Y un tau leptón?. Un tau leptón sería un electrón que ha superado dos ciclos, es decir, que se mueve inercialmente a dos ciclos de la velocidad de la luz.

Todo esto lo podemos expresar matemáticamente de la siguiente forma. Veremos cómo, cuando el número de ciclos es impar, la dirección del movimiento inercial es inversa a la inicial. Usemos una ecuación de movimiento armónico simple

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{2\pi w}{c}\right)\,
la β = w/c indicará el número de ciclos, y w puede ser un valor mayor que c. En cambio, v sólo puede estar en el intervalo [-c, c].

sin

Si aplicamos la fórmula de Euler

\displaystyle   e^{ix}=\cos x+i\sin x

vemos que podemos expresar:

\displaystyle   x=  \frac{2\pi w}{c}\\  \\  \\  \cos x = \mathrm{Re}\{e^{ix}\} =\cfrac{e^{ix} + e^{-ix}}{2} \\  \\  \\   \sin x = \mathrm{Im}\{e^{ix}\} =-\cfrac{e^{ix} - e^{-ix}}{2i}
Estas ecuaciones nos sugieren que la energía total de una partícula de masa m que se desplaza a una velocidad w debe ser:

\displaystyle  E = mc^2 \cosh\left(\frac{2\pi w}{c}\right)

y su momento lineal:

\displaystyle  p = mc \sinh\left(\frac{2\pi w}{c}\right)

y si afirmamos que un muón en reposo equivale a un electrón con una velocidad igual a c, tendremos que la energía en reposo del muón debe coincidir con la energía total del electrón que se mueve a esa c:

\displaystyle   m_ec^2 \cosh\left(\frac{2\pi c}{c}\right) = m_{\mu}c^2 \\ \\ \\   \cfrac{m_{\mu}}{m_e} =\cosh 2\pi \approx 267,7

es decir, la masa del muón sería casi 268 veces la masa del electrón

Todo esto es muy bonito, pero volvamos al concepto de “conjugación de la paridad”. Es evidente que si la partícula es vista viajando en dirección opuesta cuando ha superado la velocidad de la luz, entonces algo no cuadra. Lo correcto sería ver cómo a medida que la partícula acelera, la velocidad aparente debe pasar por un máximo y llegar hasta un mínimo. Y esto implica que c debe ser ese máximo. Es decir, en w = 2c la partícula sería vista estacionaria, en w = 3c sería vista viajando en dirección contraria a la máxima velocidad c, y en w = 4c volvería a estar estacionaria completando un ciclo. Por lo que la ecuación armónica debería ser esta:

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{\pi w}{2c}\right)\,
Y esto significa que si hemos empleado un campo eléctrico para acelerar la partícula (la cual está cargada eléctricamente) entonces, además de una conjugación de la paridad, observaríamos una conjugación de carga. Efectivamente, cuando con el mismo campo eléctrico vemos que la partícula, en lugar de avanzar, retrocede (dirección contraria), entonces estamos ante una conjugación de carga eléctrica (la partícula se comportaría como si hubiera invertido su carga eléctrica). Según esta extraña teoría que estoy perfilando, una partícula poseería una carga eléctrica oscilante, y el signo de esa carga (positiva, negativa o neutra) dependería de cuantos ciclos-luz contiene su masa y de su actual energía cinética.

Así, puesto que la ratio entre la masa de un muón y la de un electrón es:

\displaystyle   \cfrac{m_{\mu}}{m_e}  \approx 206.768

el número de ciclos-luz de un muón sería de:

\displaystyle  \cosh \left(2 \pi x \right) = 206.768  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(206.768\right) = 0.958867

Igualmente, el número de ciclos-luz para un tau leptón sería:

\displaystyle   \cfrac{m_{\tau}}{m_e}  \approx 3477.15  \\ \\  \\   \cosh \left(2 \pi x \right) = 3477.15  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(3477.15\right) = 1.40806

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle  I = Mr^2   (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle  I = \sum m_ir_i^2   (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle  r = \cfrac{2GM}{c^2}  (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle  r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle  \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\   \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\   v_e = \sqrt{\frac{2GM}{r}}  (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: