TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘velocidad de la luz’

Distancia al centro del universo. El tamaño del presente: ¿Por qué parece imposible superar la velocidad de la luz en el vacío, y por qué esa velocidad parece ser una constante universal aunque no lo sea?

Posted by Albert Zotkin on November 7, 2019

La velocidad de la luz en el vacío es c = 299.792.458 m/s, la cual nos llevaría a las inmediaciones de la Luna desde la superficie terrestre en menos de 1 segundo. Dicen que dicha velocidad es una constante universal, y que además de ser constante no puede ser superada independientemente del sistema de referencia desde el que se considere. Pero, si tenemos en cuenta las inmensas escalas de espacio y tiempo de nuestro universo observable, esa supuesta constante universal resulta insufriblemente lenta. Para que un rayo laser pudiera atravesar el diámetro de nuestra galaxia, la Vía Láctea, se necesitarían más de cien mil años. Está claro que las ondas electromagnéticas no son el vehículo idóneo para comunicarnos a escalas intergalácticas. De hecho hay fuerzas titánicas, que la naturaleza puede desatar, que podrían, al menos teóricamente, impulsar partículas a velocidades superlumínicas (pero, la Dirección General de Tráfico, que algunos llaman Relatividad Especial, nos prohíbe viajar a más de 299.792.458 m/s por autopistas intergalácticas 😛 ).
Hace 65 millones de años, según cierta teoría, de la que parece que se están acumulando las evidencias a favor, los dinosaurios se extinguieron debido a que un meteorito de 15 kilómetros de ancho chocó contra la Tierra. Para saber si eso fue exactamente así, alguien podría sugerirnos lo siguiente: “bastaría viajar por el espacio a una velocidad superior a la de la luz hasta llegar a un punto clave situado a más de 65 millones de años-luz de la Tierra, y observar con un potente telescopio nuestro planeta. Es decir, estaríamos observando un evento muy remoto del pasado terrestre. Eso deberia ser así porque los fotones de la colisión del meteorito con la Tierra aún no habrían llegado a ese punto clave donde colocamos nuestro telescopio. Es decir, esos fotones aun no han sido absorbidos. Pero, ¿estamos seguros de que eso sería así?. Si viajamos al doble de la velocidad de la luz (v = 2c), nuestro punto clave para observar un evento de nuestro pasado de hace 65 millones de años, estaría exactamente a 130 millones de años-luz. Si viajamos a n veces la velocidad de la luz, nuestro punto clave estaría a 65 millones de años-luz más 65/(n-1) millones de años-luz. En general, para observar un evento que ocurrió hace un tiempo t, habría que viajar a un punto clave x a una velocidad de v = nc, tal que

\displaystyle  x = c\;t+\frac{c\;t}{n-1}\\\\\\

y la observación del evento sería inmediata, es decir, no tendríamos que esperar a que ocurriera. Si quisiéramos esperar cierto intervalo de tiempo Δt a que ocurriera el evento, tendríamos que incrementar la localización x a otra más distante x‘, o incrementar nuestra velocidad superlumínica:

\displaystyle  x' = x+\Delta x = x + c\; \Delta t

Pero, ¿estamos seguros de que fotones que fueron emitidos hace 65 millones de años, desde la Tierra, aún siguen por ahí revoloteando, esperando ser absorbidos por algún sistema material?. ¿Y si resulta que es imposible superar la velocidad de la luz c en el vacío por la sencilla razón de que el fotón emitido fue instantaneamente absordbido por algún sistema material, independientemente de la distancia que separó al emisor del receptor?. La hipótesis que planteo es simple. Existiría un desfase de tiempos presentes entre dos sistemas materiales distantes. Si Alicia está separada de Bob por una distancia x constante, entonces sus tiempos presentes están desfasados un intervalos Δt = x/c. Ese desfase es relativo, y significa que el presente del sistema remoto está siempre en algún tiempo pasado del sistema material localizado en el origen de nuestro sistema de referencia.

Tu presente está en mi pasado, y en tu pasado está mi presente, porque entre tú y yo existe la distancia“.

De esta forma tan poética, eliminamos las paradojas de la Relatividad Especial de Einstein. La luz no viaja, simplemente permanece estacionaria, hasta que el fotón es eventualmente alcanzado por un sistema material anclado en una expansión concéntrica relativa.

Posted in Astrofísica, Cosmología, curiosidades y analogías, lameculos, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Qué es el universo?, ¿por qué existe?, ¿tuvo realmente un principio?

Posted by Albert Zotkin on April 24, 2018

Hola amigos de Tardigrados. Hoy os voy a regalar algunas pinceladas autobiográficas, no exentas de sorna.

Cuando nací, hace ya muchos años, tuve una sensación muy desagradable, y lo recuerdo perfectamente. Alguien me azotó con fuerza, me puse a llorar, abrí los ojos y me vi boca abajo cogido por los pies, con el cordón umbilical ya cortado, y me pregunté que coño era todo esto. Cuando me di cuenta, mi llanto se agudizó con rabia. Me había dado cuenta de que había nacido el universo y de que me esperaba un arduo camino lleno de vicisitudes, hasta llegar a comprender totalmente el sentido que tenía todo esto.

Cuando llegué a los tres años de vida, un día me encontré jugando, en la calle de tierra, con un juguete de madera que mi padre había fabricado para mí. En un descuido, cuando me aburrí del juguete, alguien me lo robó. Mi madre me preguntó dónde estaba el juguete, qué había hecho con él, pero no supe qué responder. Me quedé un rato más sentado en la calle de tierra, miré hacia el final de la calle y vi al hijo del vecino jugando en la puerta de su casa con mi juguete, que ahora era suyo, porque mi juguete al ser abandonado por mi, tuvo la suerte de conseguir ser adoptado por un nuevo dueño. Nunca lo recuperé, ni supe más de él. Pero, aquel mismo día tuve un pensamiento lleno de lucidez en el mismo sitio donde me robaron el juguete. Ese pensamiento tan lúcido era el siguiente: “todo lo que existe, (que ahora llamamos universo) nunca tuvo un principio y nunca tendrá un final. Y esa es la razón más simple que explica todo lo complejo. Algo que es eterno no tiene necesidad de ser creado“.

Amigo lector, te estarás preguntado, cómo es posible que a mi corta edad, yo pueda haberme preguntado esas cosas tan profundas o incluso recordar el momento de mi nacimiento. El momento de nuestro nacimiento constituye un cambio de medio muy brusco. Es como darse un chapuzón en agua helada, el auténtico bautismo. A esa sensación, tarde o temprano la vistes con elementos reconocibles para poder ser recordaba. En cambio, el pensamiento cosmogónico que elaboré a los tres años de edad, no es la típica clase de pensamientos que se suelen tener los niños de esa edad, lo reconozco. También puede ser que todo haya sido un cúmulo de falsos recuerdos, y yo esté alucinando con ellos, creyendo que fueron reales alguna vez en mi experiencia vital.

Nacimiento del Universo

Siguiendo este razonamiento cosmogónico, podemos afirmar que todo lo que existe en el universo, no es que esté conectado de alguna manera, sino que es la misma cosa, aunque observada parcialmente y desde puntos de vista diversos. Por lo tanto, no es extraño, que lo que en física cuántica se llama “entrelazamiento cuántico“, sea en realidad, no entrelazamiento, sino la constatación de que todo en este universo es parte de todo. Nada está conectado, porque el concepto de conexión implica la existencia previa de entidades separadas, aisladas. El nexo universal, es pues la interconexión necesaria de algo que nunca estuvo separado, sino que cualquier parte es necesariamente coherente con todas las demás.

¿Por qué existe el universo?. Existe una corriente de consenso oficial, que yo suelo llamar sarcásticamente “mainstreamófila“, en la cual algunos de sus gurús exponen con orgullo preguntas estúpidas a cerca del universo, como por ejemplo esta: ¿”Por qué hay algo donde no debería haber nada“?. Es más que evidente que toda pregunta estúpida tiene la interesante propiedad de contestarse a sí misma. “Mire usted, hay algo, porque si no hubiera nada, nadie tendría la posibilidad de hacerse esa pregunta estúpida, ¿ok, tonto del culo?“. Preguntas de este estilo se las he oído a muchos “gurús“, que van por ahí dando charlas, y participando en debates, entrevistas, etc, y cobrando dinero por todo ello, y haciéndose los interesantes y super-inteligentes gallitos que todo lo saben. Uno de esos gallitos, es Bryan Greene, y en youtube puedes encontrar miles de videos, como este que pongo de muestra,

mostrando lo super-inteligentes que son todos estos “gurús” del “universo de pacotilla” que nos explican. La lista de estos gurús mainstreamófilos, que están ahí para darnos lecciones a todos, se extiende casi hasta el infinito. Además de Bryan Green, están Sean Carroll, Max Tegmark, y miles más.

Básicamente, todos son “influencers” de la corriente yanqui de la posverdad, donde el multiverso, la teoría de cuerdas, la supersimetría, y las ondas gravitacionales son algunos de sus pilares de sustentación, de sus carteras repletas de billetes, por adoctrinar a las masas con sus mierdas. He elegido ese video de youtube, al azar. Entras en youtube, escribes en la barra de búsquedas el nombre de algunos de estos gurús y te salen miles de videos encontrados, todos hablando de la misma mierda ( el Big Bang, las materia oscura, la energía oscura, los agujeros, negros, el multiverso, las ondas gravitacionales, etc, etc, etc). Y lo más gracioso de todo es que te lo venden como si fuera la Verdad Absoluta e Indiscutible. Respecto a la inflación cosmica, lo único que está inflado realmente es el ego de todos estos gurús, y sus respectivas billeteras.

Transcribramos y analicemos brevemente ese video que he puesto de muestra, de todos estos “gurús tan geniales“:

“La ultima pregunta”: ¿Por qué hay algo en lugar de nada”. Por todos los países esta cuestión ha desconcertado e intrigado a muchos filósofos, científicos y teólogos. Si resulta que es un universo eterno, o es una deidad eterna, parece que nadie ha podido responder con coherencia por qué eso debe ser así, en un sentido u otro. Sin embargo, hay al menos algo que sí podemos saber, algo que tiene una existencia innata, algo que se deja capturar racionalmente.

Max Tegmark: Por su puesto, si dices que existimos porque algo nos creó, y que antes otra causa creó a esa, etc. Entonces, siempre estarás buscando la siguiente causa que creó la causa anterior, nunca acabarás de buscar. Pero, yo creo que hay una especie de objeto real ahí afuera que fue claramente no creado. Y hay objetos matemáticos, como el cubo, por ejemplo, y no estoy hablando de cubos como terrones de azúcar, o que sea una especie de combustible físico, sino de un objeto matemático, conocido por los matemáticos como el cubo sobre un dodecahedro, sobre una esfera, o un espacio vectorial. Todos estos objetos existen, independientemente del espacio y el tiempo, existen claramente fuera de ese universo espacio-temporal. Ese cubo no fue creado hace 14 millones de años en el Big Bang, ¿verdad?. Y sin embargo, ves que ese objeto ya existe ahí, inmutable, perfecto siempre. Existe, y tienes la impresión de que ese objeto ya existía antes de que pensáramos en él, que nosotros no hemos inventado ese cubo. La idea de que ese objeto es un cubo no es una idea arbitraria, una idea que pueda ser inventada.

Esto explica por qué los objetos matemáticos existen, pero ¿por qué existen los planetas, las mentes, las rocas?

Bryan Greene: El multiverso simulado, aunque viene con mucho razonamiento directo en la matriz cuyos cerebros están siendo estimulados para pensar que están en una determinada realidad, aunque no lo estén, sino que son entidades simplemente instaladas en receptáculos de hardware, conectadas a un computador central. Ese podría ser el caso. La razón por la que yo hablo de esta idea en mi libro, no es porque me la tome en serio. Pero hay una conclusión interesante: que esta clase de razonamiento te permite hacerte la siguiente: pregunta ¿son las matemáticas una descripción de la realidad, o son por sí mismas la misma realidad?. ¿Son las matemáticas algo inventado, o es algo descubierto, algo que ya estaba ahí antes de que se nos ocurriera pensar en ello? ¿Son algo preexistente que ya formaba parte del tejido del tapiz que es la realidad?. El multiverso simulado del que hablo en mi libro, te da la posibilidad de hacerte es pregunta. Porque si tu y yo, formamos parte ahora mismo de la misma simulación informática. Eso esta muy bien, siento que es real para mí, y es un buen disfraz con el que la realidad nos quiere hacer creer que no estamos en ninguna simulación informática. Pero, imagina que abrimos ese computador donde se está ejecutando la simulación, y miramos lo que hay dentro, ¿qué veremos?. Lo que veríamos sería algo muy parecido a infinidad de ceros y unos siendo manipulados mediante infinidad de ecuaciones matemáticas. Por lo tanto, si eso es lo que somos, entonces, seríamos sólo matemáticas. Seriamos solo el despliegue, el resultado de aplicar ecuaciones matemáticas sobre objetos matemáticos, para transformarlos o crear otros nuevos. Y eso significaría que las matemáticas serían la misma realidad, la realidad misma.

Max Tegmark: Una de las cosas mas interesantes que hemos descubierto, a lo largo de los siglos, es que las matemáticas están por todas partes. Ya Galileo nos explicaba que la naturaleza, el libro de la naturaleza, está escrito en el lenguaje de las matemáticas, y después de que él hiciera esa observación, la gente fue descubriendo más y más regularidades, más simetrías, maravillosas relaciones matemáticas. Descubrieron y se sorprendieron de ver cómo con las matemáticas se podía modelar tan bien la realidad. Después se descubrió el Modelo Estándar de la Física de Partículas, Y la razón por la que yo creo que la naturaleza puede ser descrita tan bien mediante las matemáticas es que, en una ultima y muy profunda instancia, la naturaleza son matemáticas.
Y ahí está la respuesta a tu pregunta.
No, ni la naturaleza es en sí misma matemáticas, ni estamos en una simulación informática. Por mucho que se empeñen Bryan Green, Max Tegmark, y muchos otros gurús de la posverdad, en adoctrinarnos con sus ideas, nuestro universo, es real, no es una simulación, y tampoco está hecho de matemáticas. Si el universo fuera matemáticas, entonces sí habrían muchas probabilidades de que todo fuera una simulación informática. La prueba de que nuestro universo no es matemáticas está en que hay cosas que las matemáticas no puede modelar. Por ejemplo, la emergencia de la consciencia humana, no puede ser simulada desde procesos y estructuras matemáticas.

La mente humana nunca podrá comprenderse totalmente a sí misma, siempre quedarán recintos psíquicos inaccesibles. Pero, no hace falta ejemplos tan rebuscados para darse cuenta que las matemáticas no pueden modelar perfectamente la naturaleza, y menos identificarse con ella. El ejemplo más simple que se me ocurre es la suma 1 + 1 = 2. En esa sencilla ecuación hay un ejemplo perfecto de pérdida de información. Si nos dan el resultado, 2, y nos piden que hallemos los números desde los que alguien realizó la suma, nunca podremos saber qué sumandos fueron utilizados. Esa información se pierde de forma irreversible cuando se realiza la suma. Luego, las matemáticas no tienen memoria. Si la naturaleza fuera sólo matemáticas, sería un ente sin memoria. Supongamos, ahora, que la naturaleza, el universo, fuera el continuo resultado de una simulación informática ejecutándose en una especie de super-ordenador. Lo más parecido a eso que podemos imaginar sería un fractal infinito, como el que realicé hace ya algunos años con el titulo de “fragmento de Arrenia II

Yo poseo todo el código fuente, y todas las ecuaciones matemáticas necesarias para generar esa clase de fractales infinitos. Navegar por un mundo infinito de esas características, un mundo sin bordes, es muy aburrido. Cualquier parte se parece a cualquier otra, nada es especialmente interesante, todo aparece básicamente inerte y estático. La tercera dimensión se confunde con la cuarta, es decir, con la escala. Los colores son falsos. En un fractal solo existe la información de qué puntos pertenecen al conjunto y cuales no. Un punto está dentro o fuera del conjunto que caracteriza al fractal si cumple una serie de propiedades al ser evaluado desde una ecuación matemática. El fractal infinito Arrenia II podría perfeccionarse, y conseguir que aparecieran estructuras dinámicas, transformándose, naciendo unas de otras, incluso se podría conseguir que el observador que lo navegue sienta las texturas, la dureza o blandura, de las superficies de ciertas estructuras, o si están más calientes o frías que su tacto. Incluso podríamos conseguir introducir leyes físicas como la de la gravedad. Pero, Arrenia II seguiría siendo un fractal, infinito, pero fractal. Eso sí, sería más interesante de navegar ahora que antes, porque podrían existir zonas sorprendentes dispuestas a ser descubiertas, muy distintas a las zonas más comunes. Incluso podrían existir zonas que quedarían inaccesibles, eterna o temporalmente, para cualquier navegante-observador. ¿Cual es el problema con Arrenia II y con todo fractal infinito que intente ser una simulación de la realidad?. El problema esencial es ontológico. ¿Qué ocurre si un navegante-observador de esa simulación se encuentra con otro navegador-observador?. ¿puede eso ocurrir?. Y en el caso de que si pudiera ocurrir, ¿podrían interactuar?.

La prueba de que nuestro universo no es una simulación informática, ni nada parecido, es que los navegantes-observadores pueden encontrarse realmente e interactuar. Seres con su propia conciencia, seres inteligentes que te observan, mientras tú les observas a ellos, que te saludan, que te hablan. En una simulación, sólo navega-observa el que está fuera de la simulación. nunca quien está dentro de ella. No se puede nadar y guardar la ropa al mismo tiempo.

Saludos

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 27 Comments »

Primer siglo sin Einstein en la Era de Acuario: El origen de la inercia

Posted by Albert Zotkin on January 26, 2018

¿Es pronto aún para evaluar los estragos causados por las teorías de Einstein (la general y la restringida) en el árbol de la ciencia y la tecnología?. En realidad, el señor Einstein no tuvo toda la culpa de que sus teorías se implantaran como paradigma actual de la física teórica, y más concretamente de la física de la gravitación universal. De hecho, aún estamos sin saber qué es realmente la gravedad, y una teoría cuántica de la gravedad parece aún algo utópico de alcanzar. Ningún avance tecnológico se ha producido basado en los dictados de la Teoría General de la Relatividad de Einstein, y menos en la Restringida o Especial. Por ejemplo, la cacareada afirmación de que el sistema de geolocalización global GPS funciona gracias a que tiene incorporadas rutinas para hacer correcciones relativistas basadas en las teoría de Einstein es falsa. Se ha demostrado, no sólo que el GPS puede funcionar correctamente sin esas correcciones relativistas, sino que son innecesarias, y lo único que consiguen es complicar todo el proceso computacional para al final dar el mismo resultado que da la física clásica de Newton, aunque, eso sí, con el efecto Sagnac debidamente calculado y tenido en cuenta. Por cierto, un efecto Sagnac que las teorías de la relatividad de Einstein no pueden explicar, por mucho que se empeñen sus santones en convencernos de lo contrario.

Efectivamente, la relatividad de Einstein tiene santones (defensores a ultranza de sus dogmas) como cualquier religión o secta. La enrevesada matemática de la Relatividad General hace casi imposible, no ya para un profano, sino para cualquiera que se llame experto en la materia, usarla con éxito para el cálculo práctico de algo en concreto. Con las ecuaciones de Newton para la gravitación se puede llegar hasta resolver analíticamente el problema de los dos cuerpos, y el problema de los tres cuerpos hasta se puede resolver para ciertos casos y condiciones iniciales sin dar soluciones caóticas. Con la Relatividad General de Einstein es prácticamente imposible resolver nada, y un problema de multi-cuerpo, como es el de la gravitación a nivel de galaxias y cúmulos, se hace intratable ad infinitum. De hecho el legado de Einstein consiste en que gozamos de una serie de anomalías y paradojas que lo único que consiguen es poner palos en la rueda del progreso científico, porque se dedica mucho esfuerzo intelectual, de recursos humanos y económicos a falsar temas teóricos que lo único que consiguen es bloquear más aún las mentes hacia el entendimiento y el avance científico real. Ejemplo de esas anomalías es la llamada materia oscura, un conundrum que consume grandes cantidades de recursos para ser esclarecido (intentan por todos los medios descubrir las partículas de materia oscura). Pero no quieren darse cuenta, que la única forma real de resolver ese enigma consiste en desechar la Relatividad General y proponer un modelo mejor, otra teoría de la gravitación que prediga el mismo efecto, pero sin materia oscura, y que sea capaz también de predecir otros efectos gravitacionales explicados y/o inexplicados por la teoría reinante actual. El problema de desechar la Relatividad General es que está demasiado integrada en los fundamentos de la física actual, y desecharla implicaría derribar todo el edificio, y nadie está dispuesto a derribar su casa ni su centro de trabajo sin tener garantizado otro mejor al que acudir a trabajar o a vivir, en eso consiste la definición de paradigma.

Pero, la cuestión que me ha movido hoy a escribir este pequeño artículo no es otra que el tema de qué es la inercia, y como encaja dentro de la gravitación universal. A nadie se le debe ocultar el hecho de que a la física clásica de Newton se le escapan muchas cosas, porque el diablo está en los detalles, aunque básicamente la podemos considerar correcta. Una de las cosas que se le escapa es por qué existe la inercia. A menudo se dice que la ciencia debe describir hechos. nunca explicar sus causas. Pero, me parece a mi que eso lo dicen siempre aquellos ignorantes que son incapaces de saber las causas científicas. ¿Por qué es más importante saber las causas que describir sus efectos?. Por la sencilla razón de que sabiendo la causa puedes explicar más de un efecto. Es decir, una única causa puede ser el origen de muchos efectos diferentes, que aparentemente parecían inconexos. Por ejemplo, la física de Newton no predice correctamente el funcionammiento de un giroscopio, aunque a primera vista pudiera parecer lo contrario. Observemos con atención cómo el siguiente giroscopio, cuando está en funcionamiento, parece que sea capaz hasta de levitar:

En un giroscopio no sólo existe inercia giroscópica, también existe la llamada precesión y la llamada nutación. Pero todo esos efectos tienen una única causa. Una causa que, simple y llanamente, nos está diciendo que la gravedad posee una velocidad finita de propagación, aunque es muchos miles de ves más grande que la velocidad de la luz en el vacío.

Veamos ahora un bonito ejemplo de cómo la velocidad de la gravedad es finita y más grande que la de la luz. Desde hace ya más de un siglo se viene afirmando que la Relatividad General de Einstein predice con pasmosa exactitud la precesión extra del perihelio del planeta Mercurio que la física clásica de newton es incapaz de predecir. Eso es correcto, esa predicción es muy exacta, pero lo que a menudo se olvida, o peor aún se ignora, es que antes que Einstein ya hubo alguien, un tal Paul Gerber, que pudo predecir con la misma precisión, si cabe, lo mismo, aunque desde planteamientos muy diferentes. En su documento histórico “Die Fortpflanzungsgeschwindigkeit der Gravitation” publicado en Annalen der Physik, Vol. 52.¡, nos detalla minuciosamente todos sus pasos y fundamentos hasta llegar a su famoso Potencial Gravitatorio de Gerber, FG, cuya ecuación posee el siguiente aspecto

\displaystyle  \Phi_G(r)=-{\frac {GM}{r\left(1-{\frac {1}{c}}{\frac {dr}{dt}}\right)^{2}}} (1)
donde M es la masa del cuerpo central, r es la distancia del cuerpo test (de masa insignificante comparada con M) al centro de M, c es la velocidad de la gravedad, que en este supuesto de Gerber, coincide con la velocidad de la luz, y donde dr/dt es la velocidad radial del cuerpo test que gravita alrededor del cuerpo principal (Mercurio alrededor del Sol, por ejemplo). Y si expresamos esa ecuación desde una expansión binomial tenemos esta otra:

\displaystyle  \Phi_G(r)=-{\frac {GM }{r}}\left[1+{\frac {2}{c}}{\frac {dr}{dt}}+{\frac {3}{c^{2}}}\left({\frac {dr}{dt}}\right)^{2}  + {\frac {4}{c^{3}}}\left({\frac {dr}{dt}}\right)^{3} \dots  \right] (2)
El problema del Potencial de Gerber es esencialmente que sólo puede explicar las anomalías de precesión, pero otras predicciones de gravitación quedan bastante desdibujadas si se aplican esas ecuaciones Gerberianas. ¿Por qué?. De hecho la Relatividad General tuvo un éxito tan rotundo porque ofrecía respuestas muy revolucionarias para la época a todos esos efectos que aún permanecían inexplicados por la teoría clásica. Pero en el fondo existe algo mucho peor que todo eso. La Relatividad General venia a sustituir definitivamente a la Gravitación de Newton, ofreciendo afirmaciones sobre algo muy extraordinario llamado espacio-tiempo, y cómo una supuesta curvatura del mismo podía predecir todos y cada uno de los fenómenos y efectos conocidos y por conocer del universo entero. La mente humana quedó definitivamente seducida por algo encantador y de una belleza matemática sin igual. Sin embargo, a pesar de esa obnubilación del ánimo y la mente racional debida a las artimañas relativistas, aun es posible recuperar la sensatez racional y entrever de qué va todo esto.

El potencial de Gerber es básicamente el potencial gravitatorio de Newton pero con un factor de retardo debido a que la velocidad de la gravedad es considerada finita. Gerber, y después Einstein, nos dice que esa velocidad de la gravedad es igual a la velocidad de la luz, c. En cambio, Newton quedó estupefacto al verse forzado a admitir que su gravitación universal solo podía funcionar si la velocidad de propagación de la gravedad era considerada infinita, es decir, instantánea. Pues mire usted por donde, que no va a ser ni una cosa ni la otra, sino que en el termino medio está la virtud. Es decir, ni infinita ni la velocidad de la luz c, sino una magnitud intermedia que podría ser miles de veces c, según los casos. Y la razón de todo esto la tiene el momento cuadrupolar del Sol. Se lanzó de una forma demasiado aventurera la Relatividad General de Einstein a explicar la precesión extra del perihelio de Mercurio, sin que en principio se supiera cual era el momento cuadrupolar del Sol. De hecho, aún hoy en día se desconoce el valor exacto de ese momento cuadrupolar del Sol, y esa ignorancia hay que “agradecérsela” al paradigma actual, que nos impide hacer sustituciones en fundamentos de física teórica. Aceptar que la precesión observada del perihelio de Mercurio se debe enteramente al momento cuadrupolar del Sol sería enterrar definitivamente la Relatividad de Einstein. Algo tan revoluoinario y escrito con matemáticas tan bellas, tirado a la papelera por algo que nadie quería mirar de frente y con los ojos bien abiertos, preferían la sopa boba del dogmatismo irracional, que es la que les da de comer. Al final, siempre queda la física de Newton, pero alterada con factores, que según los casos explican y predicen todos y cada uno de los efectos y anomalías. Este momento cuadrupolar nos dice que el Sol al girar deja de ser una esfera perfecta y presenta cierto achatamiento en los polos, adquiriendo una forma oblonga, lo mismo que le pasa al planeta Tierra, pero de forma aún más pronunciada.

Presentemos ahora el momento cuadrupolar del Sol como factor de corrección aplicado a un potencial Newtoniano F(r): La formula general para los distintos momentos es la siguiente

\displaystyle \Phi(r) = -\frac {G M }{r}\left[1- \sum_{n=1}^{\infty} \left(\frac{R_s}{r}\right)^2 J_n P_n (\cos \theta)\right] (3)
En coordenadas polares (r, ?, f), donde Rs es el radio del Sol, Pn son polinomios de Legendre de grado n, y Jn son los distintos coeficientes para modelar las distorsiones de la esfera en sus diferentes grados. El momento cuadrupolar de grado 2, el J2, es el que explica casi en tu totalidad la anomalía del perihelio de Mercurio.

Ya empezamos a vislumbrar ciertas similitudes entre el potencial de Gerber, FG, expresado en las ecuaciones (1) y (2) y el potencial gravitatorio Newtoniano corregido F(r). Efectivamente, lo que para Gerber era un retardo gravitacional de la propagación, aquí es ahora un simple momento cuadrupolar. Por lo tanto, lo que antes era una velocidad de la gravedad igual a la de la luz c, ahora es aquí una velocidad Newtoniana instantánea, como clásicamente se ha de considerar, o también como una velocidad superlumínica muy superior a c. Es más que evidente que en las ecuaciones (1) y (2), el factor que está entre corchetes es una corrección multipolar del campo gravitatorio, y dentro de ella se encuentra el sumando cuadroplar que es muy significativo para el caso del Sol como cuerpo central respecto de la órbita de Mercurio. Por esa razón, la llamada gravedad de Gerber no puede ser aplicada para predecir otros efectos distintos, como la deflexión de la luz, etc, ya que, como digo, el factor entre corchetes sólo corrige la precesión de satélites alrededor de cuerpo central, y el campo gravitatorio sigue siendo el clásico Newtoniano.

¿Cuál es el problema?. Si el valor exacto del momento cuadrupolar del Sol sigue siendo desconocido, y a fecha de hoy sabemos que sigue desconocido, ¿en qué lugar queda la Relatividad General, si toda la anomalía de la precesión del perihelio de Mercurio puede ser explicada desde el conocimiento exacto del momento cuadrupolar del Sol y con sólo la física clásica de Newton?.

APÉNDICE: Y para aquellos incrédulos que aún se resisten a admitir que la velocidad de la gravedad es miles de veces mayor que la velocidad de la luz en el vacío, aquí va un pequeño apéndice final: Demostraré que la velocidad de la gravedad se puede deducir incluso observando un péndulo simple batiendo segundos en la superficie terrestre:

1. El potencial gravitatorio clásico en la superficie de la Tierra viene dado por la ecuación F = – GM / R, y la de la intensidad de la gravedad por g = G M / R2

2. Por otro lado, sabemos ya que el potencial gravitatorio puede ser expresado asi:

\displaystyle  \Phi= -\cfrac{G\ M}{R}= -\cfrac{c^4}{c_g^2}    (4)
donde c es la velocidad de la luz, y cg es la velocidad de la gravedad, en el sistema gravitatorio terrestre. Y eso indica que la intensidad de la gravedad se puede expresar también así:

\displaystyle  g= \cfrac{G\ M}{R^2 }= \cfrac{c^4}{R c_g^2}    (5)
3· Dispongamos ahora de un péndulo simple, de longitud de hilo L, en la superficie terrestre, que bata segundos. Su periodo de oscilación será:

\displaystyle   T=2\pi {\sqrt  {L  \over g}}\,  (6)
4· Sustituyendo g de ecuación (5) en ecuación (6), y despejando cg tenemos:

\displaystyle  c_g=\frac{T c^2}{2 \pi  \sqrt{L R }}  (7)
5. Y como hemos dispuesto el péndulo para que bata segundos, su periodo será de T = 2 s, por lo que la longitud de su hilo será:

\displaystyle      L = g\left( \frac {T}{2\pi } \right)^2  = 0.994 \;\; \text{m}  (8)
6. Simplificando la ecuación (7), y sin perder de vista el correcto análisis dimensional:

\displaystyle  c_g=\frac{c^2}{\pi  \sqrt{0.994  R }}  (9)
7. Sólo resta introducir los valores de las magnitude de c y R (radio de la Tierra) para saber la velocidad de la gravedad en la superficie terrestre.

\displaystyle  c = 3 \times 10^8\;\; \text{m/s} \\ \\  R = 6.378  \times 10^6 \;\; \text{m} \\ \\ c_g=\frac{(3 \times 10^8)^2}{ \pi  \sqrt{0.994  (6.378  \times 10^6) }}= 1.13778\times 10^{16}\;\;  \text{m/s} \\ \\ \\  c_g=3.79259\times 10^7 c  (10)
Es decir, si mis cálculos no son incorrectos, obtenemos, en la superficie de la Tierra, una velocidad de la gravedad igual a casi 38 millones de veces la velocidad de la luz c.

Saludos

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 24 Comments »

LIGO engaña: Las ondas gravitacionales no han sido observadas, es sólo ruido ‘mainstreamófilo’ [Contrarréplica a las respuestas oficiosas de LIGO a las críticas a su análisis de GW150914]

Posted by Albert Zotkin on June 28, 2017

El texto que sigue es la traducción del publicado en la página oficial de los científicos James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, del Instituto Niels Bohr de la Universidad de Copenhagen. Estos científicos escribieron el valiente preprint “‘On the time lags of the LIGO signals’, el cual pone en serias dudas los tres supuestos eventos de ondas gravitacionales que, de forma muy rotunda y autoritaria, LIGO afirma haber observado.

Comentarios a nuestro documento “On the time lags of the LIGO signals”

James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky

Nuestro reciente preprint arXiv:1706.04191 “On the time lags of the LIGO signals” ha generado un considerable interés – tanto positiva como negativamente. Ese interés se puede entender dada la gran magnitud de la afirmación de que se han detectado ondas gravitacionales provenientes de la mezcla (unión) de pares de agujeros negros. Nuestra opinión es que un descubrimiento de tanta importancia merece rigurosos análisis independientes de los datos. El principal objetivo de nuestro documento es mostrar un análisis de esos datos que LIGO hizo públicos y disponibles para todo aquel que quiera examinarlos. LIGO no sólo publicó los datos, sino los métodos y plantillas que pueden usarse para llegar a los resultados a los que llegó LIGO. Nosotros hemos usado esos datos, métodos y plantillas de tal forma que se han ajustado lo más posible a los usados por el equipo de LIGO. Nuestro estudio se centró principalmente en el primer evento, el GW150914, con especial atención en los retardos entre los tiempos de llegada de la señal a los detectores de Hanford y Livingston. Desde nuestro punto de visto, si hemos de concluir fidedignamente que esa señal se debió a un verdadero evento astrofísico, descontando las correlaciones casuales, no debería haber correlaciones entre los registros temporales ·residuales de ambos detectores de LIGO, el de Hanford y el de Livingston. Los registros residuales se definen como las diferencias entre el registro limpio y la mejor plantilla GW de LIGO. Los registros residuales deberían por lo tanto estar dominados enteramente por ruido, y deberían mostrar la inexistencia de correlaciones entre Hanford y Livingston. Nuestra investigación revela que esos residuos está de hecho fuertemente correlacionados. Es más, el retardo de esas correlaciones coincide con los 6.9 ms de retardo hallado para la supuesta señal del evento mismo.

Como miembro de la colaboración LIGO, Ian Harry afirmó que él “había intentado reproducir los resultados citados en ‘On the time lags of the LIGO signals'”, pero, según él, no pudo reproducir esa correlación que afirmamos en la sección 3 del documento. Posteriores discusiones sobre el asunto con Ian Harry revelaron que ese fallo se debía a varios errores en el código de sus programas en Python (puedes consultar esos códigos aqui, en HitHub). Las versiones posteriores de sus códigos en HitHub ya las ha actualizado. Pero, en relación a los resultados que presentamos, ofrecemos una única versión de nuestro script, sólo para compararla.

El proceso de separar de forma fidedigna la señal del ruido es siempre difícil, pero es especialmente duro cuando el ruido no es ni gaussiano ni estacionario, como es el caso que tratamos. Es esencial entender completamente “el diálogo cruzado” entre detectores del sistema, para que las técnicas de limpieza sean seguras y ofrezcan las mejores y más fiables extracciones de la señal. En lo que sigue a continuación, describiremos un análisis seguro basado en los datos de LIGO que fueron hechos públicos y disponibles. Este análisis mostrará una fuerte correlación entre los residuos de Hanford y Livingston.

1. Correlaciones cruzadas

El evento GW150914 se caracteriza por su forma y por su casi aparición simultanea en los detectores de Hanford y Livingston, con un retardo de tan solo 6.9 ms (milisegundos). Aquí, reseñaremos brevemente un método para confirmar ese retardo, con la ayuda de correlaciones cruzadas, para más tarde aplicarlo al ruido residual en las inmediaciones del evento GW150914.

A los datos de tensión de la señal en hanford, H(t), y a los de Livingston. L(t), dentro del intervalo de tiempo ta < t < tb, los llamaremos H_{t_a}^{t_b} y L_{t_a}^{t_b} respectivamente. Seleccionemos un trozo cualquiera de los datos de tensión de Livingston y desplacémoslo respecto a los de Hanford un tiempo de retardo t tal que permita la correlacion cruzada como función de esa t. Puesto que la señal no es estacionaria, deseamos incluir sólo valores dentro de un intervalo seleccionado, asegurado por el método que esbozamos más abajo. Por lo tanto, nuestra asunción es que, dentro de una ventana de tiempo suficientemente pequeña, el ruido residual se comporta de una forma estacionaria.

Figura 1: Ilustración del procedimiento de cálculo de la correlación cruzada entre Hanford y Livingston en función del retardo t

Usando el esquema de arriba, definimos el coeficiente de correlación cruzada,

\displaystyle  C(t,\tau,w) = {\rm Corr}(H_{t+\tau_0 + \tau}^{t-\tau_0+\tau+w},L_{t+\tau_0}^{t-\tau_0+w}), ;

donde t0 es elegido para asegurar que sólo se incluyen valores dentro del intervalo seleccionado [t, t, w]. (hacemos notar que la señal GW150914 apareció primero en Livingston y fue vista en Hanford unos 6.9 ms después. Por lo tanto, la ecuación de arriba es tal forma que t es positivo para GW150914. Restringiremos el tiempo de retardo a -10 = t = 10 ms porque esa es la única región de interés para la detección de ondas gravitacionales. Por consiguiente, elegimos t0 = 10 ms. Aqui Corr(x,y) es la función de correlación cruzada de Pearson estándar entre los registros X e Y definidos de tal forma que caen dentro de la ventana W:

\displaystyle  {\rm Corr}(x_{t+\tau}^{t+\tau+w},y_{t}^{t+w}) = \frac{{\rm Cov}(x_{t+\tau}^{t+\tau+w},y_{t}^{t+w})}{\sqrt{{\rm Cov}(x_{t+\tau}^{t+\tau+w},x_{t+\tau}^{t+\tau+w}) \cdot {\rm Cov}(y_{t}^{t+w},y_{t}^{t+w})}}, ;

donde {\rm Cov}(x,y) es la ususal covarianza definida como {\rm Cov}(x,y)=\langle (x-\langle x \rangle)(y - \langle y \rangle) \rangle , y donde \langle ... \rangle es la media dentro de la ventana considerada.

2. Ruido residual

Empezamos nuestra búsqueda de correlaciones, en el ruido residual, con un simple test de correlación cruzada ( que llamaremos CC-test) entre los registros de Hanford y Livingston, y para ello usaremos los datos facilitados por la colaboración LIGO:

https://losc.ligo.org/s/events/GW150914/P150914/fig1-residual-H.txt https://losc.ligo.org/s/events/GW150914/P150914/fig1-residual-L.txt

En el resgitro de 0.2 segundos que incluye el evento GW, los componentes del ruido residual se calculan como H_n=H-H_{\rm tpl} y como L_n=L-L_{\rm tpl}. Donde H_{\rm tpl} y L_{\rm tpl} son las plantillas limpiadas de la misma forma precisa como lo fueron los datos en crudo para dar los registros limpios, H y L. Para resaltar propiedades generales de la señal limpia GW150914, las plantillas de relatividad numérica y los residuos, antes de volver al CC-test, mostramos abajo las amplitudes de Fournier para los diferentes componentes, tanto para el detetcor de Hanford como para el de Livingston, y describimos brevemente sus peculiaridades.

In order to highlight general properties of the cleaned GW150914 signal, the numerical relativity templates and the residuals, before turning to the CC-test, we show below the Fourier amplitudes for these various components for both Hanford and Livingston detectors, and briefly describe their peculiarities.

Figura 2: Panel izquierdo: El espectro de potencia para el registro limpio (en rojo) del evento GW150914 de Hanford, así como la correspondiente plantilla que mejor encaja / en negro) y los residuos (en azul), as well as the Panel derecho: Lo mismo que en el panel izquierdo, pero para el registro de Livingston, también con lineas coloreadas.

Primero, para ambos detectores, las plantillas y los datos limpios muestran un pico bastante pronunciado, en las amplitudes de Fourier cerca de los 50 Hz, que está asociado al filtro paso banda que selecciona la región entre los 35 y los 300 Hz. Segundo, las amplitudes de los residuos de Hanford decrecen rápidamente para f < 70 Hz, mientras que las amplitudes residuales de Livingston tienen un valor máximo cerca de los 40 Hz, que coincide con un pico en el registro limpio. Tercero, como se puede leer fácilmente de las figuras, para frecuencias f > 270 Hz, los datos limpios están dominados por los residuos para los detectores de H como para los de L. Es más, hemos encontrado amplitudes en los registros limpios que son sustancialmente más bajas que las de las platillas. Por ejemplo, la frecuencia en el rango 100 < f < 150 Hz. Especialmente, merece ser resaltada esta peculiaridad en Hanford , donde las amplitudes de los datos limpios caen incluso por debajo de las de los residuos en frecuencias entre 70 y 120 Hz. Debemos tener en cuenta, sin embargo, que estas "anomalías" describen propiedades de los residuos para detectores individuales, y no necesariamente conducen a correlaciones cruzadas entre residuos de H y L. Este “diálogo cruzado” de estos registros es el tema de nuestro documento, y está resumido abajo.

3. El CC-test para ±10 ms en dominio restringido de tiempo

La correlación cruzada de Hn y Ln es calculada como función del tiempo de retardo t. La condición |t| < 10 ms viene impuesta por las condiciones físicas de la llegada de la señal GW. Todas las correlaciones se calculan en el dominio de tiempo, como se describen en la sección de arriba de las correlaciones cruzadas, es decir:

  • Elige cierto intervalo de tiempo [t, t + w].
  • Desplaza el registro de Livingston un espacio en la cuadrícula, dos espacios, etc (cada uno correspondiente a los registros de tiempos de retardo y residuos después de restar la plantilla de relatividad numérica. El panel de la izquierda muestra los datos originales, y el de la derecha muestra lo de Livingston desplazados 7 ms e invertidos. El area sombreada marca un rango de 0.39 a 0.43 segundos, dentro del cual calculamos la función de correlación cruzada presentada abajo.

Figura 3: Paneles superiores: Los registros de Hanford (azul) y Livingston (rojo) y sus residuos después de restar de las plantillas respectivas, antes (izquierda) y después (derecha) de desplazar los registros de Livingston 7 ms e invertirlos. Panel de abajo: la correlación cruzada C(t, t, w) para los registros de ruido como función del tiempo de retardo t para varios registros de tiempo como se indica en la leyenda.

Como se puede ver, los cálculos se pueden repetir para una gran variedad de intervalos de tiempo indicados en la leyenda. La figura muestra una correlación cruzada sorprendentemente larga de -0.81 para la ventana óptima de 0.30 a 0.43 s. El hecho de que este valor sea negativo es una consecuencia del hecho de que la señal de Livingston debe estar invertida. Esta es la región en la que el efecto “chirp” (chasquido) es más pronunciado. Observamos que la correlación cruzada entre los residuos de Hanford y Livingston tiene una magnitud superior a 0.12 para los cuatro rangos mostrados arriba. Incluso es más relevante hacer notar que se obtiene una fuerte correlación negativa para un tiempo de retardo de aproximadamente 7 ms para cada una de las ventanas de tiempo consideradas. Aunque en nuestro documento actual no hemos profundizado mucho, haremos futuras investigaciones con más profundidad y detalle sobre este mismo tema.

Debe remarcarse que la plantilla usada aqui es la de onda de máxima-probabilidad. Sin embargo, se puede encontrar una familia completa de esta clase de ondas que se ajustan a los datos igual de bien. (lo podemos ver, por ejemplo, en los paneles de la segunda fila de la figura 1 del documento LIGO’s detection paper of GW150914). Para ofrecer una estimación grosso modo de esta incertidumbre, hemos explorado también la posibilidad de una escala libre de ±10% de la amplitud de las plantillas, de tal forma que H_n=H-(1 \pm 0.1)H_{\rm tpl} y L_n=L-(1 \pm 0.1)L_{\rm tpl}. (Esta estimación a vuelapluma de las incertidumbres cambiarán tanto las magnitudes como las fases de las amplitude Fourier de los residuos). Las correlaciones cruzadas resultantes son virtualmente idénticas a los resultados mostrados arriba. Dado que el ruido residual es significativamente más grande que la incertidumbre introducida por la familia de plantillas, el resultado no es sorprendente.

Podría parecer que los 7 ms de tiempo de retardo asociado con la señal GW150914 es también una propiedad intrínseca del ruido. El propósito de tener dos detectores independientes es precisamente asegurarse de que, después de una limpieza suficiente, las únicas correlaciones reales entre ellos se deban únicamente a efectos de ondas gravitacionales. Los resultados presentados aquí sugieren que este nivel de limpieza no ha sido aun obtenido, y que la identificación de los eventos GW necesita ser revaluada con consideraciones más cuidadosas de las propiedades del ruido.

Esperamos que nuestro comentario sirva para mejorar el entendimiento de los principales resultados de nuestro documento. Agradecemos a Alessandra Buonanno y a Ian Harry por sus discusiones científicas, y por hacer que sus scripts en Pythom sean accesibles a toda la comunidad científica y a nosotros en particular.

Este texto, que resalto sobre fondo amarillo, es mi opinión respecto del texto traducido de arriba, y por extensión de todo lo que viene pasando con el tema LIGO a los largo ya de dos años, sin que la comunidad científica abra los ojos y siga obstinada en ser timada por grupos de élite sin escrúpulos. Porque no nos engañemos, los líderes de LIGO es un grupo de élite, que está fraguando uno de los fraudes más escandalosos que será glosado en los anales de la historia. El hecho de que en el equipo de LIGO hayan existido más de 1300 colaboradores ni resta y suma credibilidad al trabajo, más bien lo que hace es dificultar el escrutinio para encontrar la verdad. Así no trabaja la ciencia. Los hallazgos científicos no se votan democráticamente. El consenso oficial no es necesariamente la verdad científica. Además, alguien que cobra de su jefe fácilmente consensúa resultados con él (quien contradice al jefe no cobra). La mayoría de colaboradores LIGO sólo hacían sus tareas específicas integrados dentro de sus equipos, eran auténticos “mandados”. Esa fue la inteligente estrategia del grupo de élite LIGO desde el principio: “gastar mucho dinero del proyecto en comprar voluntades de todas las universidades del mundo”, de modo que los resultados del proyectos estuvieran “avalados” por una retahíla interminable de nombres de científicos, técnicos, empresas y universidades. Toda esa amalgama de nombres avaladores constituye el meollo de la credibilidad artificial, diseñada con esmero por sus líderes. Si de LIGO sale como resultado final que han detectado la existencia de “elefantes voladores verdes con trompas color rosa enrolladas en espiral, y con alas de murciélago en sus lomos“, a ver quién es el valiente que se atreve a contradecirles. Me gusta la cita que hizo Abrahan Lincoln, es muy pertinente para este asunto, la repito:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

Pronto se sabrá que esa correlación de ruido residual, hallada por este equipo danés independiente, entre los detectores de Hanford y Livingston, es muy, pero que muy sospechosa. Que la supuesta señal sea observada por ambos detectores, pero que con la señal viaje también ruido residual que nada tiene que ver con esa señal, es muy pero que muy sospechoso. La única explicación que nos dejan es que se inyectaron señales simuladas que ya estaban randomizadas por software. Dichas señales simuladas (con ruido incorporado, también simulado) fueron debidamente promediadas con los respectivos ruidos locales en ambos detectores. Y guardando la debida distancia temporal de retardo sincronizado, para simular también que la supuesta señal se propagó a la velocidad de la luz con cierto ángulo proveniente de una supuesta fuente extraterrestre. Y eso no lo hicieron una única vez, en el supuesto evento GW150914, lo han hecho dos veces más, con los supuestos eventos GW151226 y GW170104. Es decir, han sido reincidentes. ¿Qué habrá que hacer con esos líderes responsables de ese fraude tan brutal cuando se demuestre definitivamente que están inyectando en LIGO señales simuladas y las están haciendo pasar por verdaderas? ¿Todo se arreglará con sus dimisiones?. ¿Qué pasará con el dinero de Premios que les han ido dando a lo largo de estos años, y con el dinero del Premio Nobel de 2017, si es que logran engañar a ese comité también?. ¿Bastará con que dimitan?. ¿Por qué no está penado el fraude científico con cárcel y multas millonarias?. ¿Qué le ocurre al prestigio de un supuesto científico sin escrúpulos que engañó al mundo entero, pero que se llevó sus millones de dólares y los puso a buen recaudo?. En España tenemos dolorosos ejemplos de personas sin escrúpulos (con mucha jeta) que han engañado a la comunidad, explotando fraudulentamente desde los mass media el filón de la solidaridad, fingiendo, ellos o algún familiar suyo, padecer alguna enfermedad grave y no tener recursos económicos para tratarla.

¿Qué ocurre con el observatorio VIRGO ?. Se supone que ese “observatorio” de ondas gravitacionales debería ser independiente de LIGO, es decir, él solo debería ser capaz detectar esas supuestas ondas. Pero, los líderes de LIGO, inteligentemente, han conseguido que VIRGO se asocie con ellos. Aunque más que una asociación parece una subordinación. Es decir, los lideres de LIGO quieren tener todo el control de VIRGO, que sea un detector más del sistema, igual que lo son los de Hanford y Livingston. Los líderes timadores de LIGO quieren total control sobre VIRGO, ¿para qué?. Pues, sencillamente para seguir inyectando impunemente sus señales simuladas (ahora también via satélite hacia VIRGO), y que la triangulación sea perfecta, y de esa forma consolidar y blindar el engaño indefinidamente. La forma de pensar de esos delincuentes es la siguiente: “nosotros nos llevamos el dinero, y cuanto más se tarde en descubrirse el pastel mejor. Porque al final todos calvos, coge el dinero y corre muchacho, y que te llamen criminal“. Les llamo delincuentes, a los responsables de LIGO, porque el fraude es un delito, no porque ya hayan sigo juzgados por algún juez.

Está bien, seamos un poco más benévolos con esos responsables de LIGO. Supongamos que sólo se están engañando ellos mismos, al hacer cálculos estadísticos erróneos, y al no tener bien ajustados los diferentes dispositivos y sistemas para limpiar bien los registros de ruido residual. Si son honestos, devolverán todo el dinero que les han ido dando por demérito, dimitirán de sus cargos y retractarán todos y cada uno de los documentos publicados. Si esos responsables son honestos, pedirán perdón públicamente avergonzados de su estupidez y su contumacia. Seamos benévolos, concedámosles el beneficio de la duda, pensemos que todo ha sido un lamentable malentendido, pensemos que no existe la maldad en el mundo, que el dinero es solo un humilde medio en si mismo, no un fin, que los Premios Nobel no poseen dotación económica, solo dotación prestigiosa. Les vamos a perdonar la vida señores, y les diremos que no se vuelva a repetir. Les diremos amablemente que sean felices, que sigan ilustrándonos con su sapiencia. Les diremos que no hace falta que devuelvan el dinero que indebidamente les ha sido entregado, que disfruten de él. Les diremos que las ondas gravitacionales existen y que no hace falta que nos demuestren su existencia, que nosotros somos creyentes en la fé.

Amen

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments »

Espejismo Gravitacional: Las ondas gravitacionales detectadas por LIGO son sólo ruido mediático

Posted by Albert Zotkin on June 20, 2017

Ola amigos de Tardígrados. Si, ola sin “h”. No, no es ninguna falta de ortografía. Esa palabra la he escrito intencionadamente así sin “h” para indicar que el asunto de las ondas gravitacionales se parece más a una ola mediática, o a una ola espuría. Los altos dirigente del “observatorio/experimento” LIGO estaban todos calladitos para ver si el mundo entero les “hacía la ola” hacia el Premio Nobel, que era su último y primer (y único) objetivo. Hacer la ola significa aqui que todo el mundo (sobre todo los medios de comunicación de masas) colabore como lobby de presión sobre el Comité de los Premios Nobel. Parece ser que los españoles somos de los primeros siempre en ser timados. Sí, les hemos concedido el Premio Princesa de Asturias a los ricachones del LIGO por su sensacional descubrimiento fraudulento. ¿Qué ocurrirá cuando antes de que les den el Premio Nobel se descubra todo el pastel y la detección de las ondas gravitaciones quede toda en aguas de borrajas?. O después. Imagina por un momento que los tres timadores generales de LIGO se presentan a recoger el suculento cheque del Premio Princesa de Asturias, y al día siguiente se demuestra que todo eso fue en el mejor de los casos, un simple error sistemático al calcular las frecuencias transformadas de Fourier, por no decir la fea palabra timo. ¿En qué lugar queda la Princesa de Asturias. ¿En qué lugar queda Asturias?. ¿En qué lugar queda España?. Bueno, no pasa nada. Los españoles estamos ya muy acostumbrados a que nos la “metan doblada” por todos los lados. Yo diría que hasta nos gusta. Que vengan aquí los ingleses de turismo y nos timen, nos gusta. Se tiran casi un mes de orgías en Benidorm, todo a cuerpo de rey, y después cuando vuelven a su país denuncian (falsa denuncia) al hotel. Dicen que se intoxicaron con la comida o la bebida que estaba supuestamente en mal estado. El resultado es que son indemnizados por el hotel, saliéndoles las vacaciones más que gratis. Ese timo, y otros igual de injustos o más, nos produce a los españoles, cuando nos lo hacen a nosotros, casi un orgasmo cósmico. Pero los miembros del Comité de los Premios Nobel no son tan idiotas, ellos saben que para premiar un descubrimiento de Fundamentos de la Física, hay que ser muy paciente y riguroso, no hay que precipitarse. Si el descubrimiento fue real, está claro que podrá ser observado muchas veces en el futuro. No hay que dar el premio a la primera vez que se observa. Hay que esperar a que otros observatorios independientes lo observen también muchas veces, hasta llegar al aburrimiento. De momento, que sepamos, las ondas gravitacionales han sido supuestamente observadas tres veces, pero por el mismo “observatorio”, y no han sido constatadas por ningún observatorio independiente. Dar un Premio Nobel a un descubrimiento que sólo presenta tres eventos sin constatación independiente es demasiado arriesgado y prematuro. El prestigio de los Premios Nobel volaría por los aires si se viera después que todo eso de LIGO, fue en el mejor de los casos, sólo un espejismo.

Los cientificos son seres humanos, pero los seres humanos tenemos virtudes y defectos. Uno de los defectos más perniciosos del ser humano, cuando se dedica a hacer ciencia, es el llamado sesgo de conocimiento . En cualquier experimento científico, el sesgo de conocimiento (ó prejuicio cognitivo) influye catastróficamente sobre los resultados del mismo, y de la peor forma posible. El experimentador poda irracional e inconscientemente de los resultados muchos de los datos que no contribuirán a confirmar la hipótesis científica que en el experimento se está poniendo a test. Esa poda irracional de datos es debida a su prejuicio cognitivo, pero eso no es todo. Aquellos datos que él piensa que sí contribuyen a confirmar la hipótesis son favorecidos. Al final, el resultado del experimento se parece más a la decisión injusta y prevaricadora de un juez o un jurado altamente manipulable.

Veamos las ultimas noticias sobre LIGO: Hace unos días se presentó un análisis independiente sobre los eventos GW que publicó LIGO. Los eventos son GW150914, GW151226 y GW170104, cada uno muy bien documentado. Ese análisis fue realizado por cinco científicos, James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, todos del Instituto Niels Bohr. El análisis lo puedes ver en este preprint arXiv:1706.04191. Y la conclusión de ese análisis en resumen, y en pocas palabras, es que todo lo que afirman los de LIGO que se había detectado resulta ahora que sólo es ruido, y por lo tanto no hay señales de ondas gravitacionales ahí. Ahora viene el juego de los prejuicios cognitivos. Los que crean que las ondas gravitacionales no existen tenderán a creer a más a estos cinco científicos daneses que a los de LIGO. Los que crean más en LIGO tienden a pensar que estos científicos daneses están equivocados, y muchos hasta escribirán ( si no lo han hecho ya) precipitadas respuestas para demostrar que “estos cinco oportunistas tienen que estar equivocados”. Pero, como dijo una vez Abraham Lincoln:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

.

Los del sesgo cognitivo inclinado hacia LIGO se precipitan a escribir contra los “cinco oportunistas daneses”. La bloquera y científica Sabine Hossenfelder nos lo cuenta rápidamente en su artículo, de la revista Forbes, Was It All Just Noise? Independent Analysis Casts Doubt On LIGO’s Detections. Y al final viene a decirnos ” es muy probable que esos daneses hayan cometido algún error”. He ahí el sesgo cognitivo de Sabine. ¿Por qué, según ella, es tan probable que hayan cometido un error?. Pues simplemente porque tiene la creencia de que LIGO si ha detectado realmente ondas gravitacionales. Como en su mente ese supuesto descubrimiento es una verdad incuestionable, todo lo que contribuya a derrumbar esa “verdad” debe ser un error. Sabine da la noticia, pero es escéptica con las conclusiones de ese análisis independiente. Lo mismo le ocurre al prolífico bloguero y cientifico Luboš Motl, que en su artículo de su blog califica el análisis de esos daneses directamente como bazofia. Una respuesta algo mas elaborada, pero igual de precipitada, de los creyentes de LIGO, es la del científico Ian Harry perteneciente al equipo de LIGO, que fue publicada en el blog de Sean Carroll. Este especialista viene a decirnos, en resumen, que esos daneses están equivocados porque no saben hacer análisis de datos con transformadas de Fourier. O sea, un error que no comete ni un principiante de Fisicas de primer año sí lo cometen estos cientificos daneses. ¡Vamos!, ¡eso no se lo cree ni “el que asó la manteca“, colega!. De hecho, ya están tardando en responderle a Ian harry, o quizás es el propio Sean Carroll el que esté censurando en su blog (the preposterous Universe) aquellas respuestas que puedan desmantelar todo ese tinglado de LIGO, y sólo filtra las que son benévolas o las que lo favorecen descaradamente.

¿Qué es lo que pienso yo al respecto?. Puesto que yo poseo la profunda convicción de que las ondas gravitacionales, si es que existen realmente, no pueden ser detectadas por interferómetros como el de LIGO, poseo un sesgo cognitivo anti-LIGO, y por lo tanto, todo lo que escribo y pienso tiende a favorecer mi hipótesis. Puesto que yo conozco mis limites, y sé analizar cómo pueden mis razonamientos estar contaminados de ese prejuicio, estoy en las mejores condiciones de ser algo más objetivo que una defensa ciega a favor o en contra. Mis conclusiones sobre LIGO por lo tanto son estas:

Los científicos daneses, en su análisis On the time lags of the LIGO signals, han descubierto algo muy profundo que ni ellos mismo siquiera sospechan. Ellos afirman algo sorprendente, que el ruido está correlacionado, y también la supuesta señal. Es decir, en los dos observatorios de LIGO, el de Livingston y el de Hanford, al analizar los datos han observado que los dos ruidos de fondo están correlacionados, y por lo tanto no hay forma de destacar una señal sobre el ruido. Pero, eso no puede ocurrir en la realidad, el ruido es ruido, no puedes observar secuencias aleatorias repetidas que sean muy largas en más de un sitio a la vez. La correlación de ruido indica error sistemático. Por lo tanto, lo que estos científicos han descubierto, y no saben aún que lo han descubierto, es un método para detectar inyecciones ciegas de señales que fueron usabas para suplantar a supuestas señales reales. Hasta ahora se venía diciendo que una inyección ciega de señal en LIGO no podía diferenciarse de una señal real, y eso era aprovechado para adiestrar a los científicos (engañarles) en su búsqueda de señales reales. Lo que estos cinco científicos han descubierto sin saberlo, y pronto será el notición mundial, es que a partir de ahora ya existe un método objetivo para descubrir qué señales en LIGO son reales y cuales son simuladas. Y que estas tres señales, que LIGO afirma que son reales, se ha descubierto que son simuladas (alguien las inyectó deliberadamente), porque los ruidos están correlacionados.

Saludos correlacionados a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin on May 12, 2017

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  2. Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

  3. El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

  4. El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:

    distance

    \displaystyle \theta= \frac{s}{r} \\ \\ x = r \cos \theta \text{;} \;  y = r \sin \theta \\ \\ d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\  d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  5. La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

  6. Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.
Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle 0 = -c^2 dt_x^2 +(1+h) dx^2  \\ \\  dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\  dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\ t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\ 2 t_x - 2 t =  \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c}  \\ \\ \\  2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle 0 = -c^2 dt_y^2 +(1-h) dy^2  \\ \\  dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle 2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\   \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\  \Delta\phi =  \frac{4 \pi  L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle h = \cfrac{\lambda_x -  \lambda}{ \lambda} \\ \\  \lambda_x = (h+1)\lambda \\ \\ \\ \\ -h = \cfrac{\lambda_y -  \lambda}{ \lambda} \\ \\  \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle 2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\ c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda  \\ \\  \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin on June 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10?8 s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle\pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π+ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\ \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin on June 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2  (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle m^2(\nu_e) = -130 \pm 20 \; eV^2  (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0  (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}  (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}  (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle E^2 \;\textless\; p^2 c^2

(6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle E = mc^2 \cosh \tfrac{v}{c}  (7)
\displaystyle p = mc \sinh \tfrac{v}{c}  (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle \frac{x^2}{a}-\frac{y^2}{b}=1  (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle \cosh^2 u -\sinh^2 u =1  (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\  \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)  (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)  (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle E^2- p^2 c^2 = - m^2 c^4  (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c4. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c4.
Analicemos brevemente una desintegracion de Michel para un muón: michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\ E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\  p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\  p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\  0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}  (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle p = mc\cosh \left(\frac{v}{c}\right) \\ \\  = mc\cosh 0 = mc  (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin on June 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde f‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) ? x, cuando x << 1, y μ (x) ? 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol, \displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional, \displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND \displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz \displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin on March 10, 2016

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  2. Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

  3. El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

  4. El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:

    distance

    \displaystyle \theta= \frac{s}{r} \\ \\ x = r \cos \theta \text{;} \;  y = r \sin \theta \\ \\ d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\  d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  5. La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

  6. Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.
Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle 0 = -c^2 dt_x^2 +(1+h) dx^2  \\ \\  dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\  dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\ t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\ 2 t_x - 2 t =  \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c}  \\ \\ \\  2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle 0 = -c^2 dt_y^2 +(1-h) dy^2  \\ \\  dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle 2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\   \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\  \Delta\phi =  \frac{4 \pi  L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle h = \cfrac{\lambda_x -  \lambda}{ \lambda} \\ \\  \lambda_x = (h+1)\lambda \\ \\ \\ \\ -h = \cfrac{\lambda_y -  \lambda}{ \lambda} \\ \\  \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle 2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\ c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda  \\ \\  \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »