TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘planeta Mercurio’

Primer siglo sin Einstein en la Era de Acuario: El origen de la inercia

Posted by Albert Zotkin en enero 26, 2018

¿Es pronto aún para evaluar los estragos causados por las teorías de Einstein (la general y la restringida) en el árbol de la ciencia y la tecnología?. En realidad, el señor Einstein no tuvo toda la culpa de que sus teorías se implantaran como paradigma actual de la física teórica, y más concretamente de la física de la gravitación universal. De hecho, aún estamos sin saber qué es realmente la gravedad, y una teoría cuántica de la gravedad parece aún algo utópico de alcanzar. Ningún avance tecnológico se ha producido basado en los dictados de la Teoría General de la Relatividad de Einstein, y menos en la Restringida o Especial. Por ejemplo, la cacareada afirmación de que el sistema de geolocalización global GPS funciona gracias a que tiene incorporadas rutinas para hacer correcciones relativistas basadas en las teoría de Einstein es falsa. Se ha demostrado, no sólo que el GPS puede funcionar correctamente sin esas correcciones relativistas, sino que son innecesarias, y lo único que consiguen es complicar todo el proceso computacional para al final dar el mismo resultado que da la física clásica de Newton, aunque, eso sí, con el efecto Sagnac debidamente calculado y tenido en cuenta. Por cierto, un efecto Sagnac que las teorías de la relatividad de Einstein no pueden explicar, por mucho que se empeñen sus santones en convencernos de lo contrario.

Efectivamente, la relatividad de Einstein tiene santones (defensores a ultranza de sus dogmas) como cualquier religión o secta. La enrevesada matemática de la Relatividad General hace casi imposible, no ya para un profano, sino para cualquiera que se llame experto en la materia, usarla con éxito para el cálculo práctico de algo en concreto. Con las ecuaciones de Newton para la gravitación se puede llegar hasta resolver analíticamente el problema de los dos cuerpos, y el problema de los tres cuerpos hasta se puede resolver para ciertos casos y condiciones iniciales sin dar soluciones caóticas. Con la Relatividad General de Einstein es prácticamente imposible resolver nada, y un problema de multi-cuerpo, como es el de la gravitación a nivel de galaxias y cúmulos, se hace intratable ad infinitum. De hecho el legado de Einstein consiste en que gozamos de una serie de anomalías y paradojas que lo único que consiguen es poner palos en la rueda del progreso científico, porque se dedica mucho esfuerzo intelectual, de recursos humanos y económicos a falsar temas teóricos que lo único que consiguen es bloquear más aún las mentes hacia el entendimiento y el avance científico real. Ejemplo de esas anomalías es la llamada materia oscura, un conundrum que consume grandes cantidades de recursos para ser esclarecido (intentan por todos los medios descubrir las partículas de materia oscura). Pero no quieren darse cuenta, que la única forma real de resolver ese enigma consiste en desechar la Relatividad General y proponer un modelo mejor, otra teoría de la gravitación que prediga el mismo efecto, pero sin materia oscura, y que sea capaz también de predecir otros efectos gravitacionales explicados y/o inexplicados por la teoría reinante actual. El problema de desechar la Relatividad General es que está demasiado integrada en los fundamentos de la física actual, y desecharla implicaría derribar todo el edificio, y nadie está dispuesto a derribar su casa ni su centro de trabajo sin tener garantizado otro mejor al que acudir a trabajar o a vivir, en eso consiste la definición de paradigma.

Pero, la cuestión que me ha movido hoy a escribir este pequeño artículo no es otra que el tema de qué es la inercia, y como encaja dentro de la gravitación universal. A nadie se le debe ocultar el hecho de que a la física clásica de Newton se le escapan muchas cosas, porque el diablo está en los detalles, aunque básicamente la podemos considerar correcta. Una de las cosas que se le escapa es por qué existe la inercia. A menudo se dice que la ciencia debe describir hechos. nunca explicar sus causas. Pero, me parece a mi que eso lo dicen siempre aquellos ignorantes que son incapaces de saber las causas científicas. ¿Por qué es más importante saber las causas que describir sus efectos?. Por la sencilla razón de que sabiendo la causa puedes explicar más de un efecto. Es decir, una única causa puede ser el origen de muchos efectos diferentes, que aparentemente parecían inconexos. Por ejemplo, la física de Newton no predice correctamente el funcionammiento de un giroscopio, aunque a primera vista pudiera parecer lo contrario. Observemos con atención cómo el siguiente giroscopio, cuando está en funcionamiento, parece que sea capaz hasta de levitar:

En un giroscopio no sólo existe inercia giroscópica, también existe la llamada precesión y la llamada nutación. Pero todo esos efectos tienen una única causa. Una causa que, simple y llanamente, nos está diciendo que la gravedad posee una velocidad finita de propagación, aunque es muchos miles de ves más grande que la velocidad de la luz en el vacío.

Veamos ahora un bonito ejemplo de cómo la velocidad de la gravedad es finita y más grande que la de la luz. Desde hace ya más de un siglo se viene afirmando que la Relatividad General de Einstein predice con pasmosa exactitud la precesión extra del perihelio del planeta Mercurio que la física clásica de newton es incapaz de predecir. Eso es correcto, esa predicción es muy exacta, pero lo que a menudo se olvida, o peor aún se ignora, es que antes que Einstein ya hubo alguien, un tal Paul Gerber, que pudo predecir con la misma precisión, si cabe, lo mismo, aunque desde planteamientos muy diferentes. En su documento histórico “Die Fortpflanzungsgeschwindigkeit der Gravitation” publicado en Annalen der Physik, Vol. 52.¡, nos detalla minuciosamente todos sus pasos y fundamentos hasta llegar a su famoso Potencial Gravitatorio de Gerber, FG, cuya ecuación posee el siguiente aspecto

\displaystyle  \Phi_G(r)=-{\frac {GM}{r\left(1-{\frac {1}{c}}{\frac {dr}{dt}}\right)^{2}}} (1)
donde M es la masa del cuerpo central, r es la distancia del cuerpo test (de masa insignificante comparada con M) al centro de M, c es la velocidad de la gravedad, que en este supuesto de Gerber, coincide con la velocidad de la luz, y donde dr/dt es la velocidad radial del cuerpo test que gravita alrededor del cuerpo principal (Mercurio alrededor del Sol, por ejemplo). Y si expresamos esa ecuación desde una expansión binomial tenemos esta otra:

\displaystyle  \Phi_G(r)=-{\frac {GM }{r}}\left[1+{\frac {2}{c}}{\frac {dr}{dt}}+{\frac {3}{c^{2}}}\left({\frac {dr}{dt}}\right)^{2}  + {\frac {4}{c^{3}}}\left({\frac {dr}{dt}}\right)^{3} \dots  \right] (2)
El problema del Potencial de Gerber es esencialmente que sólo puede explicar las anomalías de precesión, pero otras predicciones de gravitación quedan bastante desdibujadas si se aplican esas ecuaciones Gerberianas. ¿Por qué?. De hecho la Relatividad General tuvo un éxito tan rotundo porque ofrecía respuestas muy revolucionarias para la época a todos esos efectos que aún permanecían inexplicados por la teoría clásica. Pero en el fondo existe algo mucho peor que todo eso. La Relatividad General venia a sustituir definitivamente a la Gravitación de Newton, ofreciendo afirmaciones sobre algo muy extraordinario llamado espacio-tiempo, y cómo una supuesta curvatura del mismo podía predecir todos y cada uno de los fenómenos y efectos conocidos y por conocer del universo entero. La mente humana quedó definitivamente seducida por algo encantador y de una belleza matemática sin igual. Sin embargo, a pesar de esa obnubilación del ánimo y la mente racional debida a las artimañas relativistas, aun es posible recuperar la sensatez racional y entrever de qué va todo esto.

El potencial de Gerber es básicamente el potencial gravitatorio de Newton pero con un factor de retardo debido a que la velocidad de la gravedad es considerada finita. Gerber, y después Einstein, nos dice que esa velocidad de la gravedad es igual a la velocidad de la luz, c. En cambio, Newton quedó estupefacto al verse forzado a admitir que su gravitación universal solo podía funcionar si la velocidad de propagación de la gravedad era considerada infinita, es decir, instantánea. Pues mire usted por donde, que no va a ser ni una cosa ni la otra, sino que en el termino medio está la virtud. Es decir, ni infinita ni la velocidad de la luz c, sino una magnitud intermedia que podría ser miles de veces c, según los casos. Y la razón de todo esto la tiene el momento cuadrupolar del Sol. Se lanzó de una forma demasiado aventurera la Relatividad General de Einstein a explicar la precesión extra del perihelio de Mercurio, sin que en principio se supiera cual era el momento cuadrupolar del Sol. De hecho, aún hoy en día se desconoce el valor exacto de ese momento cuadrupolar del Sol, y esa ignorancia hay que “agradecérsela” al paradigma actual, que nos impide hacer sustituciones en fundamentos de física teórica. Aceptar que la precesión observada del perihelio de Mercurio se debe enteramente al momento cuadrupolar del Sol sería enterrar definitivamente la Relatividad de Einstein. Algo tan revoluoinario y escrito con matemáticas tan bellas, tirado a la papelera por algo que nadie quería mirar de frente y con los ojos bien abiertos, preferían la sopa boba del dogmatismo irracional, que es la que les da de comer. Al final, siempre queda la física de Newton, pero alterada con factores, que según los casos explican y predicen todos y cada uno de los efectos y anomalías. Este momento cuadrupolar nos dice que el Sol al girar deja de ser una esfera perfecta y presenta cierto achatamiento en los polos, adquiriendo una forma oblonga, lo mismo que le pasa al planeta Tierra, pero de forma aún más pronunciada.

Presentemos ahora el momento cuadrupolar del Sol como factor de corrección aplicado a un potencial Newtoniano F(r): La formula general para los distintos momentos es la siguiente

\displaystyle \Phi(r) = -\frac {G M }{r}\left[1- \sum_{n=1}^{\infty} \left(\frac{R_s}{r}\right)^2 J_n P_n (\cos \theta)\right] (3)
En coordenadas polares (r, ?, f), donde Rs es el radio del Sol, Pn son polinomios de Legendre de grado n, y Jn son los distintos coeficientes para modelar las distorsiones de la esfera en sus diferentes grados. El momento cuadrupolar de grado 2, el J2, es el que explica casi en tu totalidad la anomalía del perihelio de Mercurio.

Ya empezamos a vislumbrar ciertas similitudes entre el potencial de Gerber, FG, expresado en las ecuaciones (1) y (2) y el potencial gravitatorio Newtoniano corregido F(r). Efectivamente, lo que para Gerber era un retardo gravitacional de la propagación, aquí es ahora un simple momento cuadrupolar. Por lo tanto, lo que antes era una velocidad de la gravedad igual a la de la luz c, ahora es aquí una velocidad Newtoniana instantánea, como clásicamente se ha de considerar, o también como una velocidad superlumínica muy superior a c. Es más que evidente que en las ecuaciones (1) y (2), el factor que está entre corchetes es una corrección multipolar del campo gravitatorio, y dentro de ella se encuentra el sumando cuadroplar que es muy significativo para el caso del Sol como cuerpo central respecto de la órbita de Mercurio. Por esa razón, la llamada gravedad de Gerber no puede ser aplicada para predecir otros efectos distintos, como la deflexión de la luz, etc, ya que, como digo, el factor entre corchetes sólo corrige la precesión de satélites alrededor de cuerpo central, y el campo gravitatorio sigue siendo el clásico Newtoniano.

¿Cuál es el problema?. Si el valor exacto del momento cuadrupolar del Sol sigue siendo desconocido, y a fecha de hoy sabemos que sigue desconocido, ¿en qué lugar queda la Relatividad General, si toda la anomalía de la precesión del perihelio de Mercurio puede ser explicada desde el conocimiento exacto del momento cuadrupolar del Sol y con sólo la física clásica de Newton?.

APÉNDICE: Y para aquellos incrédulos que aún se resisten a admitir que la velocidad de la gravedad es miles de veces mayor que la velocidad de la luz en el vacío, aquí va un pequeño apéndice final: Demostraré que la velocidad de la gravedad se puede deducir incluso observando un péndulo simple batiendo segundos en la superficie terrestre:

1. El potencial gravitatorio clásico en la superficie de la Tierra viene dado por la ecuación F = – GM / R, y la de la intensidad de la gravedad por g = G M / R2

2. Por otro lado, sabemos ya que el potencial gravitatorio puede ser expresado asi:

\displaystyle  \Phi= -\cfrac{G\ M}{R}= -\cfrac{c^4}{c_g^2}    (4)
donde c es la velocidad de la luz, y cg es la velocidad de la gravedad, en el sistema gravitatorio terrestre. Y eso indica que la intensidad de la gravedad se puede expresar también así:

\displaystyle  g= \cfrac{G\ M}{R^2 }= \cfrac{c^4}{R c_g^2}    (5)
3· Dispongamos ahora de un péndulo simple, de longitud de hilo L, en la superficie terrestre, que bata segundos. Su periodo de oscilación será:

\displaystyle   T=2\pi {\sqrt  {L  \over g}}\,  (6)
4· Sustituyendo g de ecuación (5) en ecuación (6), y despejando cg tenemos:

\displaystyle  c_g=\frac{T c^2}{2 \pi  \sqrt{L R }}  (7)
5. Y como hemos dispuesto el péndulo para que bata segundos, su periodo será de T = 2 s, por lo que la longitud de su hilo será:

\displaystyle      L = g\left( \frac {T}{2\pi } \right)^2  = 0.994 \;\; \text{m}  (8)
6. Simplificando la ecuación (7), y sin perder de vista el correcto análisis dimensional:

\displaystyle  c_g=\frac{c^2}{\pi  \sqrt{0.994  R }}  (9)
7. Sólo resta introducir los valores de las magnitude de c y R (radio de la Tierra) para saber la velocidad de la gravedad en la superficie terrestre.

\displaystyle  c = 3 \times 10^8\;\; \text{m/s} \\ \\  R = 6.378  \times 10^6 \;\; \text{m} \\ \\ c_g=\frac{(3 \times 10^8)^2}{ \pi  \sqrt{0.994  (6.378  \times 10^6) }}= 1.13778\times 10^{16}\;\;  \text{m/s} \\ \\ \\  c_g=3.79259\times 10^7 c  (10)
Es decir, si mis cálculos no son incorrectos, obtenemos, en la superficie de la Tierra, una velocidad de la gravedad igual a casi 38 millones de veces la velocidad de la luz c.

Saludos

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 24 Comments »

Aprendiendo a sombrear con gravitones en las cercanias del pulsar binario PSR 1913+16

Posted by Albert Zotkin en diciembre 3, 2017

A menudo se afirma que el decaimiento de las órbitas de los pulsares binarios constituye una prueba de la existencia de ondas gravitacionales tal y como predice la Teoría General de la Relatividad de Einstein. Y se conforman con admitir que eso sólo sería una prueba indirecta de tal existencia.

Hoy vamos a viajar hacia la constelación del Águila. aquilaDejaremos atrás a su estrella más brillante, Altair, que sólo se encuentra a 17 años-luz de nosotros, y nos adentraremos a una profundidad de unos 21 mil años-luz, pero sin salir de la Vía Láctea. Nos situaremos en las inmediaciones de un pulsar binario muy conocido, el PSR 1913+16, cuya localización exacta en el cielo es ascensión recta : 19h 13m 12.4655s declinación : 16° 01′ 08.189?. Este pulsar binario está formado por dos estrellas de neutrones, que orbitan en dos órbitas elípticas alrededor de un baricentro común (centro de masas) en el mismo plano.

Ese par de estrellas de neutrones se mueve cada una en su órbita elíptica según las leyes de Kepler. En cada instante las dos estrellas se encuentran en oposición, formando una linea recta junto con el baricentro (centro de masas). El periodo de cada órbita es de unas T = 7.75 horas, y se cree que ambas estrellas poseen casi la misma masa M = 1.4 masas solares. Sus dos órbitas son bastante excéntricas. La separación mínima cuando se encuentran en sus respectivos periastros es de d = 1.1 radios solares, y la separación máxima, cuando se encuentran en sus respectivos apastros es de D = 4.8 radios solares.

Ayer hice esta pequeña animación en flash que simula el pulsar binario PSR 1913+16. Usé un sencillo actionsscript y algunas figuras geométricas simples. Pero, lo más importante que cabe decir es que no programé el decaimiento de las dos órbitas. Ese decaimiento emerge naturalmente del cómputo de las posiciones de ambos cuerpos. La pregunta es ¿por qué emerge decaimiento orbital en esos dos cuerpos?. La respuesta está en la capacidad de los registros de las variables que usa el actionscript (programa informático de flash). Usando las leyes de Kepler para esos cómputos, resulta que a cada paso evolutivo del sistema se pierden algunos decimales de precisión en las variables resultantes que serian necesarios para mantener las órbitas estables en su tamaño original. Al cabo de unos cuantos pasos de evolución del sistema, obtenemos un notable decaimiento de las órbitas. El actionscript de flash nos ha proporcionado una idea muy intuitiva de en qué podría consistir la gravedad cuántica, o por lo menos un aspecto de la misma. Sí, la gravedad cuántica tendría mucho que ver con la pérdida de información que la naturaleza necesitaría para mantener la estabilidad de sus sistemas orbitales. Pero, si nos fijamos también en la precesión de los periastros de ambos cuerpos de ese sistema gravitatorio binario, vemos que esa precesión podria deberse al hecho, inadvertido en la astrofísica oficial, de que existe sombra gravitacional, la misma que explica la precesion total del perihelio del planeta Mercurio, la misma que explica lo que la astrofísia oficial se empeña en llamar materia oscura, la misma que explica la anomalía de flyby , la misma que explica la anomalía de las sondas Pioneer mejor que la explicación oficial.

En resumen:

  1. El decaimiento orbital en los sistemas gravitatorios se debe al hecho irrefutable de pérdida de información cuántica en sus procesos computacionales.
  2. La precesión total del periastro de las órbitas en los sistemas gravitatorios se debe a la sombra gravitacional que los cuerpos másicos producen al paso de los gravitones, de forma muy similar a cómo los cuerpos opacos producen las sombras tras ellos al paso de los fotones. La sombra gravitacional produce un acercamiento efectivo del centro de masas del sistema hacia el cuerpo orbital test, y por lo tanto, una aceleración extra de su velocidad orbital.

Ahora explicaré brevemente la pieza principal de código en actionscript que genera esa simulación:

function update(m) { var cm_x; var cm_y; if(_root.r_frame==null){ cm_x=Stage.width/2; cm_y=Stage.height/2; }else{ cm_x=_root.r_frame._x; cm_y=_root.r_frame._y; } var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2)); var accel = 30*target_body.mass/Math.pow(r,2); var cosx=(m._x-m.target_body._x)/r; var cosy=(m._y-m.target_body._y)/r; var accel_x = accel*cosx; var accel_y = accel*cosy; var s=1; m.speed.x-=accel_x; m.speed.y-=accel_y; m._x+=m.speed.x-cm_x+Stage.width/2; m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1; m._rotation=s*Math.acos(cosx)*180/Math.PI90; }

La función update toma como único parámetro al clip m, que representa a uno de los dos astros del sistema, y que tiene una serie de propiedades predefinidas, como sus coordenadas espaciales _x, _y, o su su masa m. Cuando pasa por el render de flash un frame, la función update actua sobre cada uno de los dos clips que representan a las dos estrellas de neutrones del sistema y actualiza sus coordenadas relativas al centro de masas. Es importante resaltar que el movimiento de los dos cuerpos, aunque aparentemente parecen trazar movimientos elípticos que cumplen las leyes de Kepler, en realizad sus trayectorias no son elipses, porque decaen. Por lo tanto, no uso ecuaciones de elipses sino que todo nace la ecuación de Newton de la aceleración que es inversamente proporcional al cuadrado de la distancia y directamente proporcional a la masa del otro cuerpo. ¿Cómo se actualizan las coordenadas espaciales de cada astro?. La idea es simple. Desde cada frame a la coordenada _x hay que sumarle o restarle la componente de velocidad speed.x, y lo mismo para la coordenada _y. Vectorialmente hablando, sería obviamente, para cada frame, calculamos la aceleración de cada astro y la sumamos a la velocidad, y después sumamos la velocidad al vector posición. Estas sumas son coherentes dimensionalmente porque a cada frame se está considerando un paso diferencial muy pequeño de cada una de esas variables.

Por lo tanto la razón por la que esas órbitas decaen, no está escrita en la ley universal de gravitación, sino que es un artefacto del hardware que ha de ejecutar fisicamente el programa. Las variables de aceleración, velocidad, solo pueden ejecutarse fisicamente si poseen precisión limitada a su registro fisico. Si son registros que almacenan números de coma flotante, pueden llegar a una capacidad de hasta 64 bits por registro. Por lo tanto, puesto que la Ley Newtoniana implica, como mínimo, el cálculo de raíces cuadradas para hallar las coordenadas de posición, resultará siempre en una pérdida de precisión al ser almacenada en los registros finitos del hardware.

¿A dónde nos lleva todo esto?. Nos lleva al hecho de que la naturaleza no necesita ondas gravitacionales, ni materia oscura, ni energía oscura, ni nada que se le parezca para funcionar. Todo es cuestión de elegir los modelos teóricos que mejor la describen a cualquier escala. La naturaleza simplemente computa sus estados a partir de sus estados anteriores, pero eso sólo lo puede hacer si su precisión a cada paso (quizás a cada tiempo de Planck) no es infinita. Nuestro universo se parece mucho a una simulación informática, y eso significa que su fractalidad no es infinita a cualquier escala, sino que a partir de cierto nivel, dejan de tener sentido ciertas magnitudes físicas y emergen otras que aun desconocemos.

Saludos Keplerianos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , | 3 Comments »

 
A %d blogueros les gusta esto: