TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘velocidad superlumínica’

Distancia al centro del universo. El tamaño del presente: ¿Por qué parece imposible superar la velocidad de la luz en el vacío, y por qué esa velocidad parece ser una constante universal aunque no lo sea?

Posted by Albert Zotkin en noviembre 7, 2019

La velocidad de la luz en el vacío es c = 299.792.458 m/s, la cual nos llevaría a las inmediaciones de la Luna desde la superficie terrestre en menos de 1 segundo. Dicen que dicha velocidad es una constante universal, y que además de ser constante no puede ser superada independientemente del sistema de referencia desde el que se considere. Pero, si tenemos en cuenta las inmensas escalas de espacio y tiempo de nuestro universo observable, esa supuesta constante universal resulta insufriblemente lenta. Para que un rayo laser pudiera atravesar el diámetro de nuestra galaxia, la Vía Láctea, se necesitarían más de cien mil años. Está claro que las ondas electromagnéticas no son el vehículo idóneo para comunicarnos a escalas intergalácticas. De hecho hay fuerzas titánicas, que la naturaleza puede desatar, que podrían, al menos teóricamente, impulsar partículas a velocidades superlumínicas (pero, la Dirección General de Tráfico, que algunos llaman Relatividad Especial, nos prohíbe viajar a más de 299.792.458 m/s por autopistas intergalácticas 😛 ).
Hace 65 millones de años, según cierta teoría, de la que parece que se están acumulando las evidencias a favor, los dinosaurios se extinguieron debido a que un meteorito de 15 kilómetros de ancho chocó contra la Tierra. Para saber si eso fue exactamente así, alguien podría sugerirnos lo siguiente: “bastaría viajar por el espacio a una velocidad superior a la de la luz hasta llegar a un punto clave situado a más de 65 millones de años-luz de la Tierra, y observar con un potente telescopio nuestro planeta. Es decir, estaríamos observando un evento muy remoto del pasado terrestre. Eso deberia ser así porque los fotones de la colisión del meteorito con la Tierra aún no habrían llegado a ese punto clave donde colocamos nuestro telescopio. Es decir, esos fotones aun no han sido absorbidos. Pero, ¿estamos seguros de que eso sería así?. Si viajamos al doble de la velocidad de la luz (v = 2c), nuestro punto clave para observar un evento de nuestro pasado de hace 65 millones de años, estaría exactamente a 130 millones de años-luz. Si viajamos a n veces la velocidad de la luz, nuestro punto clave estaría a 65 millones de años-luz más 65/(n-1) millones de años-luz. En general, para observar un evento que ocurrió hace un tiempo t, habría que viajar a un punto clave x a una velocidad de v = nc, tal que

\displaystyle  x = c\;t+\frac{c\;t}{n-1}\\\\\\

y la observación del evento sería inmediata, es decir, no tendríamos que esperar a que ocurriera. Si quisiéramos esperar cierto intervalo de tiempo Δt a que ocurriera el evento, tendríamos que incrementar la localización x a otra más distante x‘, o incrementar nuestra velocidad superlumínica:

\displaystyle  x' = x+\Delta x = x + c\; \Delta t

Pero, ¿estamos seguros de que fotones que fueron emitidos hace 65 millones de años, desde la Tierra, aún siguen por ahí revoloteando, esperando ser absorbidos por algún sistema material?. ¿Y si resulta que es imposible superar la velocidad de la luz c en el vacío por la sencilla razón de que el fotón emitido fue instantaneamente absordbido por algún sistema material, independientemente de la distancia que separó al emisor del receptor?. La hipótesis que planteo es simple. Existiría un desfase de tiempos presentes entre dos sistemas materiales distantes. Si Alicia está separada de Bob por una distancia x constante, entonces sus tiempos presentes están desfasados un intervalos Δt = x/c. Ese desfase es relativo, y significa que el presente del sistema remoto está siempre en algún tiempo pasado del sistema material localizado en el origen de nuestro sistema de referencia.

Tu presente está en mi pasado, y en tu pasado está mi presente, porque entre tú y yo existe la distancia“.

De esta forma tan poética, eliminamos las paradojas de la Relatividad Especial de Einstein. La luz no viaja, simplemente permanece estacionaria, hasta que el fotón es eventualmente alcanzado por un sistema material anclado en una expansión concéntrica relativa.

Posted in Astrofísica, Cosmología, curiosidades y analogías, lameculos, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10?8 s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle\pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión p? está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})

Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\ \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2  (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle m^2(\nu_e) = -130 \pm 20 \; eV^2  (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0  (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}  (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}  (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle E^2 \;\textless\; p^2 c^2

(6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle E = mc^2 \cosh \tfrac{v}{c}  (7)
\displaystyle p = mc \sinh \tfrac{v}{c}  (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle \frac{x^2}{a}-\frac{y^2}{b}=1  (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle \cosh^2 u -\sinh^2 u =1  (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\  \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)  (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)  (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle E^2- p^2 c^2 = - m^2 c^4  (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c4. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c4.
Analicemos brevemente una desintegracion de Michel para un muón: michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\ E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\  p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\  p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\  0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}  (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle p = mc\cosh \left(\frac{v}{c}\right) \\ \\  = mc\cosh 0 = mc  (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

La gran falacia relativista de la dilatacion del tiempo

Posted by Albert Zotkin en abril 12, 2013

Veamos cómo la dilatación del tiempo, que se afirma haberse testado con éxito en los muones de rayos cósmicos, es en realidad una gran falacia. Los muones poseen una vida media de 2.19703(4) 10-6 s. Pero entonces un muón creado en las altas capas de la atmósfera terrestre no tendría suficiente tiempo de llegar a ser detectado en la superficie terrestre, incluso viajando a velocidad de c, o como mucho solo sería detectada una cantidad muy pequeña de muones, la cual no se correspondería con lo que se observa. El razonamiento mainstream es que los muones deben poseer velocidades relativistas muy altas, pero nunca superlumínicas, es decir esos muones deben tener velocidades del orden de 0.999c (o más cerca de c aún). Según la Relatividad Especial, a esas velocidades, tan cercanas a c, existe una significativa dilatación del tiempo propio del muón, con lo cual su vida media se prolongaría exactamente la cantidad necesaria de tiempo para observar lo que es observado. Se puede comprobar fácilmente que eso es una falacia. Lo que sucede realmente es que los muones conservan constante su vida media de 2.19703(4) 10-6 s, pero sus velocidades son superiores a c. Veamos con más números por qué es una falacia la interpretación de la relatividad especial afirmando que lo que se observa es debido a una dilatación del tiempo. Supongamos que un muón posee, cuando es creado en altas capas de la atmósfera, una energía total de E = 20 GeV. Entonces con esa energía es muy fácil calcular cuál debe ser su velocidad, pues

\displaystyle E = mc^2 \cosh(\cfrac{v}{c})  (1)
\displaystyle v = c \cosh^{-1} \left (\cfrac{E}{mc^2}\right ) (2)

y como la energía en reposo de un muón es E_0 = mc^2 = 105.658367(4) \;\mathrm{MeV}, tenemos que

\displaystyle v = c \cosh^{-1} \left (\cfrac{20\ \times 10^9}{105.6\ \times 10^6 }\right ) = 5.93697 c \approx 6 c (3)
O sea, los muones con energía 20 GeV creados en las altas capas de la atmósfera llegan a los detectores en la superficie a tiempo porque poseen una velocidad de unas ¡seis veces la velocidad de la luz!. Esto demuestra también, irrefutablemente que los neutrinos muónicos, resultado de la desintregación de muones, medidos en el experimento OPERA viajaron realmente a velocidades superlumínicas, aunque, como he demostrado de forma fehaciente, es más que evidente que los formalismos de la Relatividad Especial enmascaran esa realidad.

En realidad, para ser exactos, lo que se mueve a una velocidad superlumínica de 6c no es un muón, sino un electrón. Quiero con esto afirmar que un muón es simplemente un electrón que ha incrementado su velocidad subluminal inicial hasta situarla por encima de c.

Veamos ahora cómo se hacen los cálculos desde la Relatividad Especial. Si esos muones que se crean en las altas capas de la atmósfera se mueven a velocidades sublumínicas pero muy próximas a la velocidad de la luz, entonces, la máxima distancia que recorrerían antes de desintegrarse seria,

\displaystyle s = 2.19703 \times 10^{-6} \times 3 \times 10^8 \ \text{m} \approx 660 \ \text{m}  (4)
Si esos muones fueron creados a una altura de entre 15 y 20 km, y viajan un promedio de 660 m, entonces no serian capaces de llegar hasta la superficie terrestre. Pero, la intensidad de muones de 1 cm-2 min-1 observada en la superficie es mucho más alta que la que debería ser. Para explicar esa anomalía, se usa la hipótesis de la dilatación del tiempo predicha por la Relatividad Especial.
Esa gran intensidad de muones observada en la superficie, puede ser explicada mediante la hipotética dilatación del tiempo. Einstein en su teoria afirma que el tiempo transcurre tanto más lentamente para una partícula cuanto mas cercana es su velocidad a la velocidad de la luz. La vida media de un muón en reposo es del orden de microsegundos, pero según esta teoría, cuando se mueve a una velocidad cercana a la de la luz, dicha vida media se hace más larga por un factor de diez o más. Por lo tanto, según esa teoría, esa vida media alargada da tiempo a los muones para poder alcanzar la superficie terrestre, y eso explicaría el por que se observan más muones en la superficie de los que deberían verse. Si, como decimos, el muón se produce a una altura de 15 km, entonces viajando a la velocidad de la luz, el tiempo requerido para recorrer esa altura hasta el suelo sería

\displaystyle t = \frac{x}{c} \\ \\ \\ t = \frac{15 \times 10^3}{3 \times 10^8}\\ \\ \\ t  = 5 \times 10^{-5} \ \text{s} \\ \\ \\ (5)

Si, como decimos, la vida media de estas partículas es de τ = 2.19703 x 10-6 s, entonces la fracción de muones generada a 15 km de altura que sobreviviría, sin tener en cuenta la dilatación relativista del tiempo, y alcanzaría la superficie debería ser de:

\displaystyle N = N_0 \exp \left (-\frac{t}{\tau}\right ) \\ \\ \\ \frac{N}{N_0} =\exp\left(-\frac{5\times 10^{-5}}{2.19703\times 10^{-6}}\right) \\ \\ \\ \frac{N}{N_0} \approx 1.3 10^{-10}\\ \\ \\ (6)
este resultado nos esta diciendo que casi ningún muón llegaría a alcanzar el suelo. Por otro lado, si tenemos en cuenta la dilatación relativista del tiempo, la Relatividad Especial nos dice que la vida media de una partícula que no está en repsos es de τ’=ɣτ. Ese factor se llama factor de Lorentz y su expresión explicita en función de la velocidad de la partícula es de \gamma=\frac{1}{\sqrt{1- v^2/c^2}} donde c es la velocidad de la luz.

Los físicos de partículas suelen trabajar más en términos de energías de partículas en lugar de con sus velocidades, por lo tanto es útil derivar el factor de Lorentz explicitamente en función de la energía.

Si consideramos muones de 20 GeV de energía, entonces podemos obtener el factor de Lorentz ɣ de la ecuación E = ɣm c2, donde m es la masa de la partícula

\displaystyle E = \gamma m c^2 \\ \\  \gamma= \frac{E}{m c^2} (7)
En términos de energía, esa masa es de unos 105.6 MeC, por lo que

\displaystyle \gamma = \frac{20 \ \text{GeV}}{105.6 \ \text{MeV}} \\ \\ \\ \gamma = \frac{20 \times 10^9}{105.6 \times 10^6}  \\ \\ \\ \gamma \approx 189 (8)
Una vez que sabemos el valor de ɣ, la vida media en movimiento, sería de τ’=189 x 2.19703 x 10-6 s. por lo tanto, ahora la fracción de muones que lograría llegar al suelo sería de

\displaystyle \frac{N}{N_0}= \exp \left( -\frac{5\times 10^{-5}}{189\times 2.19703\times 10^{-6}}\right) \\ \\ \\  \frac{N}{N_0}\approx 0.89 (9)
este resultado nos sugiere que una significativa fracción de muones, creados en las altas capas de la atmósfera terrestre, alcanzará el suelo, gracias a la dilatación relativista del tiempo.

En resumen , desde la Relatividad Especial es posible predecir la cantidad de muones que llegan al suelo, si se aplica la hipótesis de la dilatación del tiempo. Pero, desde otra teoría muy distinta (Relatividad Galileana Completa, vista arriba en primer lugar), es posible también predecir la misma cantidad de muones que llegan al suelo, sin necesidad de invocar a ninguna dilatación del tiempo, simplemente se asume que las partículas pueden viajar a velocidades superlumínicas.

Posted in Relatividad | Etiquetado: , , , , , , , , | 3 Comments »

 
A %d blogueros les gusta esto: