TARDÍGRADOS

Ciencia en español

Posts Tagged ‘centro de masas’

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m₁ y m₂, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r₁ y r₂, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0).
2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m₁, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a₁₂ y en a₂₁. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Anuncios

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle  I = Mr^2   (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle  I = \sum m_ir_i^2   (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle  r = \cfrac{2GM}{c^2}  (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle  r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle  \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\   \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\   v_e = \sqrt{\frac{2GM}{r}}  (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravitación universal: Resolución de la paradoja de la región lenticular

Posted by Albert Zotkin en febrero 14, 2015

En mi último post (Gravitación universal: Viaje insólito al centro de la Tierra) llegué a afirmar que una masa de pruebas en el interior de una esfera sólida de densidad uniforme sí podría sentir el campo gravitatorio creado por la masa de dicha esfera, contradiciendo así Newtom con su famoso teorema de la cáscara esférica (teorema del shell). Sin embargo, un análisis mas minucioso de dicho teorema nos lleva a concluir que Newton estaba en lo cierto. Veamos cómo Sir Isaac Newton demostró el teorema del shell:

Una de las razones por las que Newton inventó el cálculo infinitesimal fue para poder demostrar que la ley de la gravedad que él descubrió ofrece una aceleración gravitatoria nula dentro de una cáscara esférica para cualquier masa de pruebas, y también demostrar que si la masa de pruebas está fuera de esa cáscara esférica, la aceleración gravitatoria sería la misma que la que ofrecería si toda la masa de la cáscara estuviera situada en su centro.

Decir también que este teorema puede ser derivado desde la ley de Gauss para la gravedad. Empecemos:

TEOREMA DE LA CÁSCARA ESFÉRICA:
La Ley de la Gravitación Universal de Newton que para dos masas puntuales m y M separadas una distancia r la fuerza mutua ejercida sobre cada una de ella será:

\displaystyle  F = \frac{G m M}{r^2}   (1)
donde la constante universal G posee el valor aproximado de

\displaystyle  G \approx 6.67 \times 10^{-11} \mathrm{\ N.m^2/Kg^2}   (2)
A menudo es más útil usar el campo gravitario que genera la masa M,en lugar de la fuerza, así:

\displaystyle  E = \frac{G M}{r^2}   (3)
Si en lugar de una masa puntual tenemos toda esa masa repartida homogéneamente sobre una cáscara esférica, el problema será saber que campo gravitatorio existe en un punto cualquiera dentro y fuera de esa la cáscara. Consideremos que el radio de dicha esfera es R, y situemos una masa de pruebas a la distancia r al centro de dicha esfera.

La densidad de esa cáscara esferica de masa M será:

\displaystyle  \sigma =\frac{M}{4\pi R^2}   (4)
Si ahora descomponemos la cáscara esférica en pequeños anillos, y decimos que la distancia de uno cualquiera de dichos anillos al punto p donde está nuestra masa de pruebas es s, tendremos la siguiente configuración:

fig-1

La masa total del anillo seria entonces

\displaystyle      \begin{aligned}  M_a &=\sigma 2\pi R (\sin\phi) R d\phi \\   &=\frac{1}{2}M (\sin\phi)  d\phi    \end{aligned}     (5)
Seguidamente, nos damos cuenta que toda la masa está a la misma distancia s del punto p. Sin embargo, ya que (por simetría) la dirección del campo es hacia el centro de la esfera, la contribución de este pequeño anillo, tenemos que:

\displaystyle  dE =\frac{G M \cos\theta \sin \phi d\phi}{2s^2} =-\frac{G M \cos\theta d(\cos \phi)}{2s^2}    (6)
Y usando la ley de los cosenos tenemos

\displaystyle  R^2 = s^2+r^2-2rs\cos\theta, \\  s^2= R^2+r^2-2Rr\cos\phi   (7)
por lo que:

\displaystyle  \cos\theta = \frac{s^2+r^2-R^2}{2rs} \\ \\  \cos\phi = \frac{R`2+r^2-s^2}{2Rr} \\ \\  s^2= R^2+r^2-2Rr\cos\phi   (8)
con lo cual:

\displaystyle  -d(\cos\phi)=\frac{s}{Rr}ds.   (9)
y sustituyendo en (6) se obtiene la contribución del pequeño anillo:

\displaystyle  dE =\frac{GM(s^2+r^2-R^2)ds}{4Rr^2s^2}   (10)
Desde esta última ecuación se concluye que el campo gravitacional total inducido por la cáscara esférica sobre la masa de pruebas situada en el punto p es la integral de las contribuciones de todos los anillos:

\displaystyle  \begin{aligned}  E &= \int_{s=r-R}^{s=r+R}dE = \frac{GM}{4Rr^2} \int_{s=r-R}^{s=r+R}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\   &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{r-R}^{r+R}= \frac{GM}{4Rr^2}\; 4R = \frac{GM}{r^2}  \end{aligned}   (11)
y eso probaría la primer aparta del teorema gravitacional de la cáscara esférica de newton. Para probar la segunda parte, es decir que el campo gravitacional dentro de la cáscara esférica es cero, hay que darse cuenta de que la contribución de cada uno de esos anillos es la misma de antes,

fig-2

y lo único que cambia son los límites de integración para s, que ahora son s = Rr y s = R + r. Por lo tanto:

\displaystyle  \begin{aligned}  E &= \int_{s=R-r}^{s=R+r}dE = \frac{GM}{4Rr^2} \int_{s=R-r}^{s=R+r}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\   &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{R-r}^{R+r}= 0  \end{aligned}   (12)
Finalmente, calculamos el campos gravitacional inducido por una esfera sólida y homogénea de masa total M, en un punto cualquiera externo y después para un punto cualquiera del interior. La densidad de dicha esfera sólida sería:

\displaystyle  \mu= \frac{3M}{4\pi R^3}   (13)
Y como antes, sea r la distancia de la masa de pruebas en el punto p al centro de la esfera. Ahora dividamos la esfera en sucesivas cáscaras esféricas concéntricas, cada una con un grosor de dρ y radio ρ, con lo cual la masa de cada una de esas cáscaras sería:

\displaystyle  dM = 4\pi \rho^2 \mu d\rho = \frac{3M \rho^2}{R^3}d\rho.   (14)
Desde la primera parte del teorema de la cáscara de Newton, tenemos que la contribución al campo gravitacional de esa cáscara es:

\displaystyle  dE = \frac{3GM \rho^2}{r^2R^3}d\rho;   (15)
y el campo total lo obtenemos integran todas las cáscaras concéntricas desde 0 hasta R:

\displaystyle  E = \int_0^R dE=\int_0^R\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM\rho^3}{r^2R^3}\biggr\rvert_0^R =\frac{GM}{r^2}   (16)
Y para finalizar estas demostraciones de teoremas, si el punto p de nuestra masa de pruebas está en el interior de la esfera homogénea (r < R), entonces según la segunda parte del teorema de newton arriba demostrado, vemos que la contribución al campo gravitacional por las cáscaras concéntricas de radio ρ está definida por

\displaystyle    dE =  \begin{cases}  \frac{3GM \rho^2}{r^2R^3}d\rho & \quad \text{if } 0\leq\rho\leq r, \\  0  & \quad \text{if } r\leq\rho\leq R.\\  \end{cases}  \\ \\ \\    (17)
Por lo tanto, la contribución total al campo es la integral:

\displaystyle  E = \int_0^r dE=\int_0^r\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM r^3}{r^2 R^3}   (18)
con lo que vemos que

\displaystyle  M_r = \frac{M r^3}{R^3}
es la masa contenida en el volumen de la esfera de radio r.

Y hasta aquí la demostración del teorema de la cáscara de Newton. He destacado toda la demostración con fondo amarillo, y un párrafo (el que incluye la ecuación #6) lo he destacado especialmente sobre fondo amarillo más intenso para señalar que quizás alguien podría tener dudas de que esa deducción sea correcta. De hecho, si Ma es la masa de uno de eso pequeños anillos, tal y como se expresa en la ecuación (5). Podemos calcular fácilmente que la aceleración de la gravedad, para una masa de pruebas situada sobre el eje central a cierta distancia z del centro del anillo, será:

\displaystyle  E_a = = \frac{G M_a z}{\sqrt{(R^2 + z^2)^3}}  (19)
pero z = s cos φ, y R2 + z2 = s2, por lo que

\displaystyle  E_a =  \frac{G M_a s \cos\phi}{s^3}=  \frac{G M_a \cos\phi}{s^2} \\ \\  \frac{1}{2} \frac{G M (\sin\phi)\cos\theta}{s^2} d\phi=-\frac{G M \cos\theta d(\cos \phi)}{2s^2}   (20)
es la misma ecuación (6).

Para resolver la paradoja de la región lenticular hemos de ver que si esa región es la correspondiente de substraer las masas elementales cuyas fuerzas opuestas en la masa de pruebas se cancelaban totalmente, entonces la masa de la esfera horadada restante, que sigue influyendo gravitacionalmente (sus fuerzas dos a dos no se anulan totalmente), es mayor que la que predice el teorema de la cáscara de newton. La solución a esta aparente anomalía está en ver que la masa de la región lenticular sustraída no es exhaustiva, es decir, es necesaria pero no es suficiente.
Esa región lenticular es sólo la correspondiente a fuerzas que se cancelan totalmente. Pero, aún permanecen en la esfera horadada restante pares de fuerzas que se cancelan sólo parcialmente, y eso implica que las masas elementales respectivas del par no se substraen del volumen totalmente pero deben substraerse parcialmente. Cuando completamos todas esas sustracciones parciales de masa veremos que la masa que permanece corresponde exactamente a la predicha en el teorema de la cáscara de Newton.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravitación universal: Viaje insólito al centro de la Tierra

Posted by Albert Zotkin en febrero 6, 2015

En este pequeño artículo voy a calcular cuánto vale la gravedad en un punto cualquiera del interior de un cuerpo esférico y de densidad constante.

Empecemos. Si el radio de dicho cuerpo esférico es R, y un punto p cualquiera de su interior está a la distancia r de su centro, tendremos que si trazamos segmentos de rectas centrados en dicho punto p, hacia todas las direcciones, podremos ir viendo cómo se van anulando pares de fuerzas. Cuando se anula un par de fuerzas, su influencia sobre una partícula de prueba situada en p es nula, y por lo tanto es como si las masas elementales que generan esas dos fueras opuestas no existieran. Estas anulaciones efectivas, dos a dos, produce una especie de oquedad, a modo de un cráter.

Ese hueco gravitacional en la esfera es en realidad el producto de la intersección de otra esfera de igual radio

Esa intersección es un volumen que tiene forma de lenteja. Si desprendemos ese volumen de masa, que no influye gravitacionalmente sobre nuestra masa de pruebas, tendremos una esfera horadada, que se ve claramente en las siguientes ilustraciones que he dibujado. La lenteja intersección, que he pintado de amarillo, cuyo centro es el punto p donde esta nuestra masa de pruebas, la voy a desprender de la esfera azul que representa nuestro planeta Tierra, quedando pues el hueco de no-gravedad,

Ahora nuestro problema matemático se reduce a calcular el volumen de esa lenteja que hemos desprendido de la esfera principal. Una vez que sabemos el valor de ese volumen lo restaremos del volumen de la esfera, con lo cual sabremos cual es el volumen de la esfera azul horadada, que es la que en definitiva influye gravitacionalmente sobre nuestra masa de pruebas.

Para calcular el volumen de esa lenteja (volumen intersección de dos esferas iguales), bastará calcular la mitad. Esa mitad es lo que se llama casquete esférico

\displaystyle v = \frac {\pi h}{6} (3a^2 + h^2) (1)
O también:
\displaystyle v = \frac {\pi h^2}{3} (3R - h)
(2)
O en función de R y r:
\displaystyle v =\frac{1}{3} \pi  (r-R)^2 (r+2 R)
(3)
Con lo cual el volumen total de esa lenteja será:

\displaystyle V = 2v = \frac{2}{3} \pi  (r-R)^2 (r+2 R) (4)

Esto significa que el volumen que permanece en la esfera principal horadada (esfera azul) será pues:

\displaystyle V_E =\frac{4}{3} \pi  R^3 - \frac{2}{3} \pi  (r-R)^2 (r+2 R) \\ \\ \\ \\ V_E = \frac{2}{3} \pi  r \left(3 R^2 - r^2\right) (5)
Pero según la Ley de Gauss para la Gravedad, y según el teorema del Shell, ese volumen VE, debería corresponder al volumen de una esfera de radio r. Es decir,

\displaystyle V_E =\frac{4}{3} \pi  r^3 (6)
¿Dónde está pues el error?.

Obviamente, si nuestra masa de pruebas está localizada en el centro de la Tierra, la lenteja que extraemos (intersección de las dos esferas) tendria un volumen igual al volumen total de la esfera, lo cual implicaría que la gravedad en el centro de la Tierra es nula. Pero, la pregunta está hecha ya. ¿Dónde está pues el error en mis cálculos?. Está claro, que algo debe estar equivocado en mis cálculos y/o consideraciones ya que la probabilidad de que yo no esté equivocado y sí lo esté Gauss al respecto es casi nula, por no decir absolutamente nula.

Actualización (2/8/2015): La ecuación (5) del volumen de masa efectiva (masa que influye efectivamente sobre nuestra masa de pruebas) nos sirve para hallar la masa efectiva. Ya que sabemos que la esfera inicial de radio R y masa total M es homogénea , la densidad constante de dicha esfera inicial es:

\displaystyle \mu =\frac{3M}{4\pi R^3}  (7)
Por lo tanto, si dividimos la masa efectiva ME por el volumen efectivo VE obtendremos esa densidad constante μ:

\displaystyle \frac{M_E}{V_E}=\mu =\frac{3M}{4\pi R^3}  (8)
y por lo tanto la masa efectiva será:

\displaystyle M_E=\frac{2}{3} \pi  r \left(3 R^2 - r^2\right)\frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=\tfrac{1}{2}M\left(\frac{3 r}{R}\text{  }- \frac{r^3}{R^3}\right) (9)
Pero, según el teorema de la cáscara esférica de Newton (el teorema del Shell), el volumen efectivo sería el de la ecuación (6), es decir, toda la masa efectiva estaria dentro de una esfera de radio r, y por lo tanto, la masa efectiva ME (según predice la gravitación universal de Newton, que es la conocida ley del inverso del cuadrado de la distancia) sería:

\displaystyle M_E=\frac{4}{3} \pi  r^3 \frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=M\frac{r^3}{R^3} (10)
Y según la gravitación universal de Newton, la fuerza efectiva sobre nuestra masa de pruebas sería:

\displaystyle F_E= G M\frac{r^3}{r^2 R^3} \\ \\ \\ \\  F_E= G M\frac{r}{R^3} (11)
O sea, la ley de gravitación universal de newton dice que considerando el radio R y la masa M constantes, la fuerza efectiva de la gravedad en el interior de esa esfera homogénea es directamente proporcional a r (distancia al centro de la esfera).

En conclusión: Según los cálculos que he realizado, el volumen efectivo hallado es independiente de la teoría de gravitación que consideremos ( no empleo la asunción de que la fuerza de la gravedad sea la ley del inverso del cuadrado de la distancia), sino que sólo asumo que a distancias iguales le corresponderán fuerzas iguales. Ahí radica la discrepancia entre el resultado que yo he hallado y el resultado oficial (el de la Ley de gravitación de Newton). Si los cálculos que he realizados son correctos, esto implicaría que la masa efectiva sería siempre mayor o igual que la masa efectiva oficial. Y esto tiene una implicación muy importante en gravitación, ya que explicaría nada más y nada menos que la anomalía que llamamos materia oscura. En la siguiente representación gráfica, para M = 1 y R = 1, comparo ambas predicciones de masa efectiva (la gráfica en azul es la que yo he calculado y la roja es la predicción clásica Newtoniana).

lines1

La región en gris definida entre ambas gráfica en el intervalo [0, R] es, según mis presagios, lo que se viene llamando erróneamente materia oscura. Es decir, la materia oscura sería simple y llanamente una anomalía ficticia producto de un mal entendimiento de la gravedad a lo largo de los siglos.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Los motores (propulsores) inerciales son imposibles

Posted by Albert Zotkin en enero 8, 2015

En mi anterior post hablé un poco sobre los motores inerciales. Más exactamente, hablé sobre cómo funcionan supuestamente los propulsores inerciales. Estos hipotéticos propulsores violan la tercera ley de Newton, es decir, supuestamente deberían generar impulso desde el interior del vehículo sin que se genere a la vez una fuerza de reacción (igual en magnitud y de sentido contrario). Por lo tanto, estos propulsores si existieran violarían la conservación del momento lineal. El momento lineal es un vector, producto de la masa (escalar) por la velocidad (vector), y posee una propiedad muy semejante a la de la energía, que consiste en que no puede ser creado ni destruido, sólo transferido de un sistema a otro. Todo cambio de movimiento implica transferencia de momento lineal.
\displaystyle  n = \frac{c}{c_n}  (1)
Veamos sucintamente por qué es imposible la existencia de tales propulsores. Supongamos un vehículo espacial, formado por dos esferas unidas por un eje rígido, que se mueve a una velocidad uniforme. Para poder acelerar ese vehículo hasta una velocidad distinta, debemos desplazar su centro de masas hasta otra posición relativa distinta a la actual. Para desplazar dicho centro de masas tenemos que transferir masa desde una de las esferas hacia la otra (mediante bombeo de un gas, por ejemplo). Una vez que hemos transferido masa, el nuevo centro de masas quedará mas cerca de la esfera que posea mayor masa. En ese momento estamos listos para ejercer tracción sobre la esfera de menor masa hacia la otra. Una vez que hemos acercado dicha esfera hacia la otra, devolvemos la masa transferida y ejercemos empuje para alejar la esferas a la posición relativa que tenían al inicio. Una vez hecho eso deberíamos observar que el vehículo ha acelerado, es decir, la velocidad final del centro de masas sería distinta a la inicial. Veamos gráficamente con unas figuras todo el proceso de la supuesta aceleración del sistema.

Paso 1: Partimos de esta estructura inicial
graphic1

Paso 2: Transferimos la mitad de la masa de una esfera hacia la otra
graphic2

Paso 3: Acercamos la esfera de menor masa hacia la de mayor masa
graphic3

Paso 4: Transferimos masa desde la mayor a la menor de modo que se inviertan las magnitudes
graphic4

Paso 5: Alejamos las esferas hasta los dos extremos
graphic5

Paso 6: Transferimos masa hasta que se igualen
graphic6

Se supone que con estos seis pasos deberíamos haber podido incrementar la velocidad de ese vehículo, pero en realidad no lo hemos conseguido. La clave está en que cuando transferimos masa de una esfera hacia la otra también variamos el centro de masas. Si cuando hacemos esa transferencia, el centro de masas quedara invariante entonces si que lograríamos incrementar la velocidad inercial del vehículo, habríamos generado una fuerza propulsora desde el interior sin contrapartida en una fuerza de reacción (opuesta). Pero, cuando transferimos masa, el centro de masas se acercará a la esfera que recibe dicha masa, y por lo tanto se aleja de la esfera que decrece en masa. Ese desplazamiento del centro de masas es de tal magnitud que cuando movemos la esfera más ligera, acercándola o alejándola de la mas pesada, ocurre que al final nunca conseguimos acelerar el vehículo hasta una velocidad final distinta de la inicial. En resumen, que el momento lineal se conserva, y por lo tanto todo propulsor (motor) inercial es imposible. En conclusión, en este experimento, si la velocidad inicial era cero, la velocidad final será cero.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

El Motor Inercial Mach-Lorentz nos llevará a las estrellas

Posted by Albert Zotkin en diciembre 30, 2014

Un Motor Inercial Mach-Lorentz es un hipotético artefacto basado en el efecto Woodward que instalado en un vehículo espacial sería capaz de proporcionarle empuje sin necesidad de eyectar gases o cualquier otro material.

La idea del efecto Woodward se basa en la posibilidad de que se pueda inducir un cambio de masa inercial a un cuerpo cuando aceleramos eléctrica y magnéticamente algunos de sus componentes. Ese cambio temporal o cíclico de la masa inercial podría ser aprovechado para generar una fuerza con la que el vehículo aceleraría en el espacio. Es decir, que el vehículo no tendría que eyectar materia para acelerar. ¿Cómo se consigue eso?. La masa inercial es como un ancla en el espacio. Supongamos que dos personas, de igual peso, se suben a dos vagonetas que están sobre unos raíles. Si uno de ellos empuja la otra vagoneta, ambas se moverán en sentido contrario la misma distancia. Pero, si uno de ellos es más pesado que el otro, entonces la vagoneta con menos masa llegará más lejos. Está claro que la vagoneta más pesada está anclada a los raíles. Avanzar por el espacio con este artilugio también sería semejante a remar sobre una barca. Cuando alzamos el remo para llevarlo a una posición mas avanzada la masa del mismo rozando el aire es menor que cuando su pala está dentro del agua. Cuando hacemos fuerza para remar con la pala en el agua, eso es semejante a cuando empujamos a un cuerpo de mayor masa que nosotros. Existe siempre un cambio virtual de masas. Las ruedas de un coche sobre la calzada también experimentan ese cambio cíclico virtual de masas. La parte de la rueda que pisa la calzada es semejante a la vagoneta de mayor masa (queda más anclada que las otras partes del sistema). Cuando una parte queda más anclada, podemos aplicar empuje para aproximar hacia ella las partes más atrasadas. Es evidente que si el aire fuera más denso que el agua no podríamos remar en nuestra barca con eficiencia, ya que al llevar el remo por aire para ponerlo en la posición avanzada, nuestra barca se iría hacia atrás. De hecho, cuando remamos, la barca experimenta un impulso retrógrado (hacia atrás) cuando el remo va por aire hacia la posición avanzada. Lo que ocurre es que esa fuerza es insignificante frente a la fuerza de avance que conseguimos con la pala del remo dentro del agua.

Así, con un motor inercial, tipo Mach-Lorentz, queremos que exista una desproporción cíclica de fuerzas, de modo que siempre obtengamos ventaja con un avance que sea mayor que el retroceso. El problema con esta clase de “motores” que aplican el efecto Woodward es que no está claro si tal efecto existe en realidad, y cómo se realizan los anclajes para poder avanzar. ¿Cómo puede un vehículo espacial acelerar por el espacio como si fuera una oruga?.

En lugar de dos vagonetas imaginemos dos bolas de acero de igual volumen unidas por un muelle, y pongamos dicho sistema a vibrar. Si, de alguna forma, transferimos (mediante bombeo de gas, por ejemplo) masa de una bola hacia la otra mientras el sistema vibra por medio del muelle, es posible conseguir que dicho sistema experimente una fuerza que lo impulse en una determinada dirección espacial.

James F. Woodward afirma que en un motor Mach-Lorentz, el cual se basa en el efecto Woodward, cuando se carga un condensador eléctrico, su dieléctrico experimenta un aumento pasajero de su masa inercial, y cuando el condensador se descarga, el dieléctrico experimenta una disminución de masa. La fórmula que deduce Woodward para ese incremento de masa del dielétrico es:

\displaystyle    \delta m_0 =  \frac{1}{4\pi G}\left[\frac{1}{\rho_0 c^2}\frac{\partial P}{\partial t} -  \left(\frac{1}{\rho_0 c^2}\right)^2 \frac{P^2}{V}\right]
donde m0 es la masa propia, G es la constante de gravitación universal, c es la velocidad de la luz en el vacio, ρ0 es la densidad propia del dieléctrico, V es el volumen del dieléctrico, y P es la poencia eléctrica instantanea enviada al sistema.

El problema con esa fórmula es que nadie sabe si predice un efecto real o es falsa ya que nadie ha sido capaz aún de medir ese supuesto efecto Woodward.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Gravedad cuántica: ¿existe una velocidad mínima no nula para el movimiento de los cuerpos con masa?

Posted by Albert Zotkin en diciembre 22, 2014

Si nos creemos el hecho de que existe una velocidad máxima (insuperable) en nuestro universo, la cual identificamos como la velocidad de la luz en el vacío, c, entonces tambien debe ser razonable pensar que debe existir una velocidad mínima no nula, no sólo para los cuerpos con masa, sino para la misma luz. Este hecho de una cota minima nos lleva a fenómenos como el de la refracción de la luz en medios extremos. Decimos que un medio posee un indice de refraccíon n mayor que la unidad cuando la velocidad de la luz cn en dicho medio es inferior a la que posee en el vacio:

\displaystyle  n = \frac{c}{c_n}  (1)
Si afirmamos que ha de existir una velocidad mínima no nula para la luz en algún medio (por ahora desconocido), entonces dicho medio poseerá un índice de refracción muy alto, pero no infinito, porque si fuera infinito la velocidad de la luz en dicho medio sería nula. Por otro, lado sabemos que la longitud de Planck lP está definida de esta forma:

\displaystyle  \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \approx 1.616\;199 (97) \times 10^{-35} \mbox{ m}  (2)
Esto significa que es posible expresar la velocidad de la luz en función de la Longitud de Planck:

\displaystyle  c =\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}}   (3)
Y esto quiere decir que para una posible velocidad mínima no nula, c0, de la luz en un medio extremo (aún desconocido) debemos encontrar una longitud “extrema” muy grande, que llamaremos RH, tal que:

\displaystyle  c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}   (4)
por lo que el índice de refracción para ese medio en el cual la luz se ralentiza hasta llegar a propagarse a la mínima velocidad no nula posible, será:

\displaystyle  n_0 =\cfrac{\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}} }{\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}} } =\sqrt[3]{\frac{R_\text{H}^2}{\ell_\text{P}^2}}  (5)

Es pues posible hipotetizar que esa longitud RH no puede ser otra que un Radio de Hubble:

\displaystyle  R_\text{H} =\cfrac{c}{H_0}  (6)

donde H0 es la constante de Hubble, y su valor aproximado es de

\displaystyle  R_\text{H} \approx  13.000 \ \text{millones de a\~nos luz}  (7)
Luego la velocidad mínima que buscamos será:

\displaystyle  c_0 =\sqrt[3]{\frac{\hbar G H_0^2}{c^2}}   (8)
Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: Análisis pormenorizado de la componente entrópica de la gravedad

Posted by Albert Zotkin en diciembre 19, 2014

Hace ya algún tiempo un tal Erik Verlinde publicó un artículo en el que supuestamente deducía la ley de gravitación universal de Newton desde primeros principios, incluso dedujo las ecuaciones de campo de Einstein de la Relatividad General, concluyendo que la gravedad es una fuerza entrópica, es decir una fuerza que no es fundamental y que emerge naturalmente del aumento de entropía de los sistemas materiales. Verlinde usó el principio holográfico y las conocidas leyes de la termodinámica, junto con algunas cosillas más, para deducir dicha fuerza entrópica. Las fuerzas entrópicas emergen desde el microcosmos hacia el macrocosmos debido a que los sistemas materiales tienden a adoptar estados de máxima entropia. Cuando estiras una goma elástica debes de ejercer una fuerza para contrarrestar temporalmente su estado maximizado de entropía. Al estirar la goma estás rebajando su entropia, y por lo tanto la goma se opone a ese cambio ejerciendo una fuerza en sentido contrario que intenta restaurar su estado de máxima entropía.

Pero, como vamos a ver ahora, esa fuerza entrópica deducida por Verlinde desde primeros principios, y que emerge siendo la fuerza de gravitación de Newton, es sólo una componente de la gravedad total. En concreto vamos a ver cómo esa componente entrópica es engullida brutalmente por un tiburón cuántico que habita en las profundidades del microcosmos termodinámico.

Comencemos expresando la Primera Ley de la Termodinámica para sistemas homogeneos cerrados:

\displaystyle  dU=TdS-PdV  (1)
donde dU es el cambio de energía interna, T es la temperatura, dV es el cambio de volumen, dS es el cambio de entropia, y P es la presión. Sabemos que PdV es el cambio de energía libre del sistema, por lo tanto puede ser expresada como suma de los cambios de energía de cada uno de los microestados

\displaystyle  \langle PV\rangle=-\frac{\ln(\mathcal{Z})}{\beta} = -\frac{\epsilon_1\oplus\epsilon_2\oplus\epsilon_3\oplus\dots}{\beta}     2
Donde εs representa la energía del microestado s, Z es la función de partición, y β es menos el inverso del producto de la temperatura por la constante de Boltzmann:

\displaystyle    \mathcal{Z} = \sum_{s} e^{\beta \epsilon_s}  \\ \\ \\   \beta = -\frac{1}{k_BT}
La ecuación (1) para un proceso con presión y temperatura constantes queda así:

\displaystyle  U=TS-PV  (3)
por lo tanto sustituyendo (2) en (3) tenemos:

\displaystyle  U=TS + \frac{\ln(\mathcal{Z})}{\beta} \\ \\   U=\frac{\beta}{\beta} \ln \exp(TS) + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\   U=\frac{\ln \exp(\beta TS )}{\beta} + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\   U=\frac{\ln \left (\mathcal{Z}\exp(\beta TS ) \right)}{\beta}  \\ \\ \\   (4)

Según el postulado fundamental de la mecánica estadística, la entropía S es directamente proporcional al logaritmo del número Ω de microestados:

\displaystyle  S = k_B \ln \Omega

es decir

\displaystyle  TS = Tk_B \ln \Omega= -\frac{\ln \Omega}{\beta}  (5)

por lo que (4) lo podemos calcular más fácilmente:

\displaystyle  U=TS + \frac{\ln \mathcal{Z}}{\beta} \\ \\   U=-\frac{\ln \Omega}{\beta} + \frac{\ln \mathcal{Z}}{\beta} \\ \\ \\
\displaystyle  \boxed{U=\cfrac{1}{\beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}   (6)
Esta energía interna U es lo que en gravedad debe identificarse como la energía potencial gravitatoria, la cual si es dividida por la masa m de una partícula de prueba tendremos el potencial gravitatorio (con todas sus componentes) en el punto espacial donde está localizada dicha partícula:

\displaystyle    \boxed{V = \cfrac{U}{m}=\cfrac{1}{m \beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}   (7)
Recapitulemos. La componente entrópica debe ser identificada con la gravitación clásica de Newton, y la componente de energía libre (PV) debe ser identificada con lo que se llama gravitomagnetismo. O lo que es lo mismo, la función de partición Z mapea dicho gravitomagnetismo, mientras que el número Ω de microestados mapea la componente estática de gravitación Newtoniana.

Pongamos un pequeño ejemplo. Supongamos que queremos calcular el número Ω de microestados de un sistema gravitatorio binario, con masas M y m. Igualamos el potencial gravitatorio así:

\displaystyle     V =-\frac{\ln \Omega}{m\beta} = -\frac{GM}{r}  \\ \\   \Omega = \exp\left(\frac{GMm\beta}{r}\right)

pero en β está incluida la temperatura T, por lo tanto si igualamos esa temperatura con la temperatura de Unhru:
,

\displaystyle  T = \frac{\hbar a}{2\pi c k_\text{B}} \\ \\ \\  \beta= -  \frac{2\pi c}{\hbar a} \\ \\ \\

y la aceleración a la igualamos a la aceleración del campo gravitatorio estático, a = g:

\displaystyle  a = \frac{GM}{r^2}\\ \\ \\  \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\

Por lo que el número Ω de microestados para ese sistema gravitatorio será:

\displaystyle  a = \frac{GM}{r^2}\\ \\ \\  \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\  \Omega = \exp \left(\frac{GMm\beta}{r}\right) = \exp\left(\frac{m c \ 2\pi r}{\hbar}\right)
Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: definición de nuevo centro de masas desde micro-estados mediante infra-sumas de orden -1

Posted by Albert Zotkin en octubre 28, 2014

Clásicamente, se define el centro de masas de un sistema de n partículas asi:

\displaystyle  \mathbf{R} = \frac 1M \sum_{i=1}^n m_i \mathbf{r}_i,
donde mi es la masa de la partícula i, ri es su vector distancia (desplazamiento) al origen de coordenadas, M es la masa total del sistema de partículas y R es el vector distancia (desplazamiento) del centro de masas. Desde esta definición de centro de masas vemos claramente que ese punto que nos señala el vector R debe ser tal que

\displaystyle   \sum_{i=1}^n m_i(\mathbf{r}_i - \mathbf{R}) = 0

se cumpla siempre para dicho sistema de partículas. Podemos hacer esa suma adimensional si la dividimos por el producto de la masa de Planck y la longitud de Planck, mP×lP

\displaystyle   \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \\ \\  m_\text{P}=\sqrt{\frac{\hbar c}{G}} \\ \\  m_\text{P} \ell_\text{P} =\cfrac{\hbar}{c}

es decir

\displaystyle  \sum_{i=1}^n \cfrac{m_ic(\mathbf{r}_i - \mathbf{R})}{\hbar} = 0
Ahora viene la parte interesante de todo esto. Una vez que hemos hecho adimensional dicha suma, nos vamos al ámbito de las infra-sumas, y decir que si usamos el operador ⊕ de orden -1 tendremos un nuevo centro de masas ℜ tal que:

\displaystyle   \cfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar} \oplus \cfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar} \oplus \dots= -\infty

debe ser igual a -∞ por que ese es el elemento neutro de la infra-suma de orden -1. Y según la definición de infra-suma de orden -1, tendremos que

\displaystyle   \log\left(\exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots\right)=-\infty=\log 0 \\ \\    \exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots =  0 \\ \\   \sum_{i=1}^n \exp \left(\frac{m_ic(\mathbf{r}_i - \cal{R})}{\hbar}\right) = 0
Es evidente que la magnitud ħ/mic es la longitud de onda de Compton reducida de la partícula i del sistema, una forma muy natural de expresar la masa a escala cuántica. Pero, lo interesante está en el valor de ℜ, y ver a dónde apunta. Espero que alguien serio lea este pequeño artículo de gravedad cuántica y lo tenga en cuenta como una modesta y pequeña contribución para el progreso de la ciencia, y en particular de la gravedad cuántica.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: