TARDÍGRADOS

Ciencia en español

Posts Tagged ‘universo’

Negacionismo del Big Bang, ¿qué es el tiempo?, elongación espacio temporal o mengua matérica universal

Posted by Albert Zotkin en octubre 6, 2016

Dicen que nuestro universo se expande. Peor aún, dicen que se expande aceleradamente, y nos muestran las evidencias. A menudo, en física y otras disciplinas, no sólo científicas, las evidencias son sólo interpretaciones o medias verdades. ¿Hacia dónde se expande nuestro universo?. Como la respuesta a eso es simplemente “hacia ningún sitio”, y como pretenden mantener como cierta la afirmación de que el universo se expande aceleradamente, sólo les queda argumentar que lo que se expande realmente es el espacio-tiempo, por lo que la materia que se encuentra enclavada en él formando cúmulos está en proceso de recesión relativa. Por lo tanto, la elongación espacio-temporal parece ser un hecho irrefutable, pero no, no es irrefutable. Ese supuesto hecho se basa en el desplazamiento hacia el rojo de las rayas espectrales de la luz de galaxias y cúmulos de galaxias que nos está llegando. Ese desplazamiento al rojo se interpreta como si fuera un efecto Doppler, y por lo tanto, se interpreta que existe una velocidad de recesión de cada galaxia que es aproximada y directamente proporcional a la distancia. Pero a mi me surgen muchas dudas sobre todas esas afirmaciones. La primera es si es cierto que el espacio-tiempo se expande y de forma acelerada ¿por qué han de separarse unas de otras las partículas materiales?. O dicho de otra forma. ¿Dónde y qué clase de ancla tiene cada partícula material clavada en ese espacio-tiempo para que sea arrastrada con su expansión?. Alguien puede argumentar con el ejemplo de un gas dentro de un recipiente. Si el recipiente se expande el gas se expande con él, enfriándose y disminuyendo su presión. Pero yo puedo argumentar también que ese gas se expande acompañando al recipiente porque las partículas de ese gas impactan y rebotan continuamente en las paredes del recipiente. Las partículas del gas intercambian calor continuamente con las paredes del recipiente. Pero, ¿dónde están las paredes de nuestro universo?, o peor aún, ¿alguien ha visto alguna vez que las galaxias reboten contra unas supuestas paredes universales?. Nuestro universo no posee bordes materiales, fronteras, barreras sobre las que impactar, colisionar. Parece ser un universo infinito espacial y temporalmente, por lo tanto, cualquier supuesta expansión del espacio-tiempo no arrastraría materia, no puede haber anclaje de la materia en el espacio-tiempo. Cuando matemáticamente sumas a infinito cualquier número real, sigue dando infinito.

big-bang-camelo

Esta reflexión nos lleva inexorablemente a la pregunta: ¿qué es el tiempo?. El tiempo es simplemente el método que utiliza nuestro cerebro para ordenar nuestras experiencias en la memoria. El tiempo es la acción de un librero numerando las páginas del libro de nuestra vida. Objetivamente, el tiempo no existe. En la naturaleza sólo hay presente, y no hay ni futuro ni pasado. Por esa razón los viajes en el tiempo (como los de las pelis de ciencia-ficción) son realmente imposibles. No se puede viajar a un tiempo futuro por la sencilla razón de que no se puede viajar hacia algo que aún no existe. Igualmente, no se puede viajar a un tiempo pasado por la sencilla razón de que ese tiempo pasado no existe. Evidentemente si pudieras viajar a un tiempo pasado te encontrarías con una duplicación de materia, salida de la nada. Pero no hay atajos ni caminos por los que pueda transcurrir la materia hacia tiempos pasados o futuros. Cuando los físicos teóricos actuales entiendan mejor qué es el tiempo y por qué el tiempo no es sólo esa cosa que miden los relojes, estarán en mejores condiciones de elaborar teorías más certeras sobre la naturaleza. Otra característica que define al tiempo es su inexorabilidad: dime cualquier fecha en el pasado y siempre es imaginable saber que esa fecha ocurrió realmente. Dime cualquier fecha en el futuro y te puedo asegurar que esa fecha llegará. Es como el juego de escribir un número real, siempre podemos escribir otro número real mayor o menor que ese. O al escribir dos números reales, siempre podemos encontrar otro distinto entre ambos. Por lo tanto, el tiempo es cuantificable, y para ello usamos los relojes.

Respecto a la pregunta ¿qué es el espacio?, cabe responder de una forma muy análoga a como lo hemos hecho con el tiempo. Pero el espacio no se nos presenta como el tiempo. Nuestros cerebros no ven al espacio como algo que transcurre, sino literalmenete como un recipiente donde están las cosas que percibimos. El tiempo pasa (siempre hay tiempo pasando, nunca se acaba), el espacio permanece. Percibimos el tiempo como algo dinámico y al espacio como algo estático. Pero ambas cosas son productos imprescindibles para ordenar nuestra experiencia.

¿Por qué percibimos el espacio como poseyendo tres dimensiones?. Cuando algunos físicos teóricos nos hablan de otras dimensiones espaciales extra, además de las tres clásicas (ancho, alto y profundo), para esconder su falta de evidencia científica, nos cuentan que esas dimensiones están como enrolladas sobre sí mismas, plegadas microscópicamente y por eso no podemos verlas. Todos sabíamos desde el principio, porque lo aprendimos bien, que lo que caracteriza a un sistema espacial de referencia es la ortogonalidad de sus ejes. Si una dimensión está plegada, retorcida microscópicamente, creo yo que no es una buena opción para un sistema espacial de referencia, porque ese “enrollamiento” no es precisamente la mejor definición de ortogonalidad. Evidentemente, nuestro espacio puede ser descrito matemáticamente mediante muchos ejes (no sólo tres) que no sean ortogonales, pero todos pueden ser reducidos a tres ejes ortogonales desde los que nuestras ecuaciones se simplifican drásticamente para describir lo mismo con igual éxito. El espacio que percibimos posee infinitas direcciones desde las que nos puede llegar el peligro o la salvación. Son infinitas direcciones por las que podemos huir del peligro, o estar alerta, por las que nos puede llegar el depredador a cazarnos. Nuestras tres dimensiones espaciales tienen mucho más que ver con las características de nuestro cerebro (de nuestra mente), que de algo externo. Nuestros antecesores, simios arborícolas, vivían casi todo el día encaramados a sus ramas, y el alimento lo conseguían desplazándose de rama en rama, al mismo tiempo que miraban en todas direcciones para estar alerta de los acechadores. Nuestro sentido de la vista es capaz de percibir con tres colores básicos de los que se derivan todos los demás. Eso es así por evolución natural. Nuestros parientes ancestrales necesitaban distinguir qué fruta estaba madura por su color, qué alimento era aparentemente comestible por su color y cual no. Del mismo modo que nuestro cerebro y nuestros órganos sensoriales han evolucionado para percibir todos los colores de las cosas que pueden ser expresados mediante esos tres colores básicos, una evolución similar se ha producido para percibir lo que llamamos el espacio. Al igual que los tres colores básicos desde los que podemos percibir cualquier otro color, nuestro cerebro percibe el espacio desde tres direcciones básicas, y cualquier otra dirección puede ser expresada mediante ellas. Así pues, cuando nos preguntamos por qué tres dimensiones espaciales, hay que preguntarse por qué tres colores básicos, y la respuesta es más de fisiología humana que de física universal.

El llamado espacio-tiempo, es pues un constructo, algo más teórico que real. Nuestro cerebro casa muy mal el espacio y el tiempo como un espacio de cuadro dimensiones. Nuestro cerebro no admite como muy natural que el tiempo sea un eje más como los otros tres ejes espaciales. Notamos muy bien qué es intuitivamente el tiempo, y por qué no puede ser una dimensión espacial más. La flecha del tiempo es algo muy subjetivo. El futuro es algo que aún no existe y por lo tanto no puede ser apuntado por ninguna fecha con certeza. El pasado es algo que ya no existe, y por lo tanto ninguna flecha pudo apuntar con certeza hacia nuestro presente.

Y por ultimo. ¿Qué hacemos con el Big Bang?. Puesto que toda la evidencia nos viene de supuestos desplazamientos al rojo de lineas espectrales, y que los santones del paradigma cosmológico actual se han encargado de darnos de comer ese fenómeno como si fuera un efecto Doppler cosmológico, lo que tenemos es un universo en creciente estampida. Pero si pensamos un poquito vemos, que ese efecto Doppler, que también se da en las diferencias de potencial gravitatorio, es simplemente algo relativo, de perspectiva, de horizonte, más que ningún supuesto Big Bang. La distancia a escala cosmológica produce sencillamente una diferencia de potencial gravitatorio, pero esa diferencia de potencial no significa ninguna expansión ni ningún alejamiento de las galaxias. Toda la materia permanecería esencialmente estática en nuestro universo, y lo único que cabría explicar es ¿por qué la distancia cosmológica produce diferencias relativas de potencial gravitatorio?. Cuando dibujamos la gráfica de un potencial gravitatorio producido por una masa puntal, lo solemos hacer como una curva en forma de campana invertida cuyos bordes se aproximan infinitamente hacia un eje horizontal, el cual marca un potencial nulo (potencial cero). Es decir, ese potencial es una curva gaussiana invertida, que posee valores negativos, y que se hacen menos negativos a medida que se aproximan al eje horizontal de potencial cero. Pero a escala cosmológica, esa linea de potencial cero podría ser más un arco de circunferencia que una recta real, por lo que además de las diferencias locales de potencial debido a la presencia cercana de materia, existirían diferencias relativas de potencial gravitatorio debido a la distancia.

Supongamos que un Radio de Hubble, es la mayor distancia cosmológica de la que nos puede llegar luz. Existe pues un horizonte cósmico, que podemos cuantificar de la siguiente forma: Supongamos que el potencial cosmológico es la superficie lisa de una esfera, y que los potenciales gravitatorios locales son pequeños montículos que destacan sobre esa superficie. Cuando nos situamos en un montículo se crea un horizonte desde el cual podemos percibir luz procedente de puntos de otros montículos. Si nos situamos en un punto de la superficie el radio de nuestro horizonte se reduce, y solo podremos ver luz procedente de montículos muy promimentes y cercanos. Pero, si nos situamos en una montaña de potencial local muy grande, nuestro horizonte para ver luz será muy grande. Esto resuelve la Paradoja de Olbers. En otras palabras, vemos el número de estrellas y galaxias que vemos por nuestra posición peculiar dentro de nuestra galaxia. Si estuvíéramos en una región remota, muy alejada de cúmulos grandes de materia, como son las galaxias, es decir, en una región muy cercana al potencial cero, veríamos muy pocas estrellas y galaxias en el cielo, menos de las que somos capaces de ver, porque nuestro horizonte observacional sería mas reducido.

Esto significaría que cuanto más cercanos estamos de una gran masa nuestro horizonte cósmico (observacional) será mas grande. Así, nuestra distancia al nuestro horizonte será:

\displaystyle  d={\sqrt {(R+h)^{2}-R^{2}}} \\ \\  s=R\arccos {R \over R+h} (1)
donde R el radio de Hubble, h nuestra altura local de potencial gravitatorio, s la distancia real al punto H, d la distancia tangencial que recorre la luz.

Figura 1

Figura 1

Esto significa que, según esta teoría del potencial cosmológico, que me estoy inventando, no sólo existe por la misma linea de vision el punto H del horizonte, sino otros más remotos, H1, H2, etc, si están situados sobre potenciales gravitatorios de cierta altura.

Luego en una esfera universal, sin defectos topológicos (como los campos gravitatorios locales), el potencial de deriva cósmica vendrá expresado por la ecuación:

\displaystyle  \phi (r) = c^2  \left (1-\sqrt {1- \frac{r^2}{R^2}}\right ) \\ \\   (2)

cuya gráfica es la siguiente:
hemi-circle

Obviamente, si r es muy pequeña respecto a R, ese potencial de deriva cósmica se reduce a cero. Y cuando r tiende a R, el potencial φ tiende a c². En un campo de potencial gravitatorio local, los valores son escalares negativos que crecen con la distancia hacia cero. Pero, en el campo de potencial de deriva cósmica los valores escalares son positivos y tienden con la distancia r hacia el cuadrado de la velocidad de la luz en el vacío.

Desde esa expresión explicita de potencial de deriva cósmica es fácil descubrir que el desplazamiento al rojo de las rayas espectrales de la luz de galaxias remotas es el siguiente:

\displaystyle  z=\frac{\Delta\lambda}{\lambda} = \exp\left( \frac{\phi (r)}{c^2}\right) -1 (3)
donde λ es la longitud de onda original (emitida), y Δλ es la diferencia entre la longitud de onda observada y la emitida. Y si queremos expresar la distancia r en función del desplazamiento al rojo z y del radio de Hubble, tendremos:

\displaystyle  z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\  \ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle  r = R\sqrt{2\ln (z+1)-\ln^2 (z+1) } (4)
Esto cambia drásticamente las distancias estándar calculadas hasta ahora para las galaxias y cúmulos remotos. Por ejemplo, se ha observado que los desplazamientos al rojo más grandes corresponden a unos extraños objetos remotos que se llaman cuásares. Estos extraños objetos nos ofrecen desplazamientos al rojo que van de z = 0.16 hasta z = 3.53. Lo cual, según mi hipótesis, implica distancias entre r = 0.524R y r = 0.875R.

Mi hipótesis tiene una serie de ventajas frente a las teorías del Modelo Cosmológico Estándar. En mi hipótesis:

  1. No existe recesión de galaxias y demás objetos remotos, sino que permanecen esencialmente en reposo. Ese desplazamiento al rojo se debe casi en su mayoría a la diferencia de potencial de la deriva cósmica. Después hay que sumar o restar otros efectos Doppler, debidos a potenciales gravitatorios locales, y/o a velocidades cinemáticas.
  2. La localización de la fuente emisora y la del observador en sus respectivos potenciales gravitatorios locales contribuyen al efecto de desplazamiento al rojo, ya que hay que calcular sobre la diferencia neta de potencial (sumando y/o restando potenciales locales y cinemáticos al potencial cosmológico).
  3. La Radiación de fondo de Microondas sería según mi hipótesis vulgares fotones emitidos mayoritariamente por átomos de hidrógeno procedentes de galaxias y cúmulos en el horizonte H, incluso más allá de él, en una franja cercana. Es decir de puntos H1, H2, etc, tal como los he dibujado en la figura 1.
  4. Los cuásares serían, ni más ni menos que galaxias y cúmulos con alta acumulación de materia y muy cercanos al horizonte cósmico H, pero dentro (no fuera) de la esfera de Hubble.
Por lo tanto, según mi hipótesis cosmológica, nuestro universo observable sería tan sólo un hemisferio de la gran esfera cósmica, esfera universal (no confundir con la esfera de Hubble), que tendría cuatro dimensiones espaciales. El otro hemisferio quedaría inaccesible, en su mayor parte, a nuestra observación de ondas electromagnéticas. Esa cuarta dimensión espacial es sobre la que se curva la linea de potencial cero. Es decir, nuestro universo (el observable y el no observable) sería simplemente la superficie de una hiperesfera de cuatro dimensiones espaciales.

figura 2 (Esfera universal)

Figura 2 (Esfera universal)

Si queremos traducir los potenciales a velocidades de recesión o viceversa debemos establecer la siguiente equivalencia, la cual es posible porque se usan coordenadas cosmológicas:

\displaystyle   \exp\left( \frac{v}{c}\right) =z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\   \frac{v}{c}=\ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle   v =c \ln (z+1) =  c \left(1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\ (5)
Por ejemplo. Se observó que la galaxia 8C1435+635 posee un corrrimento al rojo de z = 4.25, que es el más grande que se ha conseguido ver hasta ahora. Así desde el Modelo Estándar, ese desplazamiento correspondería a una velocidad de recesión de v = 0.93c. Pero, si usamos las coordenadas cosmológicas tenemos una velocidad de recesión de:

\displaystyle   v = c \ln (z+1) = = c \ln (5.25) = 1.70475 c (6)
es decir, una velocidad superlumínica. Y en terminos de diferencia de potencial cosmológico tendriamos:

\displaystyle  \Delta\phi = c^2\ln(z+1) = 1.70475 c^2 (7)
Por lo que esta lejana galaxía estaría algo más allá de nuestro horizonte cósmico. Pero nuestros telescopios la pueden ver porque es una gran acumulación de materia, ya que su altura de potencial gravitatorio sobresaldría un poco por encima de nuestro horizonte cósmico. Toda galaxia o cúmulo más allá de nuestro horizonte que no posea suficiente altura de potencial para destacar, sino que estuviera a ras de él. solo puede ser vista como formando parte de la Radiacíón Cósmica de Fondo. Esto significa que cuando una fuente emisora de luz cercana al horizonte posee poca altura de potencial, no sólo su luz nos llegaría con desplazamiento al rojo, sino con poca intensidad (pocos fotones), y cuanto más grande sea su potencial gravitatorio local más intensa veremos su luz y bien diferenciada del ruido de fondo cósmico.

Saludos

Anuncios

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m₁ y m₂, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r₁ y r₂, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0).
2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m₁, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a₁₂ y en a₂₁. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

NO ESTAMOS SOLOS EN EL UNIVERSO

Posted by Albert Zotkin en junio 16, 2016

Existen muchas civilizaciones alienígenas más avanzadas tecnológicamente que la nuestra, saben que estamos aquí, pero no nos visitan porque no somos nada interesantes para ellos.
1. Búsqueda de Inteligencia Extraterrestre: Existen varios programas SETI de búsqueda de vida inteligente extraterrestre. Dicha búsqueda se hace de forma activa, enviando mensajes al espacio exterior, y de forma pasiva escuchando las señales que nos llegan y analizándolas para saber si tiene origen natural o artificial.
Pero, una civilización extraterrestre muy avanzada tecnológicamente, podría ser potencialmente un peligro inmenso para nuestra propia civilización si nos visitaran. Eso fue lo que nos dijo el prestigioso astrofísico y matemático inglés,Stephen Hawking. El cree firmemente en la existencia no sólo de vida extraterrestre, sino en la existencia de civilizaciones alienigenas muy avanzadas tecnológicamente. Piensa que no sólo la vida en la Tierra estaría en peligro, sino la misma Tierra como planeta, ante una potencial invasión de ingentes enjambres de naves alienígenas formados por cientos de miles de naves nodrizas interestelares, conteniendo cada una miles de drones equipados con armas letales de destrucción masiva. En concreto, el profesor Hawking confesó que: “Quizás esas civilizaciones alienígenas, que viven en colonias nómadas interestelares, estén en constante movimiento por toda la galaxia en busca de recursos materiales y energéticos para construir y mantener sus naves y todos sus sistemas de pervivencia. Una eventual visita a la Tierra de una de esas colonias nómadas resultaría en un cataclismo de proporciones bíblicas …
2. La ecuación de Drake: Según una primera estimación de la ecuación de Drake, existen en nuestra galaxia al menos diez civilizaciones alienígenas más avanzadas tecnológicamente que nosotros. La ecuación de Drake es la siguiente:

\displaystyle N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L

drake

y una primera estimación es la siguiente:

R^* =  10/año (10 estrellas se forman cada año)
f_p =  0.5 (la mitad de esas estrellas cuentan con planetas)
n_e =  2 (cada una de esas estrellas contiene dos planetas)
f_l =  1 (el 100 % de esos planetas podría desarrollar vida)
f_i =  0.01 (solo el 1 % albergaría vida inteligente)
f_c =  0.01 (solo el 1 % de tal vida inteligente se puede comunicar)
L =  10 000 años (Cada civilización duraría 10 000 años trasmitiendo señales)

N =10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
N =  10 posibles civilizaciones detectables.

3. La paradoja de Fermi: La Paradoja de Fermi nos dirá que si hay al menos 10 civilizaciones alienígenas en nuestra galaxia, ¿dónde están?, no nos han visitado, no dan señales de vida. Esta supuesta paradoja se resuelve muy fácilmente: No nos han visitado porque el planeta Tierra, y en particular la vida en él y nuestra civilización humana, no les motiva especialmente. Es como si nosotros visitamos un desierto donde no hay prácticamente nada de interés. ¿por qué tenemos que aventurarnos hacia lugares remotos si sabemos a ciencia cierta que no tienen nada nuevo allí que no sepamos?. La respuesta a la paradoja de Fermi implica que existe al menos una civilización alienígena cercana muy avanzada, una civilización muy antigua, que quizás ya esté extinguida, que alcanzó su cúspide de avances tecnológicos y científicos hace aproximadamente unos ocho mil millones de años, cuando el sistema solar aún estaba en su más temprana etapa de formación. Quizás, fue esa civilización alienígena la que “sembró” el planeta Tierra de vida, convirtiéndolo en un santuario.
fermi-paradox-660x330
4. No son como nosotros: ¿Te imaginas a un ser alienígena super inteligente poseyendo el cuerpo de un gusano pestilente del tamaño de una anaconda arrastrándose por el fango?. El contacto con esos seres no sería muy agradable para nosotros, sería algo vomitivo, y lo mismo sentirían ellos de nosotros. Nuestros cuerpos, nuestros hábitats, nuestras costumbres gastronómicas, serían para esos seres algo repulsivo. ¿Te imaginas a un inteligente y avanzado alien con un cuerpo muy semejante al de una cucaracha y del tamaño de un elefante, desprendiendo un insoportable y extraño hedor?. Como poder, sí se puede imaginar, pero no sería algo muy agradable de sentir cerca de nosotros, y ese ser alienígena sentiría algo muy parecido al vernos a nosotros.
alien-2
Saludos cucarachescos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Física de partículas, Gravedad Cuántica, Inteligencia artificial, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments »

¿Es posible comprimir 4 terabytes de datos en tan sólo 16 bytes?

Posted by Albert Zotkin en mayo 12, 2016

La respuesta a la pregunta del título es sí. Hola amigos de Tardígrados. Hoy voy a hablar de un método poco estándar de comprimir información binaria sin perdida. Este método es simplemente una curiosidad que se me ocurrió el otro día. Lo llamaré Compresión Estocástica de Datos Binarios, CEDaBit.

Supongamos que tenemos el siguiente archivo jpg de la Mona Lisa:

Mona_Lisa

que es una imagen de 560 pixels de ancho por 864 de alto. Es decir, sin comprimir, en total tenemos 483.840 pixels, y si cada pixel se puede describir por 3 bytes, tendremos en total una imagen de 1.451.520 bytes, y como cada byte consiste en 8 bits, tendremos una imagen de 11.612.160 bits. Pero esa imagen está codificada y comprimida en un archivo JPG, por lo tanto no son raw data (datos primarios), el tamaño es mucho menor. En dicho archivo existen también datos de cabecera y cola en los que se almacena más información. Si queremos “comprimir” en un CEDaBit todo el archivo JPG, debemos “comprimir” una cadena de 46.474 bytes. ¿Cömo lo haremos?.

Supongamos que queremos comprimir a un CEDaBit de 16 bytes. Para ello, lo primero que tenemos que hacer es calcular un hash de esos datos. Yo usaré un hash muy conocido llamado MD5, y para calcular dicho hash usaré una página online que posea una herramienta de cálculo, por ejemplo esta: Online MD5.

Subo el archivo a dicha página, y me calcula el siguiente hash para dicho archivo: 9E00544CEE3B677CA2E826980D9CF02A. Es decir, me da una cadena de 16 bytes, que es su MD5, es como la huella característica de ese archivo en concreto. Cada archivo de datos binarios posee un hash que casi es único, digo casi porque en realidad conjuntos de datos muy distintos pueden poseer el mismo hash, y a eso se le llama colisión. Pero, es muy probable que para ese archivo de ese tamaño que he usado no existan muchas colisiones de su hash MD5. Existen miles de páginas en internet y aplicaciones que calculan todo tipo de hashes para cadenas de bytes, pero no encontrarás ninguna que haga la tarea inversa. Es decir, calcular una cadena de bytes desde su hash no es trivial. De hecho, existen infinitas cadenas que resultarían de un mismo hash. ¿Cómo podemos saber cual es nuestro archivo al expandir un hash en una determinada cadena de bytes?. Tenemos que saber por otros medios cual es el tamaño del archivo que queremos recuperar. Por ejemplo el archivo jpg de la Mona Lisa de arriba sabemos que posee 46.474 bytes, ni uno más ni uno menos. Por lo tanto, tenemos 371792 bits, es decir, tenemos un número binario de 371792 bits. Así pues para recuperar nuestra Mona Lisa desde su Hash 9E00544CEE3B677CA2E826980D9CF02A, sólo tenemos que ir variando los ceros y los unos de esa cadena de 371792 bits y a cada paso calcular un hash y ver si coincide con el del archivo. ¿Cuántas variaciones de ceros y unos posee una cadena de 371792 bits?. Pues, precisa y exactamente posee tantas variaciones como representa ese mismo número binario. Por ejemplo, el número binario 111, que son 3 bits, representa al número 8, que es 23, y posee exactamente 8 variaciones de ceros y unos, es decir, 000, 001, 010, 011, 100, 101, 110, 111. Por lo tanto, nuestra Mona Lisa posee exactamente 2371792 variaciones de ceros y unos. Un número muy superior al de partículas subatómicas en nuestro universo observable. Supongamos que tenemos un superordenador capaz de calcular un trillón de esas variaciones binarias por segundos y de decidir a cada paso si ha encontrado una solución (coincidencia de hash). Incluso a esa velocidad de cálculo, tendríamos que esperar miles de trillones de veces la edad de nuestro universo (13 mil millones de años) para ver completadas todas las variaciones binarias, y poder afirmar con seguridad que hemos recuperado nuestra Mona Lisa desde su hash. El número 2371792 posee 111.921 dígitos en el sistema decimal, y por muy rápido y potente que sea nuestro super ordenador, la tarea de expandir ese hash en la cadena original de bytes es una tarea imposible. Pero, si nuestro ordenador es un ordenador cuántico de más de 371792 qubits, ese cálculo se podría hacer en unos pocos minutos, con lo cual, posiblemente, mediante esa computación cuántica, obtendríamos una carpeta de colisiones, con una serie de archivos de igual tamaño y todos con el mismo hash.

Posted in curiosidades y analogías, informática, Matemáticas, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Cómo evitar caer en un agujero negro cuando haces footing

Posted by Albert Zotkin en septiembre 25, 2015

Cuando sales a hacer footing una mañana cualquiera, es muy fácil evitar caer en un agujero negro si te encuentras alguno en tu camino. Lo único que tienes que hacer es saltar sobre él. De esa forma, como si de un charco de agua se tratara, evitarás caer en el y ser ‘espaguetizado’.
athletisme-50
¿Tienes algunas dudas sobre como podrías saltar sobre ese agujero negro y no caer en él?. Veamos matemáticamente cómo.

El tamaño de ese agujero negro viene dado por su masa. Podemos decir que su horizonte de sucesos es su borde natural. Sería algo así como una esfera tridimensional (tres dimensiones, no cuatro, ya que por el principio holográfico toda la información cuántica estaría en la superficie exterior de su 4-esfera espacio-temporal). El radio de esa 3-esfera sería el radio de Schwarzschild, rs:

\displaystyle  r_s = {2 G M \over c^2}   (1)
Es decir, tendrías que saltar una longitud de al menos 2rs. Pero, para saltar sobre una 3-esfera necesitas algo que aún no sabes qué es. Ese algo se llama “salto cuántico” o “túnel cuántico” (un ‘salto cuántico’ es como suprimir instantáneamente el espacio existente entre dos puntos, de modo que ambos puntos, que antes estaban separados, llegan a ser el mismo punto espacio-temporal, pero sólo ocurre exclusivamente para el objeto que realiza el salto, y después del salto, los puntos restauran su distancia original). Para calcular cómo realizar ese “salto cuántico” hemos de calcular la longitud de onda de tu onda de materia. Para ese cálculo necesitaremos saber qué onda de De Broglie has de desarrollar en el borde de ese agujero negro. La longitud de tu onda de materia es

\displaystyle  \lambda = \cfrac{\hbar}{mv}  (2)
donde m es tu masa corporal y v es tu velocidad haciendo footing. ¿Cuándo conseguirás saltar sobre ese agujero sin caer dentro de él?. Evidentemente cuando saltes al menos una longitud igual a 2rs. Para ello igualamos ambas ecuaciones, (1) y (2), la primera multiplicada por 2:

\displaystyle  2r_s = \lambda  \\ \\   {\cfrac{4 G M}{c^2} = \cfrac{\hbar}{mv} }  \\ \\ \\  v = \cfrac{\hbar c^2}{4 G M m}
Calculas numéricamete ese valor, y te aseguro que, si eres capaz de desarrollar esa velocidad o una inferior, no caerás dentro de ese agujero negro que te encontraste en tu feliz camino al hacer footing. A esa velocidad v tu salto cuántico sería exactamente de dos radios de Schwarzschild. Cuanto menor es la velocidad más larga es la longitud de tu onda de materia, y por lo tanto más probabilidad tendrás de saltar cuánticamente ese diámetro. De hecho, la probabilidad de caer en un agujero negro es tan grande como la probabilidad de encontrarte uno.

Esta idea nos sirve para indicar que la velocidad mínima no nula, c0, de un cuerpo de masa m, sería tal que la longitud de onda de su onda de materia sería igual a un radio de Hubble:

\displaystyle  R_\text{H} = \cfrac{\hbar}{mc_0}
Por otro lado sabemos que una velocidad mínima tal vendría dada por la expresión:

\displaystyle    c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}
Esto significa que la masa m, en función de esa c0, debería ser:

\displaystyle    m =\sqrt{\frac{\hbar c_0}{G}}
Lo cual nos sugiere que las masas de las partículas fundamentales surgiría por que una partícula más fundamental aún se movería o vibraría a velocidades muy cercanas al reposo.
Paradójicamente“, cuanto mayor sea el radio de Schwarzschild del agujero negro sobre el que deseas saltar cuánticamente, menor ha de ser tu velocidad hacia él, según queda explícito en la ecuación (2). Y esto demuestra que para saltar cuánticamente una distancia infinita sólo necesitas alcanzar el reposo exacto matemático si tu masa corporal es finita. Ese salto infinito te dejaría exactamente en el mismo punto donde empezó el salto, con lo que un universo infinito sería además un universo transfinito, como apunté en un reciente post mio titulado Un universo eterno y transfinito: una foliación conforme del espaciotiempo.
Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El universo según Einstein, ¿quien inventó el cero y para qué?

Posted by Albert Zotkin en septiembre 18, 2015

Muchos errores matemáticos se cometen por culpa de una mala aplicación de los métodos aritméticos y algebraicos en los que entra en juego el uso del número cero. Por ejemplo, está bien documentado que el mismo Einstein cometió, en muchas y cruciales ocasiones, el error infantil de dividir los dos lados de una misma ecuación por cero. Al dividir por cero se obtiene una indeterminación, y los resultados numéricos o algebraicos que se obtienen de eso son imprevisibles y disparatados, además de incorrectos, como es obvio. Robert Jastrow nos contó, hace ya algún tiempo, que el matemático ruso Alexander Friedman le escribió una carta a Einstein haciéndole saber que había cometido el error de dividir por cero (ese error resulta ser fatal para la consistencia interna de cualquier teoría que use las matemáticas para ser definida). Sin embargo, Einstein decidió no dar la razón a Friedman sobre su error, y escribió una carta de respuesta, no a Friedman directamente, sino a la revista científica que publicó dicha carta, en la que incluía cálculos que supuestamente demostraba que Friedman estaba equivocado respecto a su error. Friedman respondió pronto haciéndole ver a Einstein que había cometido un segundo error al intentar demostrar que su primer error no era un error, y añadió la apostilla “le agradecería que cuando usted crea que mis cálculos son correctos quizás entonces quiera escribir una corrección”. Al final Einstein tuvo que admitir que había divido por cero (error infantil donde los haya). De esa manera tan rocambolesca Alexander Friedman demostró que la teoría de Einstein sobre un universo estático era incorrecta por que contenía inconsistencias matemáticas internas fruto de dividir repetidamente por cero en las ecuaciones.

Pero no sólo la división por cero da lugar a inconsistencia. Veamos el siguiente ejemplo que propugna que existe error en algunos métodos de adición linear:

Un método de adición que sea linear y estable no puede dar una suma finita para la serie 1 + 2 + 3 + … . Que sea estable significa que sumando un término al principio de la serie incrementa la suma en la misma cantidad. Esto se muestra como sigue: Si

1 + 2 + 3 + … = x

entonces sumando 0 a ambos lados tenemos

0 + 1 + 2 + … = 0 + x = x por estabilidad.

Por linearidad, podemos restar la segunda ecuación a la primera para obtener

1 + 1 + 1 + … = x – x = 0

sumando 0 a ambos lados da

0 + 1 + 1 + 1 + … = 0,

y restando estas dos ultimas series tenemos:

1 + 0 + 0 + … = 0
1 = 0

lo cual contradice la propiedad de estabilidad.

¿Dónde está el error en todo ese proceso de manipulación aritmética?. El error está en que la x del lado derecho de la ecuación es tratada como si fuera un número finito, cuando en realidad es ∞ En cambio, la serie del lado izquierdo es tratada como si tuviera un número infinito de sumandos. Esto significa que x – x ≠ 0, sino un valor indeterminado, por lo que todos los demás resultados intermedios y la conclusión final son incorrectos.

La conclusión de todo esto es que hay que tener mucho cuidado a la hora de formular teorías científicas donde las matemáticas juegan un papel central, porque cualquier inconsistencia matemática puede echar por tierra toda una teoría que se las prometía muy felices.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , | 2 Comments »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin en septiembre 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle  T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}}  (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle  a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}}  (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle  a_n = \sqrt[3]{a_{n-1}^3}  (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Un universo eterno y transfinito: una foliación conforme del espaciotiempo

Posted by Albert Zotkin en septiembre 7, 2015

Foliación transfinita de la conciencia de Ridley

Foliación transfinita de la conciencia de Ridley

Nuestro universo podría poseer la forma de una hiperesfera transfinita. Para ver esto fijémonos en lo siguiente (que ya traté en un post anterior). La serie infinita N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + … es divergente ya que su suma es N = ∞. Pero, puede ser regularizada, como demuestro en el link anterior, para dar una suma de N = -1/2. Es decir, la función Zeta de Riemann toma el valor -1/2 cuando la variable es cero:

\displaystyle   N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +\dots = \zeta(0) =-\frac{1}{2}\\
Esta suma nos sugiere que el infinito matemático, ∞, en la recta real, coincide con el número real negativo -1/2, y -∞ coincidiría simétricamente con 1/2. Si partimos de un sistema de referencia cartesiano de dos dimensiones, tendremos que los dos ejes ortogonales podrían ser recorridos, partiendo desde el origen de coordenadas, en dos posible direcciones. Para el eje de abscisas, podríamos alcanzar el infinito, por el camino largo (hacia la derecha) hasta llegar al punto (-1/2, 0). O también podríamos alcanzar dicho punto, que representa al infinito, por el camino más corto (andando hacia la izquierda). Sin embargo, si andamos en dirección derecha, desde el origen o cualquier punto de abscisa positiva, (x,0), no podríamos llegar a los puntos situados entre el punto (-1/2, 0) y el (x,0) ya que el infinito actuaria como barrera infranqueable para seguir el camino y cerrar el círculo.

Saludos transfinitos a todos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Fractales, Gravedad Cuántica, informática, Matemáticas, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: