TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Archive for 29 octubre 2019

Supremacía cuéntica

Posted by Albert Zotkin en octubre 29, 2019

No, no me he equivocado en el título. He escrito cuéntica en lugar de cuántica a propósito, para resaltar que la supuesta supremacía cuántica es un cuento chino que nos están contando. Vamos, que “naranjas de la China“.

Cuando una computadora cuántica haga cosas que una computadora clásica no pueda hacer en tiempo y recursos razonables, entonces diremos que esa computadora ha alcanzado supremacia cuantica.

La revista Nature nos cuenta estos días que Google ha alcanzado oficialmente la supremacía cuántica. Hace poco, LIGO nos contó también que habían alcanzado la supremacía gravitacional, y lo anunciaron al mundo, como el gran hito científico del siglo XXI, y les concedieron hasta un Premio Nobel de Física, tú. “Naranjas de la China“, cuentos chinos. La única supremacía real que existe es la fanfarronería científica yanqui. Estamos asistiendo al triunfo de sofisticadas técnicas mediáticas para propagar ideas (supuestamente científicas), técnicas que Goebbels ya empleó con éxito para la propaganda Nazi.

Con la computación cuántica pasa lo mismo que con la fusión nuclear: son eternas promesas de hitos científico-técnicos que nunca llegan a ser una realidad. Los expertos ponen como excusa que es muy difícil evitar la decoherencia cuántica, para el primer caso, y conseguir un adecuado confinamiento de plasma, para el segundo. Pero, habría que empezar a pensar ya que el motivo por el que realmente no se han conseguido aún esos hitos científico-técnicos está más en la teoría científica, es decir, en los modelos teóricos, que en llevarlos a la práctica. Es muy probable que los modelos teóricos que predicen tanto la computación cuántica como la fusión termonuclear no sean correctos, o les falte algo insospechado. En cualquier caso, no parece razonable asistir a estos espectáculos de supuesta supremacía en no sé qué materias, como si fuera una competición olímpica donde todos los atletas estuvieran dopados.

Pero, ¿qué cuento chino nos está contando Google respecto a su supuesta supremacía cuántica conseguida, que dicen que ya es oficial y todo?: En el resumen del documento presentado nos dicen:

La esperanza en los computadores cuánticos es que ciertas tareas computacionales podrían ser realizadas exponencialmente más rápido con un procesador cuántico que con un procesador clásico. El reto fundamental consiste en construir un procesador de alta fidelidad capaz de ejecutar algoritmos cuánticos en un espacio computacional exponencialmente grande. En este documento presentamos un informe sobre el uso de un procesador cuántico con cubits programables de supercomputación para crear estados cuánticos en 53 cubits, representando un espacio computacional de dimensión 253 (aproximadamente 1016). Medidas de experimentos repetidos muchas veces proporcionan una muestra de la resultante distribución de probabilidad, la cual verificamos usando simulaciones clásicas. Nuestro procesador cuántico Sycamore tarda unos 200 segundos en muestrear una instancia de circuito cuántico, mientras que el mejor computador clásico actual tardaría en realizar esa misma tarea unos 10 mil años. Esta dramática mejora de la velocidad comprada con la de cualquier algoritmo clásico actual conocido resulta ser una realización experimental de supremacía cuántica, para esta tarea computacional específica, y presagia un cambio de paradigma en el campo de la computación.

O sea, que los chicos de Google han construido un procesador cuántico de 53 cubits (en principio eran 54, pero uno se estropeó), llamado Sycamore, y lo han programado para que ejecute un tarea específica, sabiendo de antemano que esa misma tarea, ejecutada en un procesador clásico, tardaría 10 mil años en ser completada.

Fig. 1: Procesador Sycamore.
a, Diseño del procesador, mostrando una matriz rectangular de 54 cubits (gris), cada uno conectado a sus cubits anejos mediando acopladores (azul). El cubit no operativo (estropeado), situado en la parte superior del esquema, está sólo perfilado (no relleno en color gris). b, fotografía del chip Sycamore.

Pero, ¿cómo construyen esos cubits?. Para provechar ciertas propiedades de los estados cuánticos, llamadas superposición y entrelazamiento, entre otras propiedades y efectos también bastante raritos, que describe la Mecánica Cuántica, usan átomos, y hay que conseguir, mediante temperaturas muy próximas al cero absoluto (-273,144 °C), que los electrones de esos átomos giren en un sentido y hacia el contrario al mismo tiempo. Ese sería el efecto de superposición cuántica. Es decir, no seria que unos electrones, dentro del mismo átomo, giraran en un sentido y otros en el contrario, sino que cada electrón girase en un sentido y el contrario a la vez. Algo impensable y absurdo para un cuerpo macroscópico, pero no tanto para las partículas subatómicas, que se rigen por reglas de la mecánica cuántica. El problema de la superposición está en que cuando se intenta medir el estado cuántico, aparece la decoherencia, el cubit de pronto se transforma en un simple bit clásico. Ese es el famoso quebradero de cabeza llamado problema de la medida

¿De verdad ha conseguido Google la supremacía cuántica?. Uno de los mayores expertos en computación cuántica es el murciano Dario Gil. Este murciano, director mundial de IBM Research, nada menos, opina que el procesador cuántico Sycamore de Google es una pieza especializada de hardware diseñada para resolver un solo problema y no un ordenador cuántico de propósito general, a diferencia de los desarrollados por IBM. Es decir, aunque podría ser cierto que habrían completado una tarea de muestreo en 200 segundos, mientras que el superordenador Summit de IBM habría tardado 10 mil años en completar esa misma tarea, el Sycamore sólo serviría para realizar esa tarea y ninguna otra más. Es como construir un ordenador que sólo supiera sumar 2+2, y nada más. Si Dario Gil tiene razón, que yo creo que la tiene, para resolver problemas reales mediante computación cuántica habría, no sólo que programar los algoritmos (software) cuánticos, sino construir físicamente el hardware especifico para ese problema en concreto. O sea, cada problema requeriría de un hardware especifico, y sólo valdría para ese problema. Por ejemplo, supongamos que queremos factorizar el número entero semiprimo RSA1024, que posee 1024 cifras binarias (309 cifras decimales). ¿Valdria la pena construir un procesador cuántico especifico para hallar, en un tiempo razonablemente corto, los dos números primos que multiplicados dan ese número RSA1024?. Si el premio es superior al coste, si valdría la pena 🙂 , pero hay que tener en cuenta que una vez factorizado ese número SRA concreto, nuestro costoso chip cuántico no valdría para nada más, y habría que tirarlo a la basura o aprovechar sus piezas para construir otro chip distinto para resolver otro problema distinto. Nuestro amigo murciano, Dario Gil, es un genio, y sabe muy bien de qué habla.

Pero, en mi opinión, lo que Google nos ha traído de momento, en lugar de supremacía cuántica, son naranjas de la China.

Saludos cordiales, y para nada supremacistas 😉

Posted in curiosidades y analogías, Física de partículas, Matemáticas, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El misterioso rugido profundo del espacio exterior profundo

Posted by Albert Zotkin en octubre 20, 2019

Hola amigos de tardígrados. Hoy vamos a ver cómo un supuesto descubrimiento de la NASA, llamado “rugido espacial“, se convirtió en uno de los problemas sin resolver de la astrofísica. También veremos cómo la solución (propuesta por mi originalmente) es bastante prosaica, y me atrevería a decir que hasta divertida. Pero, ¿qué es ese “misterioso rugido espacial o siseo”, llamado space roar, hallado por la NASA?.

Desde 2001 hasta 2006, la NASA estuvo lanzando globos sonda con instrumentos, básicamente radiómetros, que llegaban hasta las capas más altas de la atmósfera, y allí median la radiación residual del espacio exterior.

Esos experimentos se llamaron ARCADE, rebuscadas siglas en inglés que significan Radiómetro Absoluto para la Cosmología, la Astrofísica y la Emisión Difusa. Se trataba de medir radiación electromagnética residual del espacio exterior en las longitudes de onda de unos pocos centímetros. Esas sondas llegaban hasta alturas de unos 37 km en la estratosfera. En 2011, la segunda generación de ARCADE, la ARCADE2, hizo las ultimas mediciones, y se descubrió algo misterioso, que ha quedado para los anales de la ciencia como un problema astrofísico sin resolver. El ruido electromagnético detectado proveniente del espacio exterior, era hasta seis veces mayor del que predecía la teoría. ¿Cuál era la causa de tan elevado nivel de ruido?. Nadie lo sabe.

Corregir los errores sistemáticos de medida en ARCADE2 es nuestra principal preocupación. Debemos destacar que hemos detectado emisión residual a 3 GHz en los datos de ARCADE2, pero ese mismo mismo resultado fue independientemente detectado por una combinación de datos de baja frecuencia y FIRAS

ARCADE vió hasta un 7% del cielo. La región observada aparece coloreada en este mapa esférico del cielo. El plano de nuestra galaxia, la Vía Láctea, cruza por centro

Intentemos averiguar cuál es la causa de que el ruido detectado sea hasta 6 veces más alto que el esperado teóricamente. Osea, vamos a resolver el misterioso problema número 13 listado en la sección de Problemas no resueltos de la Astrofísica y la Astronomía.

El revolucionario diseño de ARCADE lo hace super-sensible al ruido cósmico. Enfriados hasta los 2.7 grados por encima del cero absoluto, por inmersión en más de 500 galones (más de 1892 litros) de helio líquido, cada uno de los siete radiómetros de ARCADE exploró por su cuenta el cielo y objetivos de calibración.

Para resolver este misterioso problema astrofisico que nos planteó la NASA, degustemos primero este bonito video, donde podemos escuchar los extraños ruidos electromagnéticos que emiten algunos de los planetas del sistema solar, y los famosos anillos de Saturno, o los no tan famosos anillos de Urano. Evidentemente, el ruido electromagnético no se puede escuchar por un oído humano, por lo tanto lo que se hace es interpretar como sonido las ondas electromagnéticas, es decir, simular que esas longitudes de ondas electromagnéticas son de ondas sónicas:

Ahora centremos nuestra atención en los materiales y la forma de los globos sonda lanzados por la NASA para esas misiones de ARCADE.

Vemos que los globos sonda empleados en ARCADE son vulgares globos meteorológicos, hechos de latex o de cloropreno. Ahora ya empezamos a vislumbrar la causa de que los ruidos residuales detectados por las sondas ARCADE sea hasta 6 veces más altos que lo esperado. La razón es que el mismo globo sonda que campea a unos pocos metros por encima de los radiómetros, de alguna forma, actúa como antena amplificadora de esas señales electromagnéticas que se trata de detectar. Si, algo muy prosaico y ridículamente vulgar, que se les pasó desapercibido. Los globos sonda, ya completamente hinchados en la estratosfera, actúan como potentes antenas amplificadoras de señales electromagnéticas. De esta forma tan sencilla hemos resuelto el problema número 13 listado en la sección de Problemas no resueltos de la Astrofísica y la Astronomía.

Saludos estratosféricos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, termodinámica | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un pequeño paso para un tardígrado, un gran salto para la tardigridad

Posted by Albert Zotkin en octubre 4, 2019

Desafortunadamente, la sonda israelí Beresheet se estrelló contra la superficie de la Luna el pasado 11 de abril. El objetivo de esta sonda espacial, que pretendía alunizar, era la promoción de carreras de ciencias, que en inglés se abrevia con las siglas STEM (Science, Technology, Engineering, Mathematics). Pero, un fallo en el giroscopio del módulo de alunizaje desató una cadena de errores que desembocó fatalmente en el apagado del motor principal de dicho módulo, estrellándose contra la superficie lunar. La carga util que llevaba la sonda era básicamente una cápsula del tiempo digital, incluyendo lo siguiente:

1. Decenas de millones de páginas de datos.
2. La wikipedia entera (en inglés).
3. Wearable Rosetta.
4. La base de datos PanLex.
5. La Torá.
6. Dibujos infantiles dibujados por niños.
7. Un libro infantil del lanzamiento espacial.
8. Las memorias de un superviviente del holocausto.
9. La Hatikvah (himno nacional de Israel).
10. Una copia de la Declaración de Independencia de Israel.
11. Tardígrados deshidratados.

Si, has leído bien. tardígrados deshidratados. La idea de incluir tardigrados vivos (aunque deshidratados) en la sonda Beresheet fue de Nova Spivack. Este programador informático y multimillonario, sorprendió al mundo entero cuando se supo, a través de la revista Wired, que había enviado animales a la Luna. Esos animales eran tardigrados deshidratados. Te estarás preguntando, cómo es posible que si deshidratas a un animal, éste aún siga vivo. La respuesta está en que eso sólo puede conseguirlo ciertos organismos vivos extremófilos, como los tardigrados. Se supone que, si la sonda israelí no se hubiera estrellado, esos tardigrados deshidratados podrían ser recuperados algún día, traídos de vuelta a la Tierra, ser rehidratados y comprobar si aun seguían vivos. Entre las ideas extravagantes del millonario judío Spivack se encuentra la de diseminar por todo el universo la información completa para germinar seres humanos. Uno de los objetivos de la Fundación Arch Mission, de la que Nova Spivack es fundador, es enviar al espacio exterior copias de seguridad de toda la vida en la Tierra. O sea, una especie de panspermia al estilo del Arca de Noé, pero espacial. Evidentemente si Spivack, en lugar de tardigrados deshidratados, hubiera enviado embriones humanos, ahora mismo estaría entre rejas.

En el momento en que las autoridades israelíes supieron del fracaso de la misión Beresheet, ya estaban anunciando para el dia 13 del mismo mes de abril, la Beresheet-2. Me pregunto que animalitos incluirán esta vez en su carga útil. ¿Dejarán que Nova Spivack envíe a la Luna trozos de su ADN pegados a la cinta adhesiva que recubrirá en envoltorio de la capsula del tiempo?. ¿Enviarán la colección completa del Reader’s Digest?.

Amigos, el 11 de abril de 2019 fue el día donde se produjo un Un pequeño paso para el tardígrado, pero un gran salto para la tardigridad. Gracias Nova Spivack. Espero que cuando el hombre pise por primera vez el planeta Marte, lo primero que encuentre no sea una lechuga deshidratada.

Saludos, y a hidratarse bien 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología | Etiquetado: , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: