TARDÍGRADOS

Ciencia en español

Posts Tagged ‘momento lineal’

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Es posible superar la velocidad de la luz en el vacío? Diferencias entre electrón, muón y tau leptón

Posted by Albert Zotkin en agosto 14, 2015

limite maximo

Hola amigos de Tardígrados. Hoy vamos a intentar viajar a una velocidad superior a la de la luz en el vacío. Es decir, subiremos a nuestro cohete a reacción e intentaremos acelerar hasta una velocidad superior a c = 299.792.458 km/s. ¿Lo conseguiremos?. Sí. Pero las consecuencias no serán tan bonitas como pensamos.

Según la Teoría de la Relatividad Especial, para acelerar un cohete hasta la velocidad de la luz en el vacío haría falta una cantidad infinita de energía, es decir, sería imposible, porque en el universo no hay disponible para nosotros una cantidad infinita de energía. Pero claro, eso es lo que predice esa teoría. Yo podría proponer otra teoría más “bonita” desde la cual sí sería posible superar ese límite máximo, aunque con algo que sería inesperado y decepcionante para los amantes de los viajes interestelares.

La teoría que propongo dice que al superar la velocidad de la luz en el vacío se produce una conjugación de la paridad, es decir, la partícula superlumínica sería vista viajando en dirección opuesta con una velocidad sublumínica. Así nuestro cohete al igualar la velocidad de la luz sería visto como estacionario (parado) en cierto punto, y al superar dicha velocidad sería visto viajando en dirección opuesta. Sería algo muy parecido a su imagen especular. De esta forma tan rocambolesca, podemos superar la velocidad de la luz cuantas veces queramos, porque dicha velocidad no sería algo absoluto sino algo cíclico. Estas consideraciones ya las apunté en un antiguo post titulado ¿Es cierto que la velocidad de la luz en el vacío es la máxima velocidad que una partícula puede alcanzar?. Efectivamente, todo esto tiene que ver con el fenómeno de la interferencia de ondas. Y parafraseando un conocido eslogan de una famosa franquicia de pizzas, podemos afirmar que “el secreto está en la masa“.

Así un electron y un muón, ambos vistos en reposo, poseen distintas masas. ¿Qué ocurre?. Pues muy fácil, un muón es un electrón que ha superado un ciclo de la velocidad de la luz. ¿Y un tau leptón?. Un tau leptón sería un electrón que ha superado dos ciclos, es decir, que se mueve inercialmente a dos ciclos de la velocidad de la luz.

Todo esto lo podemos expresar matemáticamente de la siguiente forma. Veremos cómo, cuando el número de ciclos es impar, la dirección del movimiento inercial es inversa a la inicial. Usemos una ecuación de movimiento armónico simple

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{2\pi w}{c}\right)\,
la β = w/c indicará el número de ciclos, y w puede ser un valor mayor que c. En cambio, v sólo puede estar en el intervalo [-c, c].

sin

Si aplicamos la fórmula de Euler

\displaystyle   e^{ix}=\cos x+i\sin x

vemos que podemos expresar:

\displaystyle   x=  \frac{2\pi w}{c}\\  \\  \\  \cos x = \mathrm{Re}\{e^{ix}\} =\cfrac{e^{ix} + e^{-ix}}{2} \\  \\  \\   \sin x = \mathrm{Im}\{e^{ix}\} =-\cfrac{e^{ix} - e^{-ix}}{2i}
Estas ecuaciones nos sugieren que la energía total de una partícula de masa m que se desplaza a una velocidad w debe ser:

\displaystyle  E = mc^2 \cosh\left(\frac{2\pi w}{c}\right)

y su momento lineal:

\displaystyle  p = mc \sinh\left(\frac{2\pi w}{c}\right)

y si afirmamos que un muón en reposo equivale a un electrón con una velocidad igual a c, tendremos que la energía en reposo del muón debe coincidir con la energía total del electrón que se mueve a esa c:

\displaystyle   m_ec^2 \cosh\left(\frac{2\pi c}{c}\right) = m_{\mu}c^2 \\ \\ \\   \cfrac{m_{\mu}}{m_e} =\cosh 2\pi \approx 267,7

es decir, la masa del muón sería casi 268 veces la masa del electrón

Todo esto es muy bonito, pero volvamos al concepto de “conjugación de la paridad”. Es evidente que si la partícula es vista viajando en dirección opuesta cuando ha superado la velocidad de la luz, entonces algo no cuadra. Lo correcto sería ver cómo a medida que la partícula acelera, la velocidad aparente debe pasar por un máximo y llegar hasta un mínimo. Y esto implica que c debe ser ese máximo. Es decir, en w = 2c la partícula sería vista estacionaria, en w = 3c sería vista viajando en dirección contraria a la máxima velocidad c, y en w = 4c volvería a estar estacionaria completando un ciclo. Por lo que la ecuación armónica debería ser esta:

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{\pi w}{2c}\right)\,
Y esto significa que si hemos empleado un campo eléctrico para acelerar la partícula (la cual está cargada eléctricamente) entonces, además de una conjugación de la paridad, observaríamos una conjugación de carga. Efectivamente, cuando con el mismo campo eléctrico vemos que la partícula, en lugar de avanzar, retrocede (dirección contraria), entonces estamos ante una conjugación de carga eléctrica (la partícula se comportaría como si hubiera invertido su carga eléctrica). Según esta extraña teoría que estoy perfilando, una partícula poseería una carga eléctrica oscilante, y el signo de esa carga (positiva, negativa o neutra) dependería de cuantos ciclos-luz contiene su masa y de su actual energía cinética.

Así, puesto que la ratio entre la masa de un muón y la de un electrón es:

\displaystyle   \cfrac{m_{\mu}}{m_e}  \approx 206.768

el número de ciclos-luz de un muón sería de:

\displaystyle  \cosh \left(2 \pi x \right) = 206.768  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(206.768\right) = 0.958867

Igualmente, el número de ciclos-luz para un tau leptón sería:

\displaystyle   \cfrac{m_{\tau}}{m_e}  \approx 3477.15  \\ \\  \\   \cosh \left(2 \pi x \right) = 3477.15  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(3477.15\right) = 1.40806

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

Meditaciones a cerca del efecto Doppler de las ondas de materia

Posted by Albert Zotkin en julio 26, 2015

Algo misterioso ocurre con las partículas con masa. Un electrón puede ser considerado como una partícula o como una onda, y eso depende de cómo dispongamos nuestros aparatos de medida en el experimento. El problema es que esa onda de materia parece estar deslocalizada respecto a la hipotética fuente que la genera. Según la hipótesis de De Broglie, las partículas poseen también una longitud de onda:

\displaystyle    \lambda = \cfrac{h}{mv}
donde h es la constante de Planck, m la masa de la partícula y v el módulo del vector velocidad. Por lo tanto, según esa ecuación, la longitud de onda de la partícula aumenta cuando disminuye la velocidad (el módulo del vector velocidad)., y disminuye cuando aumenta la velocidad. Pero lo mismo da que la partícula se aleje o se acerque al observador, esas variaciones de longitud de onda se dan siempre considerando el módulo del vector velocidad. Por lo tanto, vemos que para un posible efecto Doppler, esa ecuación nos dice poco, pues estamos acostumbrados a que las ondas de sonido o de la luz alarguen su longitud cuando la fuente que las genera se aleja de nosotros o acorte dicha longitud de onda cuando esa fuente se acerca. Pero, en las ondas de materia parece ser que esa variación sólo ocurre con la variación del módulo del vector velocidad, independientemente de que la partícula se aleje o se acerque al observador.

El experimento de Young (también llamado de la doble rendija) nos deja estupefactos cuando comprobamos una y otra vez que las partículas subatómicas (electrones, protones, neutrones, etc) se comportan como ondas cuando queremos conocer demasiado sobre sus trayectorias y estados. Eso quiere decir ni más ni menos que, intrínsecamente, las “partículas” subatómicas no son ni partículas ni ondas, sino todo lo contrario.

De Broglie descubrió que los cuerpos con masa se comportan como si fueran ondas, es decir, se propagan mostrando cierta longitud de onda o frecuencia (de algo que vibra, ¿campo de Higgs?, ¿Ëter?, ¿campo gravitacional?).

Seguidamente voy a demostrar que las ondas de materia sufren también el efecto Doppler. Y que la longitud de onda y la frecuencia de una onda de materia se expresan completamente de esta forma:

\displaystyle  \;\;\;f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)\;\;\;
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)

He demostrado muchas veces, por activa y por pasiva, que las fórmulas del efecto Doppler completo para una determinada frecuencia (o longitud de onda) electromagnética, se expresan así:

\displaystyle  f = f_0 \exp \left(\cfrac{v}{c}\right)  (1)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right)  (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Igualmente, para las ondas de materias debe existir un efecto Doppler similar. La velocidad de fase cph de una onda de materia, por ejemplo la de un electrón, se expresa como el cociente de su energía total dividida por su momento lineal:

\displaystyle  c_{ph} = \cfrac{E}{p}
En cuanto a la velocidad de grupo vg de dicha onda de materia sería la derivada de la energía total respecto del momento:

\displaystyle  v_{g} = \cfrac{dE}{dp}
La enegía total de una partícula con masa m y su momento lineal se expresarían así:

\displaystyle  E = mc^2 \cosh\left(\cfrac{v}{c}\right) \\ \\ \\  p = mc \sinh\left(\cfrac{v}{c}\right)
por lo tanto, la velocidad de fase y la velocidad de grupo se expresan así:

\displaystyle  c_{ph} = \cfrac{E}{p} = mc^2 \cfrac{\cosh(v/c)}{mc\sinh(v/c)} = c \coth\left(\cfrac{v}{c}\right) \\ \\ \\  v_{g} = \cfrac{dE}{dp}  = \cfrac{mc^2 \sinh(v/c)}{mc \cosh(v/c)}= c \tanh\left(\cfrac{v}{c}\right)
Todo esto está ya super demostrado (por activa y por pasiva). Ahora viene la parte novedosa. Sustituyamos la β = v/c en las fórmulas del efecto Doppler, por esta otra:

\displaystyle  \beta =\cfrac{v_g}{c_{ph}}
Esto significaría que el efecto Doppler quedaría expresado para ondas de materia en lugar de para ondas electromagnéticas, así:

\displaystyle  f = f_0 \exp \left(\cfrac{v_g}{c_{ph}}\right)  (3)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v_g}{c_{ph}}\right)  (4)

Pero es fácil ver que existe una relación de dispersión:

\displaystyle  v_g c_{ph} = \left(c \coth \frac{v}{c} \right) \left(c \tanh \frac{v}{c}\right) = c^2
con lo cual, las ecuaciones (3) y (4) quedarían así, si identificamos la velocidad de grupo de la onda de materia con la velocidad de la partícula, vg = v:

\displaystyle  f = f_0 \exp \left(\cfrac{v^2}{c^2}\right)  (5)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v^2}{c^2}\right)  (6)
Es decir, esta frecuencia f y esta longitud de onda λ ya no corresponden a ondas electromagnéticas, sino a ondas de materia. Y esto significa, ni más ni menos, que f0 y λ0 deben corresponder a la frecuencia y la longitud de Compton:

\displaystyle  f_0 = \cfrac{mc^2}{\hbar}  (7)
\displaystyle  \lambda_0 = \cfrac{\hbar}{mc}  (8)
Así, finalmente, tendremos que el efecto Doppler para las ondas de materia vendría expresado por estas dos ecuaciones:

\displaystyle  f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)  (9)
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)  (10)
CDQ. Con lo cual he demostrado lo que quería demostrar. Además, en estas dos ecuaciones del efecto Doppler de ondas de materia se ve muy claramente por qué la longitud de onda no depende de si la partícula se acerca o se aleja del observador. La causa de eso es porque la β está elevada al cuadrado, y por lo tanto el signo de v (negativo para alejamiento y signo positivo para acercamiento) no influye en el valor de ese efecto Doppler.

Sin embargo, la ecuación (6) no equivale a la ecuación que propuso de Broglie, λ = h/mv, cuando la velocidad de la luz c tiende a infinito, es decir, en el límite clásico (Newtoniano). Esta discordancia obedece al hecho de identificar la velocidad de grupo de una onda de materia con la velocidad de la partícula, lo cual no siempre es correcto. Para corregir ese hecho, simplemente sustituimos el momento lineal clásico, p = mv, por el relativista Galileano, p = mc sinh(v/c). Con lo cual la longitud de onda de una onda de materia quedaría así:

\displaystyle    \lambda = \cfrac{h}{mc \sinh(\tfrac{v}{c})}     11
de esta forma es fácil comprobar como:

\displaystyle     \lim_{c \to \infty} \lambda =  \lim_{c \to \infty}\ \cfrac{h}{mc \sinh(\tfrac{v}{c})} =\cfrac{h}{mv}

Y para la frecuencia, tendremos la ecuación:

\displaystyle    f = \cfrac{E}{h}=\cfrac{m c^2}{h} \cosh(\frac{v}{c})     12

Saludos

Posted in Física de partículas, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Quieres ganar 7000 $ jugando a descubrir el bosón de Higgs?: Higgs Boson Machine Learning Challenge

Posted by Albert Zotkin en mayo 26, 2014

Hola amigo de Tardígrados. Hoy te voy a traer un concurso muy curioso que proponen científicos del experimento ATLAS del LHC en el CERN. Se trata del concurso “Higgs Boson Machine Learning Challenge”, presentado en el portal Kaggle. Se trata de que formes un equipo de no más de cuatro personas y os dediquéis a programar un software específico con el cual “machacar datos” para diferenciar la señal del bosón de Higgs contra el ruido de fondo en el canal de desintegración τ-τ (dos tau leptones). Ellos te proporcionan los datos de entrada, y tú con tu software, y siguiendo las reglas y los formatos especificados debes enviarles tus resultados. Aquel equipo que sepa mejor diferenciar la señal del bosón de Higgs contra el ruido de fondo será premiado con los 7000 $. Muy fácil, ¿no?. Incluso no necesitas ser especialista en física de partículas para poder ganar. Mola, ¿no?.
Veamos dónde está el truco de todo esto. Resulta que a nuestros amigos del experimento ATLAS les resulta extremadamente dificil discriminar señal contra ruido de fondo cuando se trata del canal τ-τ de desintegración del bosón de Higgs. Es decir, no tienen ni la más “pajolera” idea de cómo hacerlo eficientemente, por eso piden tu ayuda. Pero, echemos un leve vistazo al paper (documento técnico) que acompaña al concursito de marras. Al final del documento, a modo de apéndice, hay una pequeña reseña sobre la Relatividad Especial de Einstein (es decir, sobre la “Biblia Ortodoxa” del científico fiel al consenso oficial)- En esa reseña nos describen cómo han de ser las ecuaciones de la energía total y del momento de las partículas implicadas en la colisión. Por lo tanto, voy a responder también sucintamente a la pregunta de por qué a estos chicos del experimento ATLAS les resulta tan difícil discriminar señales del Higgs contra fondo en ese canal. Y la respuesta está en las ecuaciones para la energía total y el momento que propone la Relatividad Especial. A saber:

\displaystyle    E^2 = (mc^2)^2 + (pc)^2  \\ \\   E = mc^2 \gamma

donde

\displaystyle    \gamma =\cfrac{1}{\sqrt{1- \frac{v^2}{c^2}}}

es el conocido factor de Lorentz.

Para ganar ese concursillo debes considerar la siguiente corrección:

\displaystyle    \gamma = \cosh \frac{v}{c}

con lo cual las ecuaciones de la energía y el momento quedarían corregidas así:

\displaystyle     \\ \\   E = mc^2 \cosh \frac{v}{c} \\ \\   p = m c \sinh \frac{v}{c}

por lo que la relación energía-momento quedaría igual que la propuesta por la Relatividad Especial, E2 = (mc2)2 + (pc)2, porque sabemos en matemáticas que cosh 2 – sinh 2 = 1.

En el meollo de todo este asunto están dos conceptos matemáticos que los físicos de partículas usan mucho para estudiar los eventos de las colisiones. Esos dos conceptos son la pseudorapidez y la rapidez:
La pseudorapidez se define como:

\displaystyle    \eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right],

donde \theta es el ángulo entre el momento (vector) de la partícula y el eje del haz. En cuanto a la “rapidez”, y siempre conforme a la Relatividad Especial se expresan las ecuaciones de la energía y el momento así:

\displaystyle    E = m c^2 \cosh \varphi \\ \\   p = m c \, \sinh \varphi

donde, obviamente, p es el momento escalar, p = | \mathbf p |
Observamos, ahora con facilidad que la rapidez \varphi, para ganar nuestro concurso y llevarnos al bolsillo los 7000 $, debemos corregirla por la beta, \beta=\frac{v}{c}.

Pero, claro, de momento, no te voy a dar mas pistas, porque el concurso lo quiero ganar yo :P, y a ti te dejaré el segundo premio de 4000 $, que tampoco está nada mal, y además tienes de plazo hasta el 15 de Septiembre para presentar tus resultados.

Saludos, y suerte si decides concursar

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

Relaciones de De Broglie expresadas desde la Relatividad Galileana Completa

Posted by Albert Zotkin en mayo 10, 2013

Buenos días. incondicionales de Tardígrados. Hoy voy a hablar de las relaciones de De Broglie y de cómo es posible obtener una función de onda relativista que contenga sólo derivadas de primer orden respecto al espacio y al tiempo.

Sabemos ya que la velocidad de fase de una onda de materia puede ser expresada como

\displaystyle  c_p = \frac{E}{p}  (1)

donde E es la energía total, y p es el momento lineal. Del mismo modo, la velocidad de grupo, vg, de una onda de materia puede ser expresada como la derivada de E respecto a p

\displaystyle  v_g = \frac{dE}{dp}  (2)

esta última ecuación puede ser identificada con la velocidad relativa v del cuerpo que tiene asociada esa onda de materia, v = vg.

En Relatividad Galileana Completa, la energía total E es

\displaystyle  E = mc^2 \cosh \left(\frac{v}{c}\right)  (3)

y también en Relatividad Galileana Completa, el momento lineal es,

\displaystyle  p = mc \sinh \left(\frac{v}{c}\right)  (4)

Por lo tanto, podemos calcular (2) asi,

\displaystyle  v_g = \cfrac{dE}{dp}= \cfrac{mc^2\sinh(v/c)}{mc\cosh(v/c)} =  c\tanh \left (\frac{v}{c}\right )  (5)

y también

\displaystyle  c_p = \cfrac{E}{p}= \cfrac{mc^2\cosh(v/c)}{mc\sinh(v/c)} =  c\coth \left (\frac{v}{c}\right )  (6)

Por lo tanto, la relación entre el momento lineal y la energía total es,

\displaystyle  E^2 = (mc^2)^2 + (pc)^2  (7)

De las propiedades de las funciones hiperbólicas sabemos que

\displaystyle  \cosh(x)= 2\ \sinh^2(\frac{x}{2}) + 1  (8)

por lo que la ecuación (3), puede ser expresada así

\displaystyle  E = mc^2\cosh(v/c)= mc^2\left( 2\ \sinh^2 \left(\frac{v}{2c}\right) + 1\right) \\ \\ \\  E = mc^2 + 2mc^2 \sinh^2 \left(\frac{v}{2c}\right)  (9)

Si ahora definimos

\displaystyle  q= mc\sinh\left( \frac{v}{2c}\right)  (10)

como el momento de ese cuerpo de masa m moviéndose a la mitad de su velocidad, v/2, tendremos

\displaystyle  E = mc^2 + 2\cfrac{q^2}{m}  (11)

Por lo tanto, si igualamos con (7), tendremos

\displaystyle  \sqrt{(mc^2)^2 + (pc)^2} = mc^2 + \frac{2\ q^2}{m}  (12)

lo cual significa que la energía cinética es

\displaystyle  E_k =\cfrac{2\ q^2}{m}  (13)
Si cuantizamos (11) obtenemos,

\displaystyle  i \hbar \frac{\partial}{\partial t}\psi = mc^2 \psi + \cfrac{2\mathbf{q}^2}{m}\psi   (14)

donde obviamente q es el operador momento en semi-velocidad.

Saludos

Posted in Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , | 1 Comment »

Deducción de la fórmula del Doppler Completo usando un telescopio reflector Newtoniano

Posted by Albert Zotkin en octubre 2, 2012

Consideremos un telescopio reflector newtoniano, por el que entra luz procedente de una fuente emisora que se aleja inercialmente por la misma linea de visión. La luz que refleja el espejo parabólico primario posee pues una frecuencia f, la cual, por el efecto Doppler, es  menor que la frecuencia original f0 que emite la fuente. Aceleremos ahora un diferencial de velocidad dv el espejo parabólico primario hacia el espejo central diagonal.

Eso significa que el espejo central diagonal está reflejando ahora luz hacia el objetivo con una frecuencia ligeramente mayor a f, es decir, esa frecuencia será f’ = f + df. Por lo tanto podemos escribir la siguiente ecuación diferencial y hallar su solución:

f+df = f \left(1 + \cfrac{dv}{c}\right) \\ \\ f+df = f + \cfrac{f\;dv}{c} \\ \\ df = \cfrac{f\;dv}{c} \\ \\ \cfrac{df}{f} = \cfrac{dv}{c} \\ \\ \ln \left (\cfrac{f}{f_0} \right) = \cfrac{v}{c} \\ \\ f = f_0\exp \left(\cfrac{v}{c}\right) \\ \\

Con lo cual hemos hallado la fórmula del Doppler completo.

En la ecuación diferencial inicial he usado la fórmula del efecto Doppler de primer orden de aproximación, es decir la clásica no relativista. Es importante recalcar que cuando se integra un diferencial de velocidad lo que se está haciendo es sumar infinitas cantidades infinitamente pequeñas, es decir, en el proceso de integración se está acelerando constantemente al sistema material, y al final de la integración el sistema material aceleró desde 0  hasta v  ,

\displaystyle\int \cfrac {dv}{c} = \cfrac{1}{c}\left(dv+dv+dv+... \right) =\cfrac{v}{c}

Alguien que se suponía entendido en la matería alegó que usar dicha fórmula de primer orden de aproximación para deducir una fórmula de Doppler completo no es correcto, porque desde ella  no es posible hallar ninguna fórmula que posea los infinitos órdenes. Por supuesto, dicha persona está muy equivocada al respecto. Ya Euclides demostró que es posible aproximarse al área de un circulo mediante rectángulos con la longitud de uno sus lados siendo un infinitesimal. En esta deducción, se aplica algo muy similar y que está en la naturaleza de la propia definición de integral. De hecho la solución hallada vemos que es un área. Dicha área es precisamente \beta=v/c  , que se corresponde con el área \ln(f/f_0)  .
Después vino otro supuesto entendido en la materia y afirmó que yo estaba muy confundido, porque lo que en esa fórmula aparece como \beta=v/c  es en realidad una  rapidez (rapidity). Esta persona me indicó que lo que yo llamo velocidad v  es en realidad una velocidad hiperbólica, tal y como está definida en la teoria de la relatividad especial de Einstein. Efectivamente, la velocidad hiperbólica de la relatividad especial, que también se llama celeridad, es igual a la rapidez multiplicada por c  . Efectivamente, si sustituimos en la exponencial que he hallado la \beta=v/c  por la  rapidez, \theta = \tanh^{-1}\beta  , obtenemos la famosa fórmula relativista del Doppler, f= f_0\sqrt{(1+v/c)/(1-v/c)}  . Pero, a este último supuesto experto en la materia le dije que, puesto que yo no estaba usando la relatividad especial, sino la relatividad Galileana, no hay confusión posible, por lo tanto la  velocidad v  , se postula como una velocidad real, y nunca como una velocidad hiperbólica.
Todos esos supuestos entendidos en la materia intentan refutar la fórmula del Doppler Completo hallada arriba, afirmando que los experimentos validan todos la relatividad especial pero invalidad la fórmula que yo hallé. Eso que afirman, es, por supuesto, una gran mentira. Lo dicen únicamente porque se dejan influenciar por su primera impresión de que yo debo de estar confundidísimo y la relatividad especial tiene que seguir siendo la mejor y más testada teoría al respecto. Pero si comparamos las expansiones en series de potencias (series de Taylor) en ambas fórmulas, tenemos:

\cfrac{f}{f_0} = \exp \left (\cfrac{v}{c}\right )= 1+\cfrac{v}{c}+\cfrac{v^2}{2 c^2}+\cfrac{v^3}{6 c^3}+\cfrac{v^4}{24 c^4}+... \\ \\ \\ \cfrac{f}{f_0} = \sqrt{\cfrac{1+v/c}{1-v/c}} = 1+\cfrac{v}{c}+\cfrac{v^2}{2 c^2}+\cfrac{v^3}{2 c^3}+\cfrac{3 v^4}{8 c^4}+...

Es decir, se necesitaría un experimento que pudiera discriminar ambas predicciones con una precisión tal que llegara hasta el tercer orden de aproximación, pero eso no es posible realizarlo con la tecnología actual. La precisión actual en los tests experimentales sólo llega hasta el segundo orden, v^2/2 c^2  .
Corolario 1: Es fácil  deducir el momento de una partícula desde el efecto Doppler :

\textbf{p} = \cfrac {m\textbf{c}}{2} \left (\mathrm{D}(v/c) - \mathrm{D}(-v/c) \right )

esta ecuación genérica del momento se cumple siempre para cualquier factor Doppler \mathrm{D}(v/c)  de cualquier teoría. Donde \textbf{c}  es un vector en la dirección del movimiento de la partícula. El factor Doppler Completo arriba deducido es \mathrm{D}(v/c) =\exp(v/c)  , por lo tanto, el momento que se deduce desde ese factor Doppler es:

\textbf{p} = m\textbf{c} \sinh \left ( \cfrac{v}{c} \right )

De igual forma, la energía total de una partícula deducida desde el Doppler saldría de la ecuación genérica:

E = \cfrac {m c^2}{2} \left (\mathrm{D}(v/c) + \mathrm{D}(-v/c) \right )

Por lo tanto, tenemos:

E = m c^2 \cosh \left ( \cfrac{v}{c} \right )

También es fácil ver que para el caso de la relatividad especial, tendriamos \mathrm{D}(v/c) =\sqrt{(1+v/c)/(1-v/c)}  . Por lo tanto, después de algunas manipulaciones algebráicas obtenemos E = mc^2 \gamma   y p = mv\gamma  , donde \gamma  es el factor de Lorentz.
Y por supuesto, tambien es fácil ver que las ecuaciones genéricas de arriba satisfacen la relación E^2 -c^2p^2 = m^2c^4  , si la función genérica \mathrm{D}(v/c)  posee la propiedad \mathrm{D}(v/c)\mathrm{D}(-v/c) =1  , propiedad que debe poseer todo factor Doppler que pretenda no ser inconsistente con el efecto físico que modela.

Corolario 2:  Este problema me lo planteó amarashiki, en una discusión dentro de un thread del blog Francis (th)E mule Science’s News, con la malsana intención de refutar definitívamente el modelo que yo propongo:

Ejercicio: calcula, usando TU definición de energía y momento, la energía mínima y la energía cinética mínima para crear un par protón antiprotón en la colisión de un protón A con un protón B en reposo. Nota, no puedes usar la definición relativista de energía E=m\gamma c^2 ni p=m\gamma v, sino que tienes que usar tus ecuaciones, a saber E=mc^2\cosh(v/c) y p=mc\sinh(v/c). Yo ya he hecho los cálculos. En relatividad especial sale que la energía mínima es 7mc^2 (donde m es la masa del protón), y la energía cinética mínima es 6mc^2. En tu teoría con TUS definiciones de energía y momento, antes escritas, yo digo que es IMPOSIBLE la creación de pares. Como la creación de pares se observa experimentalmente, entonces tu teoría es un cuento chino. Refútame, si puedes…Con ecuaciones…

Lo que sigue fue lo que yo le contesté:

Este ejercicio lo voy a resolver primero usando un sistema de referencia centrado en el centro de masas de los dos protones, por lo tanto el momento total será nulo. Primero voy a calcular suponiendo que la reacción creará un pión, \pi^0, con todas las partículas finales en reposo tras la colisión, (p,p,\pi^0). Usando mi modelo, la energía total del sistema será:

E = 2mc^2 = 2m_p c^2 + m_\pi c^2

donde

m = m_p \cosh(v/c)

por lo tanto para la creación de ese \pi^0 la velocidad de aproximación de cada protón hacia el centro de masas debe ser de

v = c \cosh^{-1} \left ( 1+ \cfrac{m_\pi}{2m_p} \right )

Y como en mi modelo las velocidades se suman trivialmente como suma de vectores, tenemos que la velocidad, v', de aproximación de uno de los protones en el sistema de referencia donde el otro protón está en reposo sería de

v' = v+ v = 2c \cosh^{-1} \left ( 1+ \cfrac{m_\pi}{2m_p} \right )

Esto sería para la reacción que crea un pión, p + p \rightarrow p+p+\pi^0. Y es muy fácil ver ahora que la reacción que crea un par protón-antiprotón, p + p \rightarrow p+p+p+\bar{p}, debe implicar una velocidad de aproximación de un protón hacia el otro de:

v' = 2c \cosh^{-1} \left ( 1+ \cfrac{2m_p}{2m_p} \right ) = 2c \cosh^{-1}(2) = 2.63392c

Lo cual significa que la energía cinética mínima será

E_k = m_p c^2 (\cosh (2.63392) -1) = 6 m_p c^2

Y la energía total mínima será de

E = m_p c^2 \cosh (2.63392) = 7 m_p c^2

Traducido al modelo de la SR, donde la constante c juega el rol falso de una velocidad límite, que no puede ser superada por nada, tendriamos una velocidad de

v'' = \tanh (2.63392) c = 0.989743 c

Ese es el engaño que la SR logró colar a toda la física desde hace más de un siglo. Creer que las partículas no pueden superar la velocidad c, cuando de hecho esa velocidad es superada rutinariamente en cualquier acelerador de partículas, incluso en los muones creados por rayos cósmicos en la atmósfera terrestre. Para perpetrar ese engaño, la SR ideó efectos como la dilatación del tiempo, o la contracción de las longitudes, o el más absurdo aún de la relatividad de la simultaneidad de eventos, y trampas teoréticas como la convención de Einstein para la sincronización de dos relojes en reposo muy alejados.
Corolario 3: Veamos cómo la dilatación del tiempo, que se afirma haberse testado con éxito en los muones de rayos cósmicos, es en realidad una gran falacia. Los muones poseen una vida media de 2.19703(4) \; 10^{-6} \; \mathrm{s}. Pero entonces un muón creado en las altas capas de la atmósfera terrestre no tendría suficiente tiempo de llegar a ser detectado en la superficie terrestre, incluso viajando a velocidad de c, o como mucho solo sería detectada una cantidad muy pequeña de muones, la cual no se correspondería con lo que se observa. El razonamiento mainstream es que los muones deben poseer velocidades relativistas muy altas, pero nunca superlumínicas, es decir esos muones deben tener velocidades del orden de 0.999c, o más cerca de caún. Según la SR, a esas velocidades tan cercanas a c, existe una significativa dilatación del tiempo propio del muón, con lo cual su vida media se prolongaría exactamente la cantidad necesaria de tiempo para observar lo que es observado. Se puede comprobar fácilmente que eso es una falacia. Lo que sucede realmente es que los muones conservan constante su vida media de 2.19703(4) \; 10^{-6} \; \mathrm{s} , pero sus velocidades son superiores a c. Veamos con más números por qué es una falacia la interpretación de la SR afirmando que lo que se observa es debido a una dilatación del tiempo. Supongamos que un muón posee, cuando es creado en altas capas de la atmósfera, una energía total de E= 20 \;\mathrm{GeV}. Entonces con esa energía es muy fácil calcular cuál debe ser la velocidad de un muón, pues

E = mc^2 \cosh(\cfrac{v}{c}) \\ \\ \\  v = c \cosh^{-1} \left (\cfrac{E}{mc^2}\right )

y como la energía en reposo de un muón es E_0 = mc^2 = 105.658367(4) \;\mathrm{MeV}, tenemos que

v = c \cosh^{-1} \left (\cfrac{20\; 10^9}{105.6\; 10^6 }\right ) = 5.93697c \approx 6c

O sea, los muones con energía 20 \;\mathrm{GeV} creados en las altas capas de la atmósfera llegan a los detectores en la superficie a tiempo porque poseen una velocidad de unas ¡seis veces la velocidad de la luz!. Esto demuestra también, irrefutablemente que los neutrinos muónicos, resultado de la desintregación de muones, medidos en el experimento OPERA viajaron realmente a velocidades superlumínicas, aunque, como he demostrado de forma fehaciente, es más que evidente que los formalismos de la SR enmascaran esa realidad.
Corolario 4: Podemos ver que la ecuación diferencial desde la cual se podría integrar el Doppler relativista de la Relatividad Especial sería,

\cfrac{df}{f} = \cfrac{dv}{c (1- \frac{v^2}{c^2})}

con lo que si integramos tenemos,

\ln \left (\cfrac{f}{f_0} \right )=\tanh^{-1}\left(\cfrac{v}{c} \right ) \\ \\ \\ \ln \left(\cfrac{f}{f_0} \right)=\cfrac{1}{2}\ln \left\{\cfrac{1+\frac{v}{c}}{1-\frac{v}{c}}\right\} \\ \\ \\  \displaystyle f = f_0 \sqrt{\cfrac{1-\frac{v}{c}}{1+\frac{v}{c}}}

El problema de esta ecuación de la Relatividad Especial reside en el hecho de que no está del todo claro de qué situación fisica o condición inicial podríamos plantear tal ecuación diferencial para que la deducción tuviera consistencia no sólo matemática sino fisica. De todas formas, intentemos profundizar un poco más en esta última relación. Vemos que al integrar la ecuación diferencial obtenemos \ln (\frac{f}{f_0})=\tanh^{-1}(\frac{v}{c} ), y vemos que esa arcotangente hiperbólica es precisamente la definición de rapidez(rapidity en inglés). O sea,

\theta =\tanh^{-1}\left(\cfrac{v}{c} \right )

Y eso significa que d\theta es un diferencial de rapidez, de tal forma que al integrar

d\theta= \cfrac{dv}{c (1- \frac{v^2}{c^2})}

obtenemos la rapidez \theta. Y este corolario demuestra que en la fórmula de Doppler Completo que deduje arriba no se confunde ninguna velocidad con la velocidad hiperbólica, ni ninguna \beta con la rapidez \theta, porque se ve cláramente que esta última posee su propia ecuación diferencial.

Posted in Relatividad | Etiquetado: , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: