TARDÍGRADOS

Ciencia en español

Archive for 25 septiembre 2015

Cómo evitar caer en un agujero negro cuando haces footing

Posted by Albert Zotkin en septiembre 25, 2015

Cuando sales a hacer footing una mañana cualquiera, es muy fácil evitar caer en un agujero negro si te encuentras alguno en tu camino. Lo único que tienes que hacer es saltar sobre él. De esa forma, como si de un charco de agua se tratara, evitarás caer en el y ser ‘espaguetizado’.
athletisme-50
¿Tienes algunas dudas sobre como podrías saltar sobre ese agujero negro y no caer en él?. Veamos matemáticamente cómo.

El tamaño de ese agujero negro viene dado por su masa. Podemos decir que su horizonte de sucesos es su borde natural. Sería algo así como una esfera tridimensional (tres dimensiones, no cuatro, ya que por el principio holográfico toda la información cuántica estaría en la superficie exterior de su 4-esfera espacio-temporal). El radio de esa 3-esfera sería el radio de Schwarzschild, rs:

\displaystyle  r_s = {2 G M \over c^2}   (1)
Es decir, tendrías que saltar una longitud de al menos 2rs. Pero, para saltar sobre una 3-esfera necesitas algo que aún no sabes qué es. Ese algo se llama “salto cuántico” o “túnel cuántico” (un ‘salto cuántico’ es como suprimir instantáneamente el espacio existente entre dos puntos, de modo que ambos puntos, que antes estaban separados, llegan a ser el mismo punto espacio-temporal, pero sólo ocurre exclusivamente para el objeto que realiza el salto, y después del salto, los puntos restauran su distancia original). Para calcular cómo realizar ese “salto cuántico” hemos de calcular la longitud de onda de tu onda de materia. Para ese cálculo necesitaremos saber qué onda de De Broglie has de desarrollar en el borde de ese agujero negro. La longitud de tu onda de materia es

\displaystyle  \lambda = \cfrac{\hbar}{mv}  (2)
donde m es tu masa corporal y v es tu velocidad haciendo footing. ¿Cuándo conseguirás saltar sobre ese agujero sin caer dentro de él?. Evidentemente cuando saltes al menos una longitud igual a 2rs. Para ello igualamos ambas ecuaciones, (1) y (2), la primera multiplicada por 2:

\displaystyle  2r_s = \lambda  \\ \\   {\cfrac{4 G M}{c^2} = \cfrac{\hbar}{mv} }  \\ \\ \\  v = \cfrac{\hbar c^2}{4 G M m}
Calculas numéricamete ese valor, y te aseguro que, si eres capaz de desarrollar esa velocidad o una inferior, no caerás dentro de ese agujero negro que te encontraste en tu feliz camino al hacer footing. A esa velocidad v tu salto cuántico sería exactamente de dos radios de Schwarzschild. Cuanto menor es la velocidad más larga es la longitud de tu onda de materia, y por lo tanto más probabilidad tendrás de saltar cuánticamente ese diámetro. De hecho, la probabilidad de caer en un agujero negro es tan grande como la probabilidad de encontrarte uno.

Esta idea nos sirve para indicar que la velocidad mínima no nula, c0, de un cuerpo de masa m, sería tal que la longitud de onda de su onda de materia sería igual a un radio de Hubble:

\displaystyle  R_\text{H} = \cfrac{\hbar}{mc_0}
Por otro lado sabemos que una velocidad mínima tal vendría dada por la expresión:

\displaystyle    c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}
Esto significa que la masa m, en función de esa c0, debería ser:

\displaystyle    m =\sqrt{\frac{\hbar c_0}{G}}
Lo cual nos sugiere que las masas de las partículas fundamentales surgiría por que una partícula más fundamental aún se movería o vibraría a velocidades muy cercanas al reposo.
Paradójicamente“, cuanto mayor sea el radio de Schwarzschild del agujero negro sobre el que deseas saltar cuánticamente, menor ha de ser tu velocidad hacia él, según queda explícito en la ecuación (2). Y esto demuestra que para saltar cuánticamente una distancia infinita sólo necesitas alcanzar el reposo exacto matemático si tu masa corporal es finita. Ese salto infinito te dejaría exactamente en el mismo punto donde empezó el salto, con lo que un universo infinito sería además un universo transfinito, como apunté en un reciente post mio titulado Un universo eterno y transfinito: una foliación conforme del espaciotiempo.
Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El universo según Einstein, ¿quien inventó el cero y para qué?

Posted by Albert Zotkin en septiembre 18, 2015

Muchos errores matemáticos se cometen por culpa de una mala aplicación de los métodos aritméticos y algebraicos en los que entra en juego el uso del número cero. Por ejemplo, está bien documentado que el mismo Einstein cometió, en muchas y cruciales ocasiones, el error infantil de dividir los dos lados de una misma ecuación por cero. Al dividir por cero se obtiene una indeterminación, y los resultados numéricos o algebraicos que se obtienen de eso son imprevisibles y disparatados, además de incorrectos, como es obvio. Robert Jastrow nos contó, hace ya algún tiempo, que el matemático ruso Alexander Friedman le escribió una carta a Einstein haciéndole saber que había cometido el error de dividir por cero (ese error resulta ser fatal para la consistencia interna de cualquier teoría que use las matemáticas para ser definida). Sin embargo, Einstein decidió no dar la razón a Friedman sobre su error, y escribió una carta de respuesta, no a Friedman directamente, sino a la revista científica que publicó dicha carta, en la que incluía cálculos que supuestamente demostraba que Friedman estaba equivocado respecto a su error. Friedman respondió pronto haciéndole ver a Einstein que había cometido un segundo error al intentar demostrar que su primer error no era un error, y añadió la apostilla “le agradecería que cuando usted crea que mis cálculos son correctos quizás entonces quiera escribir una corrección”. Al final Einstein tuvo que admitir que había divido por cero (error infantil donde los haya). De esa manera tan rocambolesca Alexander Friedman demostró que la teoría de Einstein sobre un universo estático era incorrecta por que contenía inconsistencias matemáticas internas fruto de dividir repetidamente por cero en las ecuaciones.

Pero no sólo la división por cero da lugar a inconsistencia. Veamos el siguiente ejemplo que propugna que existe error en algunos métodos de adición linear:

Un método de adición que sea linear y estable no puede dar una suma finita para la serie 1 + 2 + 3 + … . Que sea estable significa que sumando un término al principio de la serie incrementa la suma en la misma cantidad. Esto se muestra como sigue: Si

1 + 2 + 3 + … = x

entonces sumando 0 a ambos lados tenemos

0 + 1 + 2 + … = 0 + x = x por estabilidad.

Por linearidad, podemos restar la segunda ecuación a la primera para obtener

1 + 1 + 1 + … = x – x = 0

sumando 0 a ambos lados da

0 + 1 + 1 + 1 + … = 0,

y restando estas dos ultimas series tenemos:

1 + 0 + 0 + … = 0
1 = 0

lo cual contradice la propiedad de estabilidad.

¿Dónde está el error en todo ese proceso de manipulación aritmética?. El error está en que la x del lado derecho de la ecuación es tratada como si fuera un número finito, cuando en realidad es ∞ En cambio, la serie del lado izquierdo es tratada como si tuviera un número infinito de sumandos. Esto significa que x – x ≠ 0, sino un valor indeterminado, por lo que todos los demás resultados intermedios y la conclusión final son incorrectos.

La conclusión de todo esto es que hay que tener mucho cuidado a la hora de formular teorías científicas donde las matemáticas juegan un papel central, porque cualquier inconsistencia matemática puede echar por tierra toda una teoría que se las prometía muy felices.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , | 2 Comments »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin en septiembre 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle  T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}}  (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle  a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}}  (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle  a_n = \sqrt[3]{a_{n-1}^3}  (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Un universo eterno y transfinito: una foliación conforme del espaciotiempo

Posted by Albert Zotkin en septiembre 7, 2015

Foliación transfinita de la conciencia de Ridley

Foliación transfinita de la conciencia de Ridley

Nuestro universo podría poseer la forma de una hiperesfera transfinita. Para ver esto fijémonos en lo siguiente (que ya traté en un post anterior). La serie infinita N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + … es divergente ya que su suma es N = ∞. Pero, puede ser regularizada, como demuestro en el link anterior, para dar una suma de N = -1/2. Es decir, la función Zeta de Riemann toma el valor -1/2 cuando la variable es cero:

\displaystyle   N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +\dots = \zeta(0) =-\frac{1}{2}\\
Esta suma nos sugiere que el infinito matemático, ∞, en la recta real, coincide con el número real negativo -1/2, y -∞ coincidiría simétricamente con 1/2. Si partimos de un sistema de referencia cartesiano de dos dimensiones, tendremos que los dos ejes ortogonales podrían ser recorridos, partiendo desde el origen de coordenadas, en dos posible direcciones. Para el eje de abscisas, podríamos alcanzar el infinito, por el camino largo (hacia la derecha) hasta llegar al punto (-1/2, 0). O también podríamos alcanzar dicho punto, que representa al infinito, por el camino más corto (andando hacia la izquierda). Sin embargo, si andamos en dirección derecha, desde el origen o cualquier punto de abscisa positiva, (x,0), no podríamos llegar a los puntos situados entre el punto (-1/2, 0) y el (x,0) ya que el infinito actuaria como barrera infranqueable para seguir el camino y cerrar el círculo.

Saludos transfinitos a todos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Fractales, Gravedad Cuántica, informática, Matemáticas, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: