TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Neutrinos’

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10?8 s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle\pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión p? está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})

Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\ \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2  (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle m^2(\nu_e) = -130 \pm 20 \; eV^2  (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0  (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}  (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}  (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle E^2 \;\textless\; p^2 c^2

(6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle E = mc^2 \cosh \tfrac{v}{c}  (7)
\displaystyle p = mc \sinh \tfrac{v}{c}  (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle \frac{x^2}{a}-\frac{y^2}{b}=1  (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle \cosh^2 u -\sinh^2 u =1  (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\  \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)  (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\  \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)  (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle E^2- p^2 c^2 = - m^2 c^4  (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c4. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c4.
Analicemos brevemente una desintegracion de Michel para un muón: michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\ E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\  p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\  p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\  0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}  (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle p = mc\cosh \left(\frac{v}{c}\right) \\ \\  = mc\cosh 0 = mc  (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un pequeño apunte sobre el Premio Nobel de Física 2015: oscilación de neutrinos

Posted by Albert Zotkin en febrero 4, 2016

El año pasado la Real Academia de las Ciencias de Suecia entregó el Premio Nobel de Física 2015 al japonés Takaaki Kajita y al canadiense Arthur B. McDonald “por el descubrimiento de las oscilaciones de neutrinos que demuestran que estas partículas subatómicas tienen masa” (Rey Carlos Gustavo de Suecia entrega los Premios Nobel 2015).

Los neutrinos son unas minúsculas partículas elementales que no poseen carga eléctrica, pero poseen algo extraño llamado sabor (flavor). Existen tres clases de sabores, electrónico, muónico y tauónico. Es decir, estas diminutas partículas son como unas pequeñas chuches de tres colores o sabores. neutrinos1

Viajan por el espacio a velocidades ultrarápidas y casi constantes, sin que a penas se vean frenadas ni desviadas al atravesar la materia. Se ha calculado que por cada centímetro cuadrado de la superficie terrestre pasan unos 6.5 × 1010 neutrinos por segundo procedentes del sol (para superficies que apunten hacia él). Se sabe que los neutrinos que salen del Sol son todos de sabor eléctrónico, pero al ser detectados algunos en la Tierra se comprueba que hay de los tres sabores en diferentes proporciones. Eso quiere decir que durante su viaje hacia la Tierra algunos neutrinos eléctrónicos oscilaron y se convirtieron en muónicos o tauónicos. Pero para que un neutrino pueda oscilar necesita tener masa, por muy pequeña que esa sea.

Sorprendentemente, hay muchas evidencias de que el cuadrado de las masas de los neutrinos es negativo. Eso es bastante exótico, por no decir intrigante. ¿Qué significa que los cuadrados de las masas de los neutrinos sean valores negativos?. Pues sencillamente que dichas masas son números imaginarios (números complejos puros). Y la primera consecuencia de eso es que son partículas que viajan a una velocidad superior a la de la luz en el vacío. ¿Por qué ocurre eso?. En los experimentos diseñados para medir las masas de los neutrinos, se obtienen esos resultados porque se usan los formalismos matemáticos de la Relatividad Especial. Más exactamente sus relaciones de dispersión entre energía total (E) y momento (p):

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E = m_0 c^2 \gamma \\ \\  \gamma = \cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} (1)
La energía total E es siempre un escalar, un número real positivo. Si una partícula supera la velocidad de la luz en el vacío, v>c, entonces desde la Relatividad Especial de Einstein se obtiene un factor de Lorentz γ imaginario. Pongamos primero el factor de Lorentz de esta forma:

\displaystyle\gamma=\cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} = \cfrac{1}{\sqrt{-1}\sqrt{\frac{v^2}{c^2}-1}}= \\ \\  = \pm \cfrac{i}{i^2 \sqrt{\frac{v^2}{c^2}-1}}=\mp \cfrac{i}{\sqrt{\frac{v^2}{c^2}-1}} (2)

porque \sqrt{-1}=\pm i

y eso significa que, si asumimos que la energía total es siempre un escalar positivo, la masa de un neutrino será un número imaginario (o lo que es lo mismo, un neutrino es un tachión):

\displaystyle E= m_0 c^2 \gamma \\ \\  m_0 \gamma = \frac{E}{c^2} \\ \\  m_{\text{neutrino}}= m_0  i (3)
Observamos con estupor cómo la Relatividad Especial no es la mejor teoría del mundo para analizar la cinemática ni la dinámica de partículas superlumínicas. Para analizar mejor ese tipo de partículas, de las que los neutrinos parecen formar parte, he desarrollado las siguientes relaciones de dispersión que se enmarcan dentro de la Relatividad Galileana. La energía total de una partícula con masa en reposo m0 es :

\displaystyle E = m_0 c^2 \cosh\left( \frac{v}{c}\right) (4)

y su momento lineal viene expresado así:

\displaystyle p= m_0 c \sinh \left( \frac{v}{c}\right) (5)
Esto implica, ni más ni menos, que la relación energía-momento sigue poseyendo la misma forma que la de la Relatividad Especial, pero con el significativo hecho de que no existe ninguna velocidad superior límite:

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E^2 -(pc)^2  = m_0^2c^4  \\ \\   m_0^2c^4 \cosh^2 \left( \frac{v}{c}\right) -  m_0^2c^4 \sinh^2 \left( \frac{v}{c}\right) = m_0^2c^4 \\ \\   \cosh^2 \left( \frac{v}{c}\right) -   \sinh^2 \left( \frac{v}{c}\right) = 1 (6)
que es estricta y matemáticamente la relación existente entre coseno y seno hiperbólicos. Vemos desde esta Relatividad Galileana, cómo cuando una partícula iguala la velocidad de la luz en el vacío, su energía total no es infinita, como predice la Relatividad Especial, sino que es un escalar finito:

\displaystyle E_c = m_0 c^2 \cosh\left( \frac{c}{c}\right) = m_0 c^2 \cosh 1 = \\  E_c = m_0 c^2 1.543080634815243778477905620757061682601529112365[9] (7)
Los neutrinos pueden ser tratados desde esta teoría de una forma más natural que desde la Relatividad Especial. Es decir, ya no surge ninguna masa imaginaria, es todo real y natural. Las predicciones teóricas con estos nuevos formalismos se ajustan a los resultados experimentales de la misma forma que las de de la Relatividad Especial. Dicho de otro modo, no hay, hoy por hoy, con la tecnología actual más avanzada, forma alguna de llegar a un punto donde se pueda afirmar con rotundidad que el experimento diferencia entre una y la otra teoría. Para poder distinguir experimentalmente una predicción entre estas dos teorías antagónicas, habría que poder discriminar con precisiones de medida tales que, a partir de un punto, el valor del factor relativista de Lorentz y el del coseno hiperbólico de la beta, β = v/c, fueran visiblemente distintos. Esto encierra una discriminación en expansiones de series de Taylor como la siguiente:

\displaystyle \cosh \beta =1+\frac{\beta ^2}{2}+\frac{\beta ^4}{24}+\frac{\beta ^6}{720}+\frac{\beta ^8}{40320}+\frac{\beta ^{10}}{3628800}\dots \\ \\  \gamma = 1+\frac{\beta ^2}{2}+\frac{3 \beta ^4}{8}+\frac{5 \beta ^6}{16}+\frac{35 \beta ^8}{128}+\frac{63 \beta ^{10}}{256}\dots (8)
Es decir, para poder afirmar que una de esas dos teorías pasa el test experimental y la otra no, habría que alcanzar una precesión experimental tal que se discriminara entre las cuartas potencias de la beta, β = v/c: cosh
Alguien escéptico de lo que aquí afirmo podría decir que en el acelerador de partículas más puntero, el LHC, se alcanzan velocidades del orden de v = 0,999999991c, que equivale a un factor de Lorentz de γ = 7460. Por lo que en ningún caso se observan velocidades superlumínicas. Pero, eso no es exactamente así, porque lo que se miden en el LHc no son velocidades, sino energías y momentos. Las velocidades de los protones que circulan por el LHC son deducidas teóricamente aplicando los formalismos matemáticos de la Relatividad Especial. En modo alguno, esas velocidades son medidas directamente. Veamos qué velocidad predice la Relatividad Galileana cuando aplicamos sus formalismos expresados arriba en (4) y (5), para una energía total de un protón de 7 TeV:

\displaystyle v = c\; \text{arcosh} \left( \cfrac{E}{m_0 c^2}\right) (9)

La masa del protón es m_0 = 938.3\; \text{MeV}/c^2. Por lo tanto, m_0 c^2 = 9.383 \times 10^{-4} \; \text{TeV}. Esto da un valor para la velocidad de:

\displaystyle v = c\; \text{arcosh} \left( \cfrac{7}{9.383 \times 10^{-4}}\right)=9.6105\;c (10)
Pero volviendo al tema de la velocidad de los neutrinos, hace ya algunos años se hizo un experimento para medir dicha velocidad, y el resultado fue muy polémico, ya que concluía que antineutrinos muónicos daban velocidades ligeramente superior a la de la luz en el vacío. Este experimento se llamó OPERA, y afirmaba haber medido velocidades superlumínicas en un chorro de antineutrinos muónicos emitido desde el CERN hasta Gran Sasso, viajando una distancia de 730 km. Se observó con sorpresa que dichos neutrinos llegaban antes que si viajaran a la velocidad de c = 299792458 m/s. Esa desviación respecto de c correspondía exactamente a:

\displaystyle \cfrac{v-c}{c}=2.37\pm 0.32 \times 10^{-5} (10)
Esa es una desviación demasiado grande respecto a c, por lo que indicaría que la Relatividad Especial está acabada. Mucho mas tarde se “comprobó” (lo pongo entre comillas porque siempre queda un olorcillo conspiratorio) que todo se debía a un error sistemático. Se comprobó que un cable de fibra óptica mal conectado era el responsable principal de esa desviación. ¿Cuál es el problema de todo esto?. El problema del cable mal apretado consiste básicamente en que no es ciencia es sólo tecnología, y eso da pie a que la conspiración aflore de forma natural. ¿Cuántos notarios constataron que el cable estaba mal apretado?. ¿Cuántos testigos había en el momento en que se descubrió que un cable estaba mal conectado?. Eso no es ciencia, es tecnología llevada al juzgado de guardia. Por eso, siempre está la sombra de la sospecha de la conspiración para dar carpetazo al tema de la velocidad de los neutrinos. Todos nos creemos que los neutrinos no superaron nunca la velocidad c, la Relatividad Especial permanece tan válida como siempre, y todos tan contentos. A nadie se le volverá a ocurrir nunca repetir ese experimento con los cables bien apretados, no sea que vuelva el fantasma de la velocidad superlumínica, y entonces haya que ver a qué aparato endosamos el error sistemático para que la eterna Relatividad Especial siga siendo nuestra única teoría.

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin en agosto 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Sorprendente correlación de los eventos de dos neutrinos UHE descubiertos recientemente

Posted by Albert Zotkin en octubre 19, 2012

IceCube observó hace poco dos eventos de neutrinos ultraenergéticos (UHE) que rondan energías totales cercanas a los 2 PeV (recordemos que 1 PeV es un peta-electron-voltio = 106 GeV). El primer evento ocurrió el 9 de Agosto de 2011, y el segundo evento el 3 de Enero de 2012. En este caso me resultó muy fácil localizar la fuente de esos dos neutrinos ultraenergéticos.

Para el primer neutrino de esa clase, observado el 9 de agosto de 2011, existe una fuerte correlación con una erupción solar de clase X de la mancha solar 1263, correspondiente al Nuevo Ciclo Solar 24. En cuanto al segundo neutrino ultraenergético, observado el 3 de Enero de este 2012, existe también una fuerte correlación con otra erupción solar, en este caso de la mancha solar AR1389.


Los eventos que graba el telescopio de neutrinos AMANDA-II vienen en un formato muy específico, incluyendo campos como declinación, ascensión recta, resolución angular, año, día UTC del año, y segundo UTC del día,…, entre otros campos. Cuando publiquen los datos completos de los eventos de 2011-2012 podremos saber la fecha exacta con hora, minuto y segundos, de estos dos eventos correspondientes a dos neutrinos ultra-energéticos. Será entonces cuando los incrédulos (haberlos haylos) puedan comprobar con sus propios ojos que las correlaciones son las que ya he apuntado, es decir que esos eventos se corresponden con erupciones solares puntuales muy intensas de manchas solares.

Mancha solar 1263

Mancha solar AR 1389

El tiempo me dará la razón.

Posted in Astrofísica, Cosmología, Física de partículas | Etiquetado: , , , , , | 3 Comments »

 
A %d blogueros les gusta esto: