TARDÍGRADOS

Ciencia en español

Posts Tagged ‘leptones’

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin en agosto 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

La post-apocalíptica fórmula del Doctor Koide cabalga de nuevo

Posted by Albert Zotkin en diciembre 22, 2012

Amables y perdurables lectores. Una vez que hemos supervivido al apocalipsis Maya del 21 de Diciembre de 2012, he de reconocer que el ser humano es esa maravillosa criatura capaz de pervivir más allá de la muerte de los estultos. Queda aún lejos en el futuro el 9 febrero de 2027, próxima parada nupcial de la Novia Cadaver, fecha amanerada extraida de la Biblioteca de los Muertos, como inminente fetiche de la Escatología Glenn-Cooperiana.

Para quienes, después de superar un apocalipsis, aún sigan sin saber qué es la fórmula de Koide y por qué es importante para la física de partículas, les contaré un pequeño resumen wikipédico:

La Fórmula de Koide, descubierta en 1981 por Yoshio Koide, es una relación entre las masas de los tres leptones cargados (electrón, muón, leptón tau), que predijo la masa del leptón tau. Esta relación, no obstante, no ha podido ser explicada hasta la fecha.

\displaystyle   Q = \frac{m_e + m_{\mu} + m_{\tau}}{(\sqrt{m_e}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}})^2}

La salsa de esta fórmula está en su valor físico. Las masas del electrón, muon, y leptón tau se miden respectivamente como m_e = 0.511\ \rm{MeV}/c^2,\ m_{\mu}=105.7\ \rm{MeV}/c^2,\ m_{\tau} = 1777\ \rm{MeV}/c^2, de donde se obtiene que Q = \frac{2}{3} \pm 0.01 \normalsize  \mathrm{ \%}.
No sólo este resultado es extraño porque de tres números aparentemente aleatorios resulta una fracción sencilla, sino también porque Q es exactamente la media entre 1/3 y 1. Hasta ahora, este resultado no ha podido ser explicado ni comprendido.

Seguidamente ofreceré una interpretación geométrica de la fórmula, y una explicación en un contexto non-mainstrean (no estándar, no oficial) de relatividad Galileana Extendida (Completa).

Empecemos por la interpretación geométrica. El teorema de Descartes dice que si cuatro circulos son tangentes dos a dos en seis puntos distintos, y dichos círculos tienen curvaturas k_1,\ k_2,\ k_3,\ k_4, dicho teorema establece que,

\displaystyle  (k_1+k_2+k_3+k_4)^2=2\,(k_1^2+k_2^2+k_3^2+k_4^2)

Sabemos que una curvatura k de círculo está definida así k=1/r, donde r es el radio de curvatura.

Nuestros sagaces post-apocalíticos lectores ya se habrán percatado de que las curvaturas k_i de cada uno de esos círculos cartesianos y las respectivas masas m_i de los leptones cargados se relacionarán así k_i=\sqrt{m_i}. Pero también se habrán percatado de dos pequeñas minucias sin importancia: que no existen cuatro leptones cargados en la naturaleza sino sólo tres, y que el número de Koide no es Q=1/2 sino Q=2/3.

Podriamos pagar el diezmo de esas dos pequeñas menudencias de la siguiente forma: primero, podriamos especular que existe un cuarto leptón de gran curvatura (gran masa) k_4 \approx \infty, y en tal caso dariamos por válido el número Q=1/2 (para esos cuatro leptones), con lo cual podriamos precedir la masa del cuarto leptón cargado desde la masa de los restantes. Dicha masa sería

\displaystyle   k_4 = k_1 + k_2 + k_3 \pm2 \sqrt{k_1 k_2 + k_2 k_3 + k_3 k_1} \\ \\   \sqrt{m_4}=\sqrt{m_e}+\sqrt{m_{\mu }}+\sqrt{m_{\tau }} \ \pm \ 2  \sqrt{\sqrt{m_e m_{\mu }}+\sqrt{m_e m_{\tau }}+\sqrt{m_{\mu } m_{\tau }}} \\ \\   m_4 = \rm{9321.84\  MeV} =  \rm{9.3\  GeV}

O tambien podriamos suponer un cuarto leptón de pequeña curvatura (pequeña masa) k_4 \approx 0
k5

Con lo cual, podriamos predecir una de las tres masas que son significativamente mayores a cero,

\displaystyle  k_3=k_1+k_2\pm2\sqrt{k_1k_2}.

pero, eso tampoco parece que se observe en la naturaleza. Sin embargo, si queremos insistir en esta interpretación geométrica, podemos usar la generalización del teorema a tres dimensiones. En general, tendremos el teorema de Soddy–Gosset para cualquier número de dimensiones espaciales,

\displaystyle  \left(\sum_{i=1}^{n+2} k_i\right)^2 = n\,\sum_{i=1}^{n+2} k_i^2

donde el caso k_i = 0 corresponde a un hiperplano. Y para n=3, obviamente tendremos,

\displaystyle  \left(\sum_{i=1}^{5} k_i\right)^2 = 3\,\sum_{i=1}^{5} k_i^2

pero, aplicado al caso de los leptones cargados, esto implicaría que deben existir cinco generaciones en lugar de las tres observadas. Recientemente el LHC ha descartado casi definitivamente que exista una cuarta generación de leptones cargados. Además, ahora el número de Koide sería Q=1/3 en lugar de Q=2/3 . El número observado Q=2/3 sugiere pues un número fractal de dimensiones espaciales, n=3/2, o también puede sugerir que el espacio tridimensional, donde residen los leptones cargados, posee dos caras o lados.

Los leptones, o más genéricamente los fermiones, se moverían simultáneamente por las dos caras de ese espacio tridimensional deshojado (two-fold). Una forma de visualizar eso sería dibujar una esfera intersectada por un plano ecuatorial que separa los dos lados o caras de ese espacio 3D + tiempo.

En cuanto a la explicación relativista, me he dado cuenta de que merece un post dedicado aparte porque hay que detallar minuciosamente todos los aspectos que entran en juego.

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , | Leave a Comment »

 
A %d blogueros les gusta esto: