TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Sol’

Tecnología alienígena: El proyecto Prometeo IA, o cómo hacer fuego en un desierto

Posted by Albert Zotkin en junio 14, 2018

Hola amigos de Tardígrados. Hoy voy a hablar de cómo hacer fuego en el desierto, pero no será un fuego ordinario, sino termonuclear de fusión. Efectivamente, las reacciones termonucleares de fusión se parecen mucho a esas reacciones químicas de combustión (oxidación-reducción) que llamamos fuego. La pregunta del millón es ¿porqué aún no se ha conseguido energía aprovechable de las reacciones termonucleares de fusión?. Las respuestas no son sólo de índole técnica o tecnológica, sino de fundamentos teóricos de la física y la química en relación al cuarto estado de la materia que llamamos plasma. Si la teoría ofreciera modelos muy concordantes con la realidad de la naturaleza del plasma, los problemas técnicos y tecnológicos a resolver serían menores. Por lo tanto, el problema principal radica en la teoría, o peor aún, en estar en la creencia absoluta de que la teoría actual es la correcta, y que todos los problemas son solo técnicos o tecnológicos.
Los primitivos seres humanos aprendieron a usar el fuego antes que a hacerlo partiendo de cero. Es decir, aprendieron a “robar fuego” natural, producido por rayos, y demás fenómenos naturales, y llevar ese fuego a otros lugares donde alimentar otros fuegos distintos al original, amontonando combustible (leña). Pero, hacer fuego desde cero es más complicado que el método del “robatorio“, y más si los materiales usados están húmedos. La dificultad actual que se presenta a la hora de iniciar una reacción termonuclear de fusión, que sea sostenible y aprovechable, se parece mucho a la dificultad de hacer fuego desde cero en un desierto helado, donde todos los materiales para la ignición y mantenimiento están húmedos o son inadecuados. Alguien podría pensar que si es posible iniciar una reacción termonuclear de fusión sostenible en el tiempo, se podría aplicar el método del “robatorio” para prender una especie de antorchas termonucleares con las que encender otros fuegos en otros sitios. Evidentemente, inyectando plasma, que está ardiendo termonuclearmente, en otras vasijas, se podrían multiplicar las hogueras, sin necesidad de encender desde cero cada una de ellas.

El Proyecto Prometeo IA: ¿En qué consiste muy esquemáticamente el Proyecto Prometeo?. Este proyecto tendría como misión, enviar una sonda espacial hacia el Sol, ponerla en una órbita excéntrica alrededor y muy próxima a él, para conseguir encender un reactor termonuclear (antorcha) y traerlo de vuelta a la Tierra, o dejarla en una órbita más accesible y cercana, una vez que arda de forma sostenible y segura. Sí, Prometeo era un titán que le robó fuego a los dioses para dárselo a la humanidad. La pregunta es ¿sería eso más fácil que iniciar en la Tierra una fusión termonuclear desde cero?. Si el problema que están intentando afrontar actualmente es cómo confinar plasma, sin que las paredes de las vasijas se fundan y hacer eso sostenible en el tiempo, en el Proyecto Prometeo IA el problema sería también el inverso, es decir, además de confinar plasma sería ver cómo evitar que el plasma del Sol destruya el reactor enviado a su atmósfera. El problema sería el inverso, es decir, cómo mantener controlado el plasma solar que rodea la sonda espacial, cuando esta se sumerge en su atmósfera, y dejar que sólo incidiera en ciertos puntos especiales donde la ignición podría tener lugar.
¿Sería viable el proyecto Prometeo IA, o sólo sería ciencia ficción?. De momento es sólo ciencia ficción. Muchas preguntas técnicas han de hacerse y responderse para empezar a vislumbrar la viabilidad de ese proyecto. Por ejemplo estas:
  • ¿Hasta qué profundidad en la atmósfera solar habría que sumergir la sonda para poder captar suficiente plasma, producir la reacción de su reactor interno, y una vez conseguido el fuego poder escapar intacta y regresar a órbitas más cercanas y amables para el ser humano?.
  • ¿Qué tipo de escudo plasma-dinámico podría evitar la destrucción total o parcial, o en el mejor de los casos, evitar averías técnicas al entrar en la atmósfera solar?.
  • ¿Sería suficiente sumergir la sonda hasta zonas puntuales de la corona solar, o habría que dejarla caer más abajo?.
  • ¿En su entrada, cómo soportaría la sonda las enormes presiones fotónicas que emanan de la fotosfera?. Para escapar gravitatoriamente del Sol, bastaría desplegar unas pequeñas velas solares.
  • ¿Para que la sonda pudiera escapar gravitatoriamente del Sol, bastaría desplegar unas pequeñas velas solares, o bastaría con la inercia de su trayectoria orbital hiper-elíptica?.

Saludos plasmáticos a todos
Anuncios

Posted in Energía renovables, Física de partículas | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Primer siglo sin Einstein en la Era de Acuario: El origen de la inercia

Posted by Albert Zotkin en enero 26, 2018

¿Es pronto aún para evaluar los estragos causados por las teorías de Einstein (la general y la restringida) en el árbol de la ciencia y la tecnología?. En realidad, el señor Einstein no tuvo toda la culpa de que sus teorías se implantaran como paradigma actual de la física teórica, y más concretamente de la física de la gravitación universal. De hecho, aún estamos sin saber qué es realmente la gravedad, y una teoría cuántica de la gravedad parece aún algo utópico de alcanzar. Ningún avance tecnológico se ha producido basado en los dictados de la Teoría General de la Relatividad de Einstein, y menos en la Restringida o Especial. Por ejemplo, la cacareada afirmación de que el sistema de geolocalización global GPS funciona gracias a que tiene incorporadas rutinas para hacer correcciones relativistas basadas en las teoría de Einstein es falsa. Se ha demostrado, no sólo que el GPS puede funcionar correctamente sin esas correcciones relativistas, sino que son innecesarias, y lo único que consiguen es complicar todo el proceso computacional para al final dar el mismo resultado que da la física clásica de Newton, aunque, eso sí, con el efecto Sagnac debidamente calculado y tenido en cuenta. Por cierto, un efecto Sagnac que las teorías de la relatividad de Einstein no pueden explicar, por mucho que se empeñen sus santones en convencernos de lo contrario.

Efectivamente, la relatividad de Einstein tiene santones (defensores a ultranza de sus dogmas) como cualquier religión o secta. La enrevesada matemática de la Relatividad General hace casi imposible, no ya para un profano, sino para cualquiera que se llame experto en la materia, usarla con éxito para el cálculo práctico de algo en concreto. Con las ecuaciones de Newton para la gravitación se puede llegar hasta resolver analíticamente el problema de los dos cuerpos, y el problema de los tres cuerpos hasta se puede resolver para ciertos casos y condiciones iniciales sin dar soluciones caóticas. Con la Relatividad General de Einstein es prácticamente imposible resolver nada, y un problema de multi-cuerpo, como es el de la gravitación a nivel de galaxias y cúmulos, se hace intratable ad infinitum. De hecho el legado de Einstein consiste en que gozamos de una serie de anomalías y paradojas que lo único que consiguen es poner palos en la rueda del progreso científico, porque se dedica mucho esfuerzo intelectual, de recursos humanos y económicos a falsar temas teóricos que lo único que consiguen es bloquear más aún las mentes hacia el entendimiento y el avance científico real. Ejemplo de esas anomalías es la llamada materia oscura, un conundrum que consume grandes cantidades de recursos para ser esclarecido (intentan por todos los medios descubrir las partículas de materia oscura). Pero no quieren darse cuenta, que la única forma real de resolver ese enigma consiste en desechar la Relatividad General y proponer un modelo mejor, otra teoría de la gravitación que prediga el mismo efecto, pero sin materia oscura, y que sea capaz también de predecir otros efectos gravitacionales explicados y/o inexplicados por la teoría reinante actual. El problema de desechar la Relatividad General es que está demasiado integrada en los fundamentos de la física actual, y desecharla implicaría derribar todo el edificio, y nadie está dispuesto a derribar su casa ni su centro de trabajo sin tener garantizado otro mejor al que acudir a trabajar o a vivir, en eso consiste la definición de paradigma.

Pero, la cuestión que me ha movido hoy a escribir este pequeño artículo no es otra que el tema de qué es la inercia, y como encaja dentro de la gravitación universal. A nadie se le debe ocultar el hecho de que a la física clásica de Newton se le escapan muchas cosas, porque el diablo está en los detalles, aunque básicamente la podemos considerar correcta. Una de las cosas que se le escapa es por qué existe la inercia. A menudo se dice que la ciencia debe describir hechos. nunca explicar sus causas. Pero, me parece a mi que eso lo dicen siempre aquellos ignorantes que son incapaces de saber las causas científicas. ¿Por qué es más importante saber las causas que describir sus efectos?. Por la sencilla razón de que sabiendo la causa puedes explicar más de un efecto. Es decir, una única causa puede ser el origen de muchos efectos diferentes, que aparentemente parecían inconexos. Por ejemplo, la física de Newton no predice correctamente el funcionammiento de un giroscopio, aunque a primera vista pudiera parecer lo contrario. Observemos con atención cómo el siguiente giroscopio, cuando está en funcionamiento, parece que sea capaz hasta de levitar:

En un giroscopio no sólo existe inercia giroscópica, también existe la llamada precesión y la llamada nutación. Pero todo esos efectos tienen una única causa. Una causa que, simple y llanamente, nos está diciendo que la gravedad posee una velocidad finita de propagación, aunque es muchos miles de ves más grande que la velocidad de la luz en el vacío.

Veamos ahora un bonito ejemplo de cómo la velocidad de la gravedad es finita y más grande que la de la luz. Desde hace ya más de un siglo se viene afirmando que la Relatividad General de Einstein predice con pasmosa exactitud la precesión extra del perihelio del planeta Mercurio que la física clásica de newton es incapaz de predecir. Eso es correcto, esa predicción es muy exacta, pero lo que a menudo se olvida, o peor aún se ignora, es que antes que Einstein ya hubo alguien, un tal Paul Gerber, que pudo predecir con la misma precisión, si cabe, lo mismo, aunque desde planteamientos muy diferentes. En su documento histórico “Die Fortpflanzungsgeschwindigkeit der Gravitation” publicado en Annalen der Physik, Vol. 52.¡, nos detalla minuciosamente todos sus pasos y fundamentos hasta llegar a su famoso Potencial Gravitatorio de Gerber, FG, cuya ecuación posee el siguiente aspecto

\displaystyle  \Phi_G(r)=-{\frac {GM}{r\left(1-{\frac {1}{c}}{\frac {dr}{dt}}\right)^{2}}} (1)
donde M es la masa del cuerpo central, r es la distancia del cuerpo test (de masa insignificante comparada con M) al centro de M, c es la velocidad de la gravedad, que en este supuesto de Gerber, coincide con la velocidad de la luz, y donde dr/dt es la velocidad radial del cuerpo test que gravita alrededor del cuerpo principal (Mercurio alrededor del Sol, por ejemplo). Y si expresamos esa ecuación desde una expansión binomial tenemos esta otra:

\displaystyle  \Phi_G(r)=-{\frac {GM }{r}}\left[1+{\frac {2}{c}}{\frac {dr}{dt}}+{\frac {3}{c^{2}}}\left({\frac {dr}{dt}}\right)^{2}  + {\frac {4}{c^{3}}}\left({\frac {dr}{dt}}\right)^{3} \dots  \right] (2)
El problema del Potencial de Gerber es esencialmente que sólo puede explicar las anomalías de precesión, pero otras predicciones de gravitación quedan bastante desdibujadas si se aplican esas ecuaciones Gerberianas. ¿Por qué?. De hecho la Relatividad General tuvo un éxito tan rotundo porque ofrecía respuestas muy revolucionarias para la época a todos esos efectos que aún permanecían inexplicados por la teoría clásica. Pero en el fondo existe algo mucho peor que todo eso. La Relatividad General venia a sustituir definitivamente a la Gravitación de Newton, ofreciendo afirmaciones sobre algo muy extraordinario llamado espacio-tiempo, y cómo una supuesta curvatura del mismo podía predecir todos y cada uno de los fenómenos y efectos conocidos y por conocer del universo entero. La mente humana quedó definitivamente seducida por algo encantador y de una belleza matemática sin igual. Sin embargo, a pesar de esa obnubilación del ánimo y la mente racional debida a las artimañas relativistas, aun es posible recuperar la sensatez racional y entrever de qué va todo esto.

El potencial de Gerber es básicamente el potencial gravitatorio de Newton pero con un factor de retardo debido a que la velocidad de la gravedad es considerada finita. Gerber, y después Einstein, nos dice que esa velocidad de la gravedad es igual a la velocidad de la luz, c. En cambio, Newton quedó estupefacto al verse forzado a admitir que su gravitación universal solo podía funcionar si la velocidad de propagación de la gravedad era considerada infinita, es decir, instantánea. Pues mire usted por donde, que no va a ser ni una cosa ni la otra, sino que en el termino medio está la virtud. Es decir, ni infinita ni la velocidad de la luz c, sino una magnitud intermedia que podría ser miles de veces c, según los casos. Y la razón de todo esto la tiene el momento cuadrupolar del Sol. Se lanzó de una forma demasiado aventurera la Relatividad General de Einstein a explicar la precesión extra del perihelio de Mercurio, sin que en principio se supiera cual era el momento cuadrupolar del Sol. De hecho, aún hoy en día se desconoce el valor exacto de ese momento cuadrupolar del Sol, y esa ignorancia hay que “agradecérsela” al paradigma actual, que nos impide hacer sustituciones en fundamentos de física teórica. Aceptar que la precesión observada del perihelio de Mercurio se debe enteramente al momento cuadrupolar del Sol sería enterrar definitivamente la Relatividad de Einstein. Algo tan revoluoinario y escrito con matemáticas tan bellas, tirado a la papelera por algo que nadie quería mirar de frente y con los ojos bien abiertos, preferían la sopa boba del dogmatismo irracional, que es la que les da de comer. Al final, siempre queda la física de Newton, pero alterada con factores, que según los casos explican y predicen todos y cada uno de los efectos y anomalías. Este momento cuadrupolar nos dice que el Sol al girar deja de ser una esfera perfecta y presenta cierto achatamiento en los polos, adquiriendo una forma oblonga, lo mismo que le pasa al planeta Tierra, pero de forma aún más pronunciada.

Presentemos ahora el momento cuadrupolar del Sol como factor de corrección aplicado a un potencial Newtoniano F(r): La formula general para los distintos momentos es la siguiente

\displaystyle \Phi(r) = -\frac {G M }{r}\left[1- \sum_{n=1}^{\infty} \left(\frac{R_s}{r}\right)^2 J_n P_n (\cos \theta)\right] (3)
En coordenadas polares (r, ?, f), donde Rs es el radio del Sol, Pn son polinomios de Legendre de grado n, y Jn son los distintos coeficientes para modelar las distorsiones de la esfera en sus diferentes grados. El momento cuadrupolar de grado 2, el J2, es el que explica casi en tu totalidad la anomalía del perihelio de Mercurio.

Ya empezamos a vislumbrar ciertas similitudes entre el potencial de Gerber, FG, expresado en las ecuaciones (1) y (2) y el potencial gravitatorio Newtoniano corregido F(r). Efectivamente, lo que para Gerber era un retardo gravitacional de la propagación, aquí es ahora un simple momento cuadrupolar. Por lo tanto, lo que antes era una velocidad de la gravedad igual a la de la luz c, ahora es aquí una velocidad Newtoniana instantánea, como clásicamente se ha de considerar, o también como una velocidad superlumínica muy superior a c. Es más que evidente que en las ecuaciones (1) y (2), el factor que está entre corchetes es una corrección multipolar del campo gravitatorio, y dentro de ella se encuentra el sumando cuadroplar que es muy significativo para el caso del Sol como cuerpo central respecto de la órbita de Mercurio. Por esa razón, la llamada gravedad de Gerber no puede ser aplicada para predecir otros efectos distintos, como la deflexión de la luz, etc, ya que, como digo, el factor entre corchetes sólo corrige la precesión de satélites alrededor de cuerpo central, y el campo gravitatorio sigue siendo el clásico Newtoniano.

¿Cuál es el problema?. Si el valor exacto del momento cuadrupolar del Sol sigue siendo desconocido, y a fecha de hoy sabemos que sigue desconocido, ¿en qué lugar queda la Relatividad General, si toda la anomalía de la precesión del perihelio de Mercurio puede ser explicada desde el conocimiento exacto del momento cuadrupolar del Sol y con sólo la física clásica de Newton?.

APÉNDICE: Y para aquellos incrédulos que aún se resisten a admitir que la velocidad de la gravedad es miles de veces mayor que la velocidad de la luz en el vacío, aquí va un pequeño apéndice final: Demostraré que la velocidad de la gravedad se puede deducir incluso observando un péndulo simple batiendo segundos en la superficie terrestre:

1. El potencial gravitatorio clásico en la superficie de la Tierra viene dado por la ecuación F = – GM / R, y la de la intensidad de la gravedad por g = G M / R2

2. Por otro lado, sabemos ya que el potencial gravitatorio puede ser expresado asi:

\displaystyle  \Phi= -\cfrac{G\ M}{R}= -\cfrac{c^4}{c_g^2}    (4)
donde c es la velocidad de la luz, y cg es la velocidad de la gravedad, en el sistema gravitatorio terrestre. Y eso indica que la intensidad de la gravedad se puede expresar también así:

\displaystyle  g= \cfrac{G\ M}{R^2 }= \cfrac{c^4}{R c_g^2}    (5)
3· Dispongamos ahora de un péndulo simple, de longitud de hilo L, en la superficie terrestre, que bata segundos. Su periodo de oscilación será:

\displaystyle   T=2\pi {\sqrt  {L  \over g}}\,  (6)
4· Sustituyendo g de ecuación (5) en ecuación (6), y despejando cg tenemos:

\displaystyle  c_g=\frac{T c^2}{2 \pi  \sqrt{L R }}  (7)
5. Y como hemos dispuesto el péndulo para que bata segundos, su periodo será de T = 2 s, por lo que la longitud de su hilo será:

\displaystyle      L = g\left( \frac {T}{2\pi } \right)^2  = 0.994 \;\; \text{m}  (8)
6. Simplificando la ecuación (7), y sin perder de vista el correcto análisis dimensional:

\displaystyle  c_g=\frac{c^2}{\pi  \sqrt{0.994  R }}  (9)
7. Sólo resta introducir los valores de las magnitude de c y R (radio de la Tierra) para saber la velocidad de la gravedad en la superficie terrestre.

\displaystyle  c = 3 \times 10^8\;\; \text{m/s} \\ \\  R = 6.378  \times 10^6 \;\; \text{m} \\ \\ c_g=\frac{(3 \times 10^8)^2}{ \pi  \sqrt{0.994  (6.378  \times 10^6) }}= 1.13778\times 10^{16}\;\;  \text{m/s} \\ \\ \\  c_g=3.79259\times 10^7 c  (10)
Es decir, si mis cálculos no son incorrectos, obtenemos, en la superficie de la Tierra, una velocidad de la gravedad igual a casi 38 millones de veces la velocidad de la luz c.

Saludos

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 24 Comments »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde f‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) ? x, cuando x << 1, y μ (x) ? 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol, \displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional, \displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND \displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz \displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz

Posted by Albert Zotkin en marzo 8, 2013

Ya dije en un antiguo post aquí que en la mecánica clásica existen referencias implícitas a fenómenos cuánticos.

Para la demostración necesitamos la siguiente interpretación de la mecánica cuántica:

la gravedad es un fenómeno no local cuántico que puede ser visto como un entrelazamiento cuántico de partículas con masa, de modo que cuando la función de onda colapsa se generan instantaneamente dos fuerzas distantes de igual magnitud pero opuestas en dirección. El colapso de la función de onda produce un nuevo entrelazamiento, y su función de onda asociada colapsará igualmente al cabo de cierto tiempo finito no nulo

¿Qué quiere decir esto?. Esto significa que aunque, la emergencia de las dos fuerzas gravitacionales opuestas, de igual magnitud, es instantánea, el proceso por el cual la función de onda asociada culmina en colapso no es un proceso instantáneo, sino que requiere cierto tiempo finito de propagación. Dicha propagación debe ser identificada con lo que se viene llamando la velocidad de la gravedad, la cual no es más que la velocidad de fase de una onda de materia (onda de De Broglie).

Desde esta interpretación de la mecánica cuántica, podemos expresar, por ejemplo, el potencial gravitatorio clásico V de la siguiente forma:

\displaystyle V= -\cfrac{G\ M}{r}= -\cfrac{c^4}{c_p^2} (1)
donde cp es la velocidad de la gravedad, y c es la velocidad de la luz en el vacio. Y si ahora recordamos la frecuencia de una onda de De Broglie y su longitud de onda podemos obtener la siguiente ecuación de dispersión:

\displaystyle v\ c_p = c^2 (2)
donde obviamente v es la velocidad relativa entre las dos partículas masivas que estan interactuando gravitacionalmente.

Veamos ahora un caso particular del problema de dos cuerpos. Este caso será el del sistema Sol-Tierra. Aplicaremos la ecuación (1) para hallar el potencial gravitatorio de la Tierra en el campo gravitatorio del Sol. Una vez calculado dicho potencial V, usaremos los siguiente datos para el cálculo de cp:

\displaystyle V = -886.205 \ \mathrm{km^2/s^2} \\ \\ c =  299792.458 \ \mathrm{km/s}         (3)

y el sencillo cálculo es como sigue:

\displaystyle c_p = \frac{c^2}{\sqrt{-V}}  \\ \\ \\ c_p = \mathrm{3.01908 \times  10^9 \ km/s} \\  \\ c_p = 10070.6 \ c (4)
Con lo cual queda demostrado fehacientemente que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz.


Apéndice 1: Parece ser que este pequeño post ha suscitado algunas colisiones con lo políticamente correcto. Es más que obvio que lo escrito por mí en este blog no está para sumar alabanzas a la ciencia oficial de lo políticamente correcto. Si mi puesto de trabajo dependiera de si hago o no una retractación de mis ideas (hipótesis) entonces estaría en el reino de los mainstreamófilos, pero ese no es mi reino ni mi caso. Dicho esto, paso a refrescar nuestra memoria sobre algunas nociones básicas respecto a la velocidad de fase y velocidad de grupo de una onda de De Broglie:

Una velocidad de fase de De Broglie, cp de un cuerpo de masa m es:

\displaystyle c_p = \cfrac{E}{p} (5)
donde E es su energía total y p es su momento lineal. Por ahora, no voy a entrar al trapo de usar una teoría concreta (por ejemplo la relatividad especial Einsteniana) para explicitar la energía total en función de la velocidad relativa y la masa del cuerpo en cuestión. Y no entro ahora a ese trapo porque es irrelevante de momento qué teoría se use para el propósito que aquí se considera.
Por otro lado la velocidad de grupo, v, de De Broglie es:

\displaystyle v= \cfrac{dE}{dp} (6)

Es decir, v es la derivada completa de E respecto de p.

Ahora alguien puede alegar que la velocidad de fase de De Broglie cp no es ninguna velocidad de la gravedad, y tal alegación sería muy políticamente correcta. En cambio, afirmar que cp es efectivamente lo que se viene llamando velocidad de la gravedad sí que es una hipótesis maravillosamente incorrecta políticamente, y por lo tanto muy fructífera.
Veamos ahora cómo se obtiene la ecuación de dispersión de De Broglie. Multiplicamos (5) y (6), para obtener:

\displaystyle v c_p = \cfrac{E}{p} \ \cfrac{dE}{dp} (7)
Lo extraordinario de la ecuación (7) es que toda teoría que pretenda predecir correctamente fenómenos de dispersión debe dar como resultado el siguiente:

\displaystyle v c_p = \cfrac{E}{p} \ \cfrac{dE}{dp} = c^2 (8)
Ahora entraré al trapo: veamos por ejemplo en el contexto de la Relatividad Galileana Completa , donde la energía total se expresa como E = m c^2 \cosh (v/c) y el momento lineal como p = mc \sin(v/c). Por lo tanto la velocidad de fase de De Broglie será:

\displaystyle c_p = \cfrac{E}{p} = \cfrac{m c^2 \cosh(v/c)}{m c\sinh(v/c)} = c \ \coth(v/c) (9)

y la velocidad de grupo sería:

\displaystyle v_g = \cfrac{dE}{dp} = \cfrac{m c^2 \sinh(v/c)}{m c\cosh(v/c)} = c \ \tanh(v/c) (10)

Por lo tanto en esta teoría la ecuación de dispersión resulta ser:

\displaystyle v_g c_p = c^2 (11)
indicando cláramente que vg no es la velocidad relativa v del cuerpo, sino otra cosa.
Entremos ahora al trapo de la relatividad especial. En esta teoría, la velocidad de fase de una onda De Broglie quedaría así:

\displaystyle c_p = \cfrac{E}{p} = \cfrac{m c^2 \gamma}{m v \gamma} = \cfrac{c^2}{v} (12)

Y la velocidad de grupo sería:

\displaystyle v_g = \cfrac{dE}{dp} = \cfrac{m v \gamma }{m \gamma} =v (13)
Vemos con extrañeza que en la teoría de la relatividad especial la velocidad de grupo, vg de una onda de De Broglie coincide con la velocidad del cuerpo que tiene asociada esa onda. En cambio en la teoría de la relatividad Galileana Completa no existe tal coincidencia. Por lo tanto el experimento para discriminar entre una y otra reside básicamente en discriminar entre estas dos expresiones:

\displaystyle \sinh  \tfrac{v}{c} (14)
\displaystyle \cfrac{1}{ \sqrt{ \frac{c^2}{v^2}-1}}  (15)

O lo que es lo mismo, el momento lineal en relatividad especial se expresa así:

\displaystyle p =  \cfrac{m c}{ \sqrt{ \frac{c^2}{v^2}-1}}  (16)

mientras que la relatividad Galileana nos dice que ese momento lineal es:

\displaystyle p = m c \sinh(\tfrac{v}{c})  (17)

Apéndice 2: Al lanzar la hipótesis de que la velocidad de la gravedad es precisamente la velocidad de fase de la onda de De Broglie asociada cada uno de los cuerpos del sistema gravitatorio estamos reinterpretando la mecánica cuántica. La primera evidencia que podemos señalar es que la luz posee aberración, mientras que la gravedad carece de aberración o los instrumentos de medida actuales son incapaces de apreciar alguna. ¿Qué significa que la luz tiene aberración y la gravedad no?. Parece indudable el hecho de que la luz tarda unos 8.3 minutos en llegar a la Tierra desde el Sol. Cuando vemos el sol en su posición aparente, en realidad está situado en una posición real avanzada de unos 20 segundos de arco. O sea, cuando transcurran esos 8.3 minutos, la posición aparente coincidirá con lo que ahora es su posición real. Y eso es equivalente a decir que la velocidad de la gravedad en el sistema Sol-Tierra es cp = 10070.6 c. Supongamos que el Sol es agitado por alguna fuerza titánica. ¿Cuánto tiempo tardará ese perturbación gravitatoria en ser sentida por los sismógrafos situados en el planeta Tierra?. Los que creen que los cambios gravitatorios se propagan a la velocidad de la luz responderán que dicha perturbación será sentida al cabo de 8.3 minutos, mientras que los que abrazamos la hipótesis de la variable oculta cp responderemos que tardará sólo unas 50 milésimas de segundo. O lo que es lo mismo, si esa sacudida fuera debida a que el Sol explotó como una supernova, la Tierra sería reventada por la onda acústica (onda gravitacional) en menos de 50 milésimas de segundo y después, al cabo de 8.3 minutos, sería abrasada por los rayos gamma de la supernova.

Posted in Relatividad | Etiquetado: , , , , , , , | 15 Comments »

 
A %d blogueros les gusta esto: