TARDÍGRADOS

Ciencia en español

Posts Tagged ‘Riemann’

Negacionismo del Big Bang, ¿qué es el tiempo?, elongación espacio temporal o mengua matérica universal

Posted by Albert Zotkin en octubre 6, 2016

Dicen que nuestro universo se expande. Peor aún, dicen que se expande aceleradamente, y nos muestran las evidencias. A menudo, en física y otras disciplinas, no sólo científicas, las evidencias son sólo interpretaciones o medias verdades. ¿Hacia dónde se expande nuestro universo?. Como la respuesta a eso es simplemente “hacia ningún sitio”, y como pretenden mantener como cierta la afirmación de que el universo se expande aceleradamente, sólo les queda argumentar que lo que se expande realmente es el espacio-tiempo, por lo que la materia que se encuentra enclavada en él formando cúmulos está en proceso de recesión relativa. Por lo tanto, la elongación espacio-temporal parece ser un hecho irrefutable, pero no, no es irrefutable. Ese supuesto hecho se basa en el desplazamiento hacia el rojo de las rayas espectrales de la luz de galaxias y cúmulos de galaxias que nos está llegando. Ese desplazamiento al rojo se interpreta como si fuera un efecto Doppler, y por lo tanto, se interpreta que existe una velocidad de recesión de cada galaxia que es aproximada y directamente proporcional a la distancia. Pero a mi me surgen muchas dudas sobre todas esas afirmaciones. La primera es si es cierto que el espacio-tiempo se expande y de forma acelerada ¿por qué han de separarse unas de otras las partículas materiales?. O dicho de otra forma. ¿Dónde y qué clase de ancla tiene cada partícula material clavada en ese espacio-tiempo para que sea arrastrada con su expansión?. Alguien puede argumentar con el ejemplo de un gas dentro de un recipiente. Si el recipiente se expande el gas se expande con él, enfriándose y disminuyendo su presión. Pero yo puedo argumentar también que ese gas se expande acompañando al recipiente porque las partículas de ese gas impactan y rebotan continuamente en las paredes del recipiente. Las partículas del gas intercambian calor continuamente con las paredes del recipiente. Pero, ¿dónde están las paredes de nuestro universo?, o peor aún, ¿alguien ha visto alguna vez que las galaxias reboten contra unas supuestas paredes universales?. Nuestro universo no posee bordes materiales, fronteras, barreras sobre las que impactar, colisionar. Parece ser un universo infinito espacial y temporalmente, por lo tanto, cualquier supuesta expansión del espacio-tiempo no arrastraría materia, no puede haber anclaje de la materia en el espacio-tiempo. Cuando matemáticamente sumas a infinito cualquier número real, sigue dando infinito.

big-bang-camelo

Esta reflexión nos lleva inexorablemente a la pregunta: ¿qué es el tiempo?. El tiempo es simplemente el método que utiliza nuestro cerebro para ordenar nuestras experiencias en la memoria. El tiempo es la acción de un librero numerando las páginas del libro de nuestra vida. Objetivamente, el tiempo no existe. En la naturaleza sólo hay presente, y no hay ni futuro ni pasado. Por esa razón los viajes en el tiempo (como los de las pelis de ciencia-ficción) son realmente imposibles. No se puede viajar a un tiempo futuro por la sencilla razón de que no se puede viajar hacia algo que aún no existe. Igualmente, no se puede viajar a un tiempo pasado por la sencilla razón de que ese tiempo pasado no existe. Evidentemente si pudieras viajar a un tiempo pasado te encontrarías con una duplicación de materia, salida de la nada. Pero no hay atajos ni caminos por los que pueda transcurrir la materia hacia tiempos pasados o futuros. Cuando los físicos teóricos actuales entiendan mejor qué es el tiempo y por qué el tiempo no es sólo esa cosa que miden los relojes, estarán en mejores condiciones de elaborar teorías más certeras sobre la naturaleza. Otra característica que define al tiempo es su inexorabilidad: dime cualquier fecha en el pasado y siempre es imaginable saber que esa fecha ocurrió realmente. Dime cualquier fecha en el futuro y te puedo asegurar que esa fecha llegará. Es como el juego de escribir un número real, siempre podemos escribir otro número real mayor o menor que ese. O al escribir dos números reales, siempre podemos encontrar otro distinto entre ambos. Por lo tanto, el tiempo es cuantificable, y para ello usamos los relojes.

Respecto a la pregunta ¿qué es el espacio?, cabe responder de una forma muy análoga a como lo hemos hecho con el tiempo. Pero el espacio no se nos presenta como el tiempo. Nuestros cerebros no ven al espacio como algo que transcurre, sino literalmenete como un recipiente donde están las cosas que percibimos. El tiempo pasa (siempre hay tiempo pasando, nunca se acaba), el espacio permanece. Percibimos el tiempo como algo dinámico y al espacio como algo estático. Pero ambas cosas son productos imprescindibles para ordenar nuestra experiencia.

¿Por qué percibimos el espacio como poseyendo tres dimensiones?. Cuando algunos físicos teóricos nos hablan de otras dimensiones espaciales extra, además de las tres clásicas (ancho, alto y profundo), para esconder su falta de evidencia científica, nos cuentan que esas dimensiones están como enrolladas sobre sí mismas, plegadas microscópicamente y por eso no podemos verlas. Todos sabíamos desde el principio, porque lo aprendimos bien, que lo que caracteriza a un sistema espacial de referencia es la ortogonalidad de sus ejes. Si una dimensión está plegada, retorcida microscópicamente, creo yo que no es una buena opción para un sistema espacial de referencia, porque ese “enrollamiento” no es precisamente la mejor definición de ortogonalidad. Evidentemente, nuestro espacio puede ser descrito matemáticamente mediante muchos ejes (no sólo tres) que no sean ortogonales, pero todos pueden ser reducidos a tres ejes ortogonales desde los que nuestras ecuaciones se simplifican drásticamente para describir lo mismo con igual éxito. El espacio que percibimos posee infinitas direcciones desde las que nos puede llegar el peligro o la salvación. Son infinitas direcciones por las que podemos huir del peligro, o estar alerta, por las que nos puede llegar el depredador a cazarnos. Nuestras tres dimensiones espaciales tienen mucho más que ver con las características de nuestro cerebro (de nuestra mente), que de algo externo. Nuestros antecesores, simios arborícolas, vivían casi todo el día encaramados a sus ramas, y el alimento lo conseguían desplazándose de rama en rama, al mismo tiempo que miraban en todas direcciones para estar alerta de los acechadores. Nuestro sentido de la vista es capaz de percibir con tres colores básicos de los que se derivan todos los demás. Eso es así por evolución natural. Nuestros parientes ancestrales necesitaban distinguir qué fruta estaba madura por su color, qué alimento era aparentemente comestible por su color y cual no. Del mismo modo que nuestro cerebro y nuestros órganos sensoriales han evolucionado para percibir todos los colores de las cosas que pueden ser expresados mediante esos tres colores básicos, una evolución similar se ha producido para percibir lo que llamamos el espacio. Al igual que los tres colores básicos desde los que podemos percibir cualquier otro color, nuestro cerebro percibe el espacio desde tres direcciones básicas, y cualquier otra dirección puede ser expresada mediante ellas. Así pues, cuando nos preguntamos por qué tres dimensiones espaciales, hay que preguntarse por qué tres colores básicos, y la respuesta es más de fisiología humana que de física universal.

El llamado espacio-tiempo, es pues un constructo, algo más teórico que real. Nuestro cerebro casa muy mal el espacio y el tiempo como un espacio de cuadro dimensiones. Nuestro cerebro no admite como muy natural que el tiempo sea un eje más como los otros tres ejes espaciales. Notamos muy bien qué es intuitivamente el tiempo, y por qué no puede ser una dimensión espacial más. La flecha del tiempo es algo muy subjetivo. El futuro es algo que aún no existe y por lo tanto no puede ser apuntado por ninguna fecha con certeza. El pasado es algo que ya no existe, y por lo tanto ninguna flecha pudo apuntar con certeza hacia nuestro presente.

Y por ultimo. ¿Qué hacemos con el Big Bang?. Puesto que toda la evidencia nos viene de supuestos desplazamientos al rojo de lineas espectrales, y que los santones del paradigma cosmológico actual se han encargado de darnos de comer ese fenómeno como si fuera un efecto Doppler cosmológico, lo que tenemos es un universo en creciente estampida. Pero si pensamos un poquito vemos, que ese efecto Doppler, que también se da en las diferencias de potencial gravitatorio, es simplemente algo relativo, de perspectiva, de horizonte, más que ningún supuesto Big Bang. La distancia a escala cosmológica produce sencillamente una diferencia de potencial gravitatorio, pero esa diferencia de potencial no significa ninguna expansión ni ningún alejamiento de las galaxias. Toda la materia permanecería esencialmente estática en nuestro universo, y lo único que cabría explicar es ¿por qué la distancia cosmológica produce diferencias relativas de potencial gravitatorio?. Cuando dibujamos la gráfica de un potencial gravitatorio producido por una masa puntal, lo solemos hacer como una curva en forma de campana invertida cuyos bordes se aproximan infinitamente hacia un eje horizontal, el cual marca un potencial nulo (potencial cero). Es decir, ese potencial es una curva gaussiana invertida, que posee valores negativos, y que se hacen menos negativos a medida que se aproximan al eje horizontal de potencial cero. Pero a escala cosmológica, esa linea de potencial cero podría ser más un arco de circunferencia que una recta real, por lo que además de las diferencias locales de potencial debido a la presencia cercana de materia, existirían diferencias relativas de potencial gravitatorio debido a la distancia.

Supongamos que un Radio de Hubble, es la mayor distancia cosmológica de la que nos puede llegar luz. Existe pues un horizonte cósmico, que podemos cuantificar de la siguiente forma: Supongamos que el potencial cosmológico es la superficie lisa de una esfera, y que los potenciales gravitatorios locales son pequeños montículos que destacan sobre esa superficie. Cuando nos situamos en un montículo se crea un horizonte desde el cual podemos percibir luz procedente de puntos de otros montículos. Si nos situamos en un punto de la superficie el radio de nuestro horizonte se reduce, y solo podremos ver luz procedente de montículos muy promimentes y cercanos. Pero, si nos situamos en una montaña de potencial local muy grande, nuestro horizonte para ver luz será muy grande. Esto resuelve la Paradoja de Olbers. En otras palabras, vemos el número de estrellas y galaxias que vemos por nuestra posición peculiar dentro de nuestra galaxia. Si estuvíéramos en una región remota, muy alejada de cúmulos grandes de materia, como son las galaxias, es decir, en una región muy cercana al potencial cero, veríamos muy pocas estrellas y galaxias en el cielo, menos de las que somos capaces de ver, porque nuestro horizonte observacional sería mas reducido.

Esto significaría que cuanto más cercanos estamos de una gran masa nuestro horizonte cósmico (observacional) será mas grande. Así, nuestra distancia al nuestro horizonte será:

\displaystyle  d={\sqrt {(R+h)^{2}-R^{2}}} \\ \\  s=R\arccos {R \over R+h} (1)
donde R el radio de Hubble, h nuestra altura local de potencial gravitatorio, s la distancia real al punto H, d la distancia tangencial que recorre la luz.

Figura 1

Figura 1

Esto significa que, según esta teoría del potencial cosmológico, que me estoy inventando, no sólo existe por la misma linea de vision el punto H del horizonte, sino otros más remotos, H1, H2, etc, si están situados sobre potenciales gravitatorios de cierta altura.

Luego en una esfera universal, sin defectos topológicos (como los campos gravitatorios locales), el potencial de deriva cósmica vendrá expresado por la ecuación:

\displaystyle  \phi (r) = c^2  \left (1-\sqrt {1- \frac{r^2}{R^2}}\right ) \\ \\   (2)

cuya gráfica es la siguiente:
hemi-circle

Obviamente, si r es muy pequeña respecto a R, ese potencial de deriva cósmica se reduce a cero. Y cuando r tiende a R, el potencial φ tiende a c². En un campo de potencial gravitatorio local, los valores son escalares negativos que crecen con la distancia hacia cero. Pero, en el campo de potencial de deriva cósmica los valores escalares son positivos y tienden con la distancia r hacia el cuadrado de la velocidad de la luz en el vacío.

Desde esa expresión explicita de potencial de deriva cósmica es fácil descubrir que el desplazamiento al rojo de las rayas espectrales de la luz de galaxias remotas es el siguiente:

\displaystyle  z=\frac{\Delta\lambda}{\lambda} = \exp\left( \frac{\phi (r)}{c^2}\right) -1 (3)
donde λ es la longitud de onda original (emitida), y Δλ es la diferencia entre la longitud de onda observada y la emitida. Y si queremos expresar la distancia r en función del desplazamiento al rojo z y del radio de Hubble, tendremos:

\displaystyle  z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\  \ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle  r = R\sqrt{2\ln (z+1)-\ln^2 (z+1) } (4)
Esto cambia drásticamente las distancias estándar calculadas hasta ahora para las galaxias y cúmulos remotos. Por ejemplo, se ha observado que los desplazamientos al rojo más grandes corresponden a unos extraños objetos remotos que se llaman cuásares. Estos extraños objetos nos ofrecen desplazamientos al rojo que van de z = 0.16 hasta z = 3.53. Lo cual, según mi hipótesis, implica distancias entre r = 0.524R y r = 0.875R.

Mi hipótesis tiene una serie de ventajas frente a las teorías del Modelo Cosmológico Estándar. En mi hipótesis:

  1. No existe recesión de galaxias y demás objetos remotos, sino que permanecen esencialmente en reposo. Ese desplazamiento al rojo se debe casi en su mayoría a la diferencia de potencial de la deriva cósmica. Después hay que sumar o restar otros efectos Doppler, debidos a potenciales gravitatorios locales, y/o a velocidades cinemáticas.
  2. La localización de la fuente emisora y la del observador en sus respectivos potenciales gravitatorios locales contribuyen al efecto de desplazamiento al rojo, ya que hay que calcular sobre la diferencia neta de potencial (sumando y/o restando potenciales locales y cinemáticos al potencial cosmológico).
  3. La Radiación de fondo de Microondas sería según mi hipótesis vulgares fotones emitidos mayoritariamente por átomos de hidrógeno procedentes de galaxias y cúmulos en el horizonte H, incluso más allá de él, en una franja cercana. Es decir de puntos H1, H2, etc, tal como los he dibujado en la figura 1.
  4. Los cuásares serían, ni más ni menos que galaxias y cúmulos con alta acumulación de materia y muy cercanos al horizonte cósmico H, pero dentro (no fuera) de la esfera de Hubble.
Por lo tanto, según mi hipótesis cosmológica, nuestro universo observable sería tan sólo un hemisferio de la gran esfera cósmica, esfera universal (no confundir con la esfera de Hubble), que tendría cuatro dimensiones espaciales. El otro hemisferio quedaría inaccesible, en su mayor parte, a nuestra observación de ondas electromagnéticas. Esa cuarta dimensión espacial es sobre la que se curva la linea de potencial cero. Es decir, nuestro universo (el observable y el no observable) sería simplemente la superficie de una hiperesfera de cuatro dimensiones espaciales.

figura 2 (Esfera universal)

Figura 2 (Esfera universal)

Si queremos traducir los potenciales a velocidades de recesión o viceversa debemos establecer la siguiente equivalencia, la cual es posible porque se usan coordenadas cosmológicas:

\displaystyle   \exp\left( \frac{v}{c}\right) =z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\   \frac{v}{c}=\ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle   v =c \ln (z+1) =  c \left(1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\ (5)
Por ejemplo. Se observó que la galaxia 8C1435+635 posee un corrrimento al rojo de z = 4.25, que es el más grande que se ha conseguido ver hasta ahora. Así desde el Modelo Estándar, ese desplazamiento correspondería a una velocidad de recesión de v = 0.93c. Pero, si usamos las coordenadas cosmológicas tenemos una velocidad de recesión de:

\displaystyle   v = c \ln (z+1) = = c \ln (5.25) = 1.70475 c (6)
es decir, una velocidad superlumínica. Y en terminos de diferencia de potencial cosmológico tendriamos:

\displaystyle  \Delta\phi = c^2\ln(z+1) = 1.70475 c^2 (7)
Por lo que esta lejana galaxía estaría algo más allá de nuestro horizonte cósmico. Pero nuestros telescopios la pueden ver porque es una gran acumulación de materia, ya que su altura de potencial gravitatorio sobresaldría un poco por encima de nuestro horizonte cósmico. Toda galaxia o cúmulo más allá de nuestro horizonte que no posea suficiente altura de potencial para destacar, sino que estuviera a ras de él. solo puede ser vista como formando parte de la Radiacíón Cósmica de Fondo. Esto significa que cuando una fuente emisora de luz cercana al horizonte posee poca altura de potencial, no sólo su luz nos llegaría con desplazamiento al rojo, sino con poca intensidad (pocos fotones), y cuanto más grande sea su potencial gravitatorio local más intensa veremos su luz y bien diferenciada del ruido de fondo cósmico.

Saludos

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Expansiones naturales completas de los productos de Euler

Posted by Albert Zotkin en septiembre 11, 2016

Hola amigos de Tardígrados. Siguiendo esta secuencia matemática, hoy vamos a ver cómo expresar un Producto de Euler, de tal forma que el índice del producto corra no únicamente sobre todos los números primos, sino sobre los sucesivos números naturales.

El primer caso que vamos a ver es el Producto de Euler asociado a función Zeta de Riemann. Este producto es:

\displaystyle  \prod _{p}(1-p^{-s})^{-1}=\prod _{p}{\Big (}\sum _{n=0}^{\infty }p^{-ns}{\Big )}=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\zeta (s)  (1)
donde el índice del producto corre sobre los sucesivos números primos. Ahora, aprovechando la función característica de los números primos que os presenté en el artículo anterior, vamos a ver cómo es posible hacer que el índice de ese producto infinito (porque sabemos que hay infinitos números primos) corra ahora sobre los sucesivos números naturales. Y la respuesta es simplemente esta:

\displaystyle  \prod_{p}(1-p^{-s})^{-1}=\prod_{n=1}^{\infty}(1-\chi _{{{\mathbb  {P}}}}(n)n^{-s})^{-1}=\zeta (s)  (2)
donde obviamente χP es la función característica de los números primos. Una forma inédita de expresar la función zeta de Riemann, parece, y descubierta por mi :P.Vemos también, que puesto que sabemos usar la función característica de los números compuestos (los números no primos), es posible definir una nueva función zeta relacionada con ellos, así:

\displaystyle  \zeta_{NP} (s)=\prod_{n=2}^{\infty}(1-\chi _{{{\mathbb  {NP}}}}(n)n^{-s})^{-1}  (3)
donde es más que obvio que la función caracteristica χNP es la de los números no primos. Y llegamos a la conclusión de que la función zeta de Riemann y esta ζNP están relacionadas por medio de algún tipo propiedad de complementariedad, que todavía no vislumbro. Esta peculiar función zeta χNP posee un polo en n = 1, por eso el índice del producto empieza a correr desde n = 2. Y lo primero que advertimos en la evaluación de dicha función es el notable y absolutamente increible resultado siguiente:

\displaystyle  \zeta_{NP} (2)= \frac{2}{\zeta(2)}= \frac{12}{\pi^2}  (4)

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , | Leave a Comment »

La hipótesis blanda de Riemann

Posted by Albert Zotkin en febrero 3, 2016

Anoche mientras me entretenía con algunas sumas parciales de la función zeta de Riemann, me di cuenta de algo muy curioso, cuyo enunciado voy escribir seguidamente a modo de conjetura (hipótesis): Si para la suma parcial

\displaystyle  \zeta_N= \sum_{n=1}^N \;\frac{1}{n^s}
el número complejo siguiente es una de sus raíces (ceros), z1 = σ + it, entonces este otro número complejo, z2, escrito en función del primero, posee la misma parte real:

\displaystyle  z_2  = - \cfrac{\log(\zeta_{N-1}(z_1))}{\log(N)}
Mi conjetura es que sólo si z1 es un cero de ζN, entonces

\displaystyle      \text{Re}(z_2) =  \text{Re}(z_1)=\sigma
A esta conjetura la llamo la Hipótesis blanda Riemann, y la vamos a ver en acción con dos sencillos ejemplos numéricos: Sea la siguiente ecuación:

\displaystyle      1+2^{-x}+3^{-x}=0

y uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle  z_1 =0.4543970081950240272783427420109442288880- \\       3.5981714939947587422049363529208471165604i

. Por lo tanto el número z2 será:

\displaystyle  z_2 = -\cfrac{\log(-1-2^{z_1})}{\log 3}
\displaystyle  z_2 = 0.4543970081950240272783427420109442288880- \\  2.1210302407654957970993444877464279628993i

Para la siguiente ecuación:

\displaystyle      1+2^{-x}+3^{-x}+4^{-x}=0

sabemos que uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle  z_1 =0.502684148750165679490952980864893319283 -\\  20.7799493688306204126178629816730434295i

. Por lo tanto el número z2 será:

\displaystyle  z_2 = -\cfrac{\log(-1-2^{z_1}-3^{z_1})}{\log 4}
\displaystyle  z_2 = 0.5026841487501656794909529808648933193 + \\  1.8818513403053486355205517469102906214

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Los ceros de las sumas parciales de la función zeta de Riemann cerca del inframundo

Posted by Albert Zotkin en enero 10, 2016

¿Sabes resolver la siguiente ecuación donde s es una variable compleja?:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=0 (1)
Esta ecuación es en claro ejemplo de ecuación trascendente, y no posee solución analítica (que sepamos). El lado izquierdo de esta ecuación es una suma parcial de tres sumandos de la función Zeta de Riemann, o lo que es lo mismo, un harmónico generalizado de orden 3:

\displaystyle H_{n,s}=\sum _{k=1}^{n}{\frac {1}{k^{s}}} (2)
En el límite n → ∞, el harmónico generalizado converge hacia la función Zeta de Riemann:

\displaystyle \lim _{n\rightarrow \infty }H_{n,s}=\zeta (s) (3)
Se ve a simple vista que el lado izquierdo de esa ecuación es una suma de exponenciales, es decir, no es un polinomio. Pero, podemos expresarlo mediante serie de potencias, por ejemplo, mediante series de Taylor, así:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=3+(-\log(2)-\log(3) z+\frac{1}{2} \left(\log(2)^2+\log(3)^2\right) z^2+\left(-\frac{1}{6} \log(2)^3-\frac{\log(3)^3}{6}\right) z^3+\frac{1}{24} \left(\log(2)^4+\log(3)^4\right) z^4+\left(-\frac{1}{120} \log(2)^5-\frac{\log(3)^5}{120}\right) z^5+\frac{1}{720} \left(\log(2)^6+\log(3)^6\right) z^6+\left(-\frac{\log(2)^7}{5040}-\frac{\log(3)^7}{5040}\right) z^7+\frac{\left(\log(2)^8+\log(3)^8\right) z^8}{40320}+\left(-\frac{\log(2)^9}{362880}-\frac{\log(3)^9}{362880}\right) z^9+\left(\frac{\log(2)^{10}}{3628800}+\frac{\log(3)^{10}}{3628800}\right) z^{10}+O(z)^{11}
He investigado algo esto y he visto que todo harmónico generalizado se puede expresar así:

\displaystyle H_{m,s}=\sum _{n=0}^{\infty } \sum _{k=2}^m  \frac{\log (k^n )(-s)^n}{n!} +1 (4)
Esto significa que la función Zeta de Riemann puede escribirse de la siguiente forma:

\displaystyle \zeta(s)=\sum _{n=0}^{\infty } \sum _{k=2}^{\infty} \frac{\log (k^n )(-s)^n}{n!} +1 (5)
Pero, intentemos saber cómo resolver la primera ecuación que escribí, la (1): Si la variable es compleja entonces esa ecuación posee infintas raices o ceros, y dos de esos ceros son (con alta precisión en número de dígitos) estos:

\displaystyle z_1 = 0.4543970081950240272783427420109442288880772534469111379406228046-3.598171493994758742204936352920847116560425746628839339842061185i\\ \\  z_2=0.4543970081950240272783427420109442288880772534469111379406228046+3.598171493994758742204936352920847116560425746628839339842061185i
Esos dos ceros, z1 y z2, son dos números irracionales, y presumíblemente sus infinitos ceros también lo sean.

Pero, intentemos contestar a la pregunta con la que abría este post.
¿Sabes resolver la siguiente ecuación donde s es una variable compleja?:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=0
Esa ecuación al ponerla en forma polinómica, posee grado infinito, como hemos visto arriba. Pero, ¿qué podemos decir de esta otra ecuación?:

\displaystyle 1+s^{-2}+s^{-3}=0 (6)
Esta ecuación parece más tratable de resolver analíticamente, ¿no?. Su raíces serían estas tres (una real y dos complejas):

\displaystyle s_1=-\left(\frac{2}{3 \left(-9+\sqrt{93}\right)}\right)^{1/3}+\frac{\left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{3^{2/3}}\\ \\ \\ s_2=-\frac{\left(1+i \sqrt{3}\right) \left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{2 3^{2/3}}+\frac{1-i \sqrt{3}}{2^{2/3} \left(3 \left(-9+\sqrt{93}\right)\right)^{1/3}}\\ \\ \\ s_3=-\frac{\left(1-i \sqrt{3}\right) \left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{2 3^{2/3}}+\frac{1+i \sqrt{3}}{2^{2/3} \left(3 \left(-9+\sqrt{93}\right)\right)^{1/3}}
La pregunta del millón es la siguiente. ¿Existe algún álgebra tal que podamos transformar la ecuación analíticamente intratable (1) en otra más tratable que se parezca mucho en la forma a la (6)?. La respuesta es sí. Afortunadamente, las bases para ese tipo de álgebra ya la descubrí anteriormenete en lo que llamé aritmética del inframundo y del ultramundo.

Partimos de la ecuación (1). y la expresamos mediante exponenciales de esta forma

\displaystyle 1 + e^{-x\log 2}+e^{-x\log 3}=0 \\ \\
ahora pasamos el 1 al lado derecho y aplicamos logaritmo neperiano en ambos lados:

\displaystyle  e^{-x\log 2}+e^{-x\log 3}=-1 \\ \\  \log(e^{-x\log 2}+e^{-x\log 3})=\log(-1)= i\pi \\ \\
y observamos que el lado izquierdo es literalmente la definición de infra-suma de grado -1, con lo cual nuestra ecuación inicial (1) queda al final así:

\displaystyle  \left(-x\log 2\right)\oplus \left(-x\log 3\right)=i\pi (7)
Si este álgebra poseyera las mismas propiedades que el álgebra de grado 0 convencional, podríamos atisbar una solución para esta última ecuación (7), recordando que la multiplicación de grado -1 es la suma convencional de grado 0. Así, sacando factor común (-x) y despejándola en el lado izquierdo, obtendríamos una hipotética solución de x:

\displaystyle  (-x) + \left(\log 2\oplus \log 3\right)=i\pi  \\ \\   (-x)  = i\pi \left(\log 2\oplus \log 3\right) \\ \\     x = \left(\log 2\oplus \log 3\right) - i\pi \\ \\     x = \log\left(e^{\log 2}+e^{\log 3}\right) - i\pi
\displaystyle x=\log\left(\frac{e^{\log 2}+e^{\log 3}}{e^{- i\pi}}\right)  (8)
Pero, sabemos que la ecuación (1) posee infinitas raíces (ceros), por lo tanto, la solución (8) debería incluir los infinitos cíclos mediante los múltiplos de . Así, una hipotética solución podría ser como la siguiente (aunque puede demostrarse fácilmente que esta solución que presento es incorrecta):

\displaystyle x_n = \log\left(\frac{e^{\log 2}+e^{\log 3}}{e^{- i\pi n}}\right)  \\ \\ \\ \\  x_n = \log\left( \frac{5}{e^{- i\pi n}}\right)   \\ \\ \\ \\  x_n=\log 5 - i\pi n

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

AL MENOS DOS QUINTOS DE LOS CEROS DE LA FUNCIÓN ZETA DE RIEMANN ESTÁN EN LA LÍNEA CRÍTICA

Posted by Albert Zotkin en diciembre 26, 2015

El siguiente artículo es una traducción que he hecho del documento titulado “AT LEAST TWO FIFTHS OF THE ZEROS OF THE RIEMANN ZETA FUNCTION ARE ON THE CRITICAL LINE“, cuyo autor es J. B. CONREY para la AMERICAN MATHEMATICAL SOCIETY. Exactamente el documento original puede encontrarse en BULLETIN (New Series) Volume 20, Number 1, January 1989. Y he añadido dos apéndices de mi cosecha para completar el post.

J. B. CONREY

La función zeta de Riemann, ζ(s), se suele expresar para una variable compleja s = σ + it de la siguiente forma:

\displaystyle \zeta(s)= \sum_{n=1}^\infty n^{-s}
En teoría de números es de crucial importancia la distribución de los ceros complejos de la función zeta de Riemann, ζ(s). Todos esos ceros caen dentro del intervalo 0 < σ < 1, y están simétricamente localizados por el eje real y por la línea crítica σ = 1/2. Riemann conjeturó en 1859 que todos esos ceros complejos están en la línea crítica; esa conjetura está aún sin probar, y es conocida como la Hipótesis de Riemann.
El número de ceros de ζ(s) en la región 0 < t < T de la banda crítica se expresa como N(T) y asintóticamente se ofrece así:

\displaystyle N(T) \sim   \frac{T}{2\pi}\log T
cuando T → ∞. En 1942 Selberg [8] probó que una proporción positiva de los ceros de ζ(s) están en la linea crítica; es decir, si N0(T) es el número de ceros de ζ(s) en el intervalo 0 < t < T que están en la línea crítica, entonces el resultado de Selberg nos dice que

\displaystyle \kappa = \liminf_{T \to \infty}   \frac{N_0(T)}{N(T)} > 0
donde κ es la proporción de ceros de ζ(s) que están en la línea crítica. (Fijémonos en que κ = 1 no implica la Hipótesis de Riemann.). Selberg no nos ofreció una cota numérica mínima para κ.
En 1973 Levinson [7] desarrolló un método nuevo y pudo probar que κ > 1/3. Heath-Brown [5] se dió cuenta, e independientemente de Selberg, de que el método de Levinson prueba como cierta la proposición más fuerte de que al menos 1/3 de los ceros de ζ(s) son simples y están en la linea crítica.

Nosotros extendemos el método de Levinson para probar el siguiente teorema:

TEOREMA 1. Al menos 2/5 de los ceros de ζ(s) son simples y están en la línea crítica.

El método de Levinson depende de la abilidad de ofrecer una fórmula asintótica para la media cuadrática en un segmento de linea vertical (a + it : Tt ≤ 2T)) de una combinación lineal de ζ(s) y sus derivadas multiplicadas por un molificador (aproximación a la identidad)

\displaystyle B(s) =\sum_{n \le y} \frac{b(n)}{n^s};
Aquí |1/2-a| \ll (\log T)^{-1} y los coeficientes de molificador se dan con:

\displaystyle b(n) =\mu(n) P \left ( \frac{\log y/n}{\log y} \right)
donde μ es la función de Möbius y P es un polinomio que satisface P(0) = 0 y P(1) = 1.
En el teorema de Levinson , la longitud y del molificador puede ser tan larga como T 1/2 – ε para un ε > 0 fijo y las apropiadas asíntotas pueden ser deducidas. La principal característica nueva del Teorema 1 es que y = T 4/7 – ε es admisible para cualquier ε > 0. El trabajo de Deshouillers y Iwaniec [4] sobre promedios de sumas de Kloosterman juega un papel crucial aquí. Su trabajo se basa en parte en la fórmula de la traza de Kuznetzov, la cual relaciona sumas de sumas Kloosterman con coeficientes de Fourier de las formas cuspidales de Maass.
Nuestro trabajo también implica dos resultados de densidad para los ceros de ζ(s) que son fuertes cerca de σ = 1/2. Sea N(σ, T) el número de ceros ρ = β + de ζ(s) para los que β ≥ σ y 0 < tT.

TEOREMA 2. Para cualquier ε > 0 tenemos que

\displaystyle N(\sigma, T) \ll_\epsilon T^{1-(8/7 - \epsilon)(\sigma-1/2)}\log T

uniformemente para σ ≥ 1/2.

Este teorema mejora el resultado de Jutila [6].

TEOREMA 3. Tenemos

\displaystyle \int_{1(2}^1 N(\sigma, T) d\sigma \le (0.0806 + o(1))T

cuando T → ∞.

Con esto perfeccionamos un poco el resultado de Balasubramanian, Conrey, y Heath-Brown [1].

Los detalles de la prueba del Teorema 1 están en [3].

Referencias
1. R. Balasubramanian, J. B. Conrey, and D. R. Heath-Brown, Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial, J.Riene Angew. Math. 357(1985), 161-181.
2. J. B. Conrey, Zeros of derivatives of Riemann’s xi-function on the critical line, J. Number Theory 16(1983), 49-74.
3. , More than two-fifths of the zeros of Riemann’s zeta-function are on the critical line, preprint.
4. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
5. D. R. Heath-Brown, Simple zeros of the Riemann zeta-function on the critical line, Bull. London Math. Soc. 11 (1979), 17-18.
6. M. Jutila, Zeros of the zeta-function near the critical line, Studies in Pure Mathematics, to the memory of Paul Turan, pp. 385-394 (Birkhâuser, Basel Stuttgart, 1982).
7. N. Levinson, More than one-third of the zeros of Riemann’s zeta-function are on o = 1/2, Adv. Math. 13 (1974), 383-436.
8. A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norskevid. Akad. Oslo 10 (1942), 1-59.
9. E. C. Titchmarsh, The theory of the Riemann zeta-function, (2nd ed.) Clarendon Press,Oxford, 1986.

Apéndice 1
Ceros de la función zeta de Riemann
Apéndice 2
Ramachandran Balasubramanian es uno de los genios vivos de las matemáticas, aunque no llega a la talla de Ramanujan (nadie llega a la talla de Srinivasa Ramanujan). Nació el 15 de Marzo de 1951, y es el actual director del Instituto de Ciencias Matemáticas en Chennai, India. Es principalmente conocido por sus profundas contribuciones a la Teoría de Números, que incluye la solución al número final g(4) del problema de Waring en 1986. Sus trabajos en momentos de la función zeta de Riemann son muy apreciados, y fue conferenciante plenario por la India en el ICM de 2010. Y fue becario del Institute for Advanced Study en Princeton durante 1980-81.

Conozcamos un poco a este curioso personaje dando una charla en unas jornadas conmemorativas del 50º aniversario de la creación del Instituto de Ciencias Matemáticas en Chennai.

Saludos 🙂

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Es la Hipótesis de Riemann un problema indecidible?: empecemos con la Conjetura de Collatz

Posted by Albert Zotkin en diciembre 11, 2015

Quizás la dificultad en resolver la Hipótesis de Riemann tenga que ver con el hecho de que pueda ser un problema indecidible. Si esa hipótesis (o conjetura) es cierta o no, pero sabemos que es indecidible, entonces nunca tendremos una prueba matemática de ella.

Podemos divagar un poco sobre este tema y presentar una conjetura menos compleja (aparentemente) que la de Riemann. Se trata de la Conjetura de Collatz, o tambien conocida como el problema 3n+1. Aquí tenemos un video de Eduardo Sáenz de Cabezón que nos la explica muy sencillamente:

Para esta conjetura se define la siguiente iteración:
flow1

es decir, tenemos una función sobre los enteros positivos definida así:

\displaystyle f(n) = \begin{cases} \tfrac{n}{2}, & \mbox{si }n\mbox{ es par} \\ 3n+1, & \mbox{si }n\mbox{ es impar} \end{cases} (1)

Por ejemplo, para n=2781 tendriamos la siguiente sucesión, la cual terminaría en el 1:


2781➞8344➞4172➞2086➞1043➞3130➞1565➞4696➞2348➞1174➞587➞1762➞881➞2644
➞1322➞661➞1984➞992➞496➞248➞124➞62➞31➞94➞47➞142➞71➞214➞107➞322➞161
➞484➞242➞121➞364➞182➞91➞274➞137➞412➞206➞103➞310➞155➞466➞233➞700➞
350➞175➞526➞263➞790➞395➞1186➞593➞1780➞890➞445➞1336➞668➞334➞167➞
502➞251➞754➞377➞1132➞566➞283➞850➞425➞1276➞638➞319➞958➞479➞1438➞
719➞2158➞1079➞3238➞1619➞4858➞2429➞7288➞3644➞1822➞911➞2734➞1367➞
4102➞2051➞6154➞3077➞9232➞4616➞2308➞1154➞577➞1732➞866➞433➞1300➞
650➞325➞976➞488➞244➞122➞61➞184➞92➞46➞23➞70➞35➞106➞53➞160➞80➞
40➞20➞10➞5➞16➞8➞4➞2➞1

Se sabe ya que la conjetura de Collatz es un problema indecidible, es decir, no se puede probar matemáticamente. Pero eso no quiere decir que la conjetura sea falsa o cierta.

Yo me he animado a crear una función tipo Collatz, que posee la siguiente forma:

\displaystyle h(n) = \begin{cases} 3n+1, & \mbox{si }n\mbox{ es par} \\ \tfrac{n+1}{2}, & \mbox{si }n\mbox{ es impar} \end{cases} (2)

Esta función tipo Collatz da, por ejemplo, para n=101:

101➞51➞26➞79➞40➞121➞61➞31➞16➞49➞25➞13➞7➞4

y para cualquier entero positivo siempre parece que tenemos que la sucesión termina en 4, no en 1 como la anterior. Pero, se trata de ver si la Hipótesis de Riemann es indecidible y qué relación tiene con la conjetura generalizada de Collatz. Lo primero que observamos en toda función de Collatz es que siempre entran en juegos los números pares e impares positivos. Y si nos fijamos, la sucesión de los números primos, nace precisamente de ir cribando los números pares y los números impares (y dentro de los impares se va cribando los múltiplos de 3, de 5, etc), como en la famosa Criba de Eratóstenes. Se me ocurre esta función de Collatz, donde los números primos tienen un papel central:

\displaystyle g(n) = \begin{cases} 3n+1, & \mbox{si }n\mbox{ es primo} \\ f(n), & \mbox{si }n\mbox{ no es primo} \end{cases} (3)
y donde f(n) es la función de Collatz que primero presenté (1). Esta función, así definida, parece que converge siempre hace el número 2, para cualquier n desde el que empecemos la sucesión. Por ejemplo, para n=2710, tendremos:

2710➞1355➞4066➞2033➞6100➞3050➞1525➞4576➞2288➞1144➞572➞286➞143➞430➞
215➞646➞323➞970➞485➞1456➞728➞364➞182➞91➞274➞137➞412➞206➞103➞
310➞155➞466➞233➞700➞350➞175➞526➞263➞790➞395➞1186➞593➞1780➞890➞
445➞1336➞668➞334➞167➞502➞251➞754➞377➞1132➞566➞283➞850➞425➞1276➞
638➞319➞958➞479➞1438➞719➞2158➞1079➞3238➞1619➞4858➞2429➞7288➞3644
➞1822➞911➞2734➞1367➞4102➞2051➞6154➞3077➞9232➞4616➞2308➞1154➞577➞
1732➞866➞433➞1300➞650➞325➞976➞488➞244➞122➞61➞184➞92➞46➞23➞70➞
35➞106➞53➞160➞80➞40➞20➞10➞5➞16➞8➞4➞2

o para n=3001, que es un número primo, tendremos la sucesión siguiente:

3001➞1624➞812➞406➞203➞610➞305➞916➞458➞229➞688➞344➞172➞86➞43➞130➞65➞
196➞98➞49➞148➞74➞37➞112➞56➞28➞14➞7➞22➞11➞34➞17➞52➞26➞13➞40➞
20➞10➞5➞16➞8➞4➞2

De igual forma que las anteriores funciones de Collatz, esta g(n), donde los números primos juegan un papel predominante, da lugar a otra conjetura que también es un problema indecidible, es decir, no se puede demostrar que para cualquier entero positivo n siempre se obtiene una sucesión que converge hacia el número 2. Puesto que la hipótesis de Riemann tiene mucho que ver con los números primos, parece evidente suponer que esta ultima conjetura de Collatz que he propuesto tenga algo que ver con la de Riemann. Y no resultaria una gran sorpresa el descubrimiento de que la propia Hipótesis de Riemann es simple y llanamente un problema indecidible.

Saludos

Posted in curiosidades y analogías, Matemáticas | Etiquetado: , , , , , , , , , , , , | Leave a Comment »

Un universo eterno y transfinito: una foliación conforme del espaciotiempo

Posted by Albert Zotkin en septiembre 7, 2015

Foliación transfinita de la conciencia de Ridley

Foliación transfinita de la conciencia de Ridley

Nuestro universo podría poseer la forma de una hiperesfera transfinita. Para ver esto fijémonos en lo siguiente (que ya traté en un post anterior). La serie infinita N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + … es divergente ya que su suma es N = ∞. Pero, puede ser regularizada, como demuestro en el link anterior, para dar una suma de N = -1/2. Es decir, la función Zeta de Riemann toma el valor -1/2 cuando la variable es cero:

\displaystyle   N = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +\dots = \zeta(0) =-\frac{1}{2}\\
Esta suma nos sugiere que el infinito matemático, ∞, en la recta real, coincide con el número real negativo -1/2, y -∞ coincidiría simétricamente con 1/2. Si partimos de un sistema de referencia cartesiano de dos dimensiones, tendremos que los dos ejes ortogonales podrían ser recorridos, partiendo desde el origen de coordenadas, en dos posible direcciones. Para el eje de abscisas, podríamos alcanzar el infinito, por el camino largo (hacia la derecha) hasta llegar al punto (-1/2, 0). O también podríamos alcanzar dicho punto, que representa al infinito, por el camino más corto (andando hacia la izquierda). Sin embargo, si andamos en dirección derecha, desde el origen o cualquier punto de abscisa positiva, (x,0), no podríamos llegar a los puntos situados entre el punto (-1/2, 0) y el (x,0) ya que el infinito actuaria como barrera infranqueable para seguir el camino y cerrar el círculo.

Saludos transfinitos a todos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Fractales, Gravedad Cuántica, informática, Matemáticas, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: