TARDÍGRADOS

Ciencia en español

Posts Tagged ‘efecto Doppler’

Meditaciones a cerca del efecto Doppler de las ondas de materia

Posted by Albert Zotkin en julio 26, 2015

Algo misterioso ocurre con las partículas con masa. Un electrón puede ser considerado como una partícula o como una onda, y eso depende de cómo dispongamos nuestros aparatos de medida en el experimento. El problema es que esa onda de materia parece estar deslocalizada respecto a la hipotética fuente que la genera. Según la hipótesis de De Broglie, las partículas poseen también una longitud de onda:

\displaystyle    \lambda = \cfrac{h}{mv}
donde h es la constante de Planck, m la masa de la partícula y v el módulo del vector velocidad. Por lo tanto, según esa ecuación, la longitud de onda de la partícula aumenta cuando disminuye la velocidad (el módulo del vector velocidad)., y disminuye cuando aumenta la velocidad. Pero lo mismo da que la partícula se aleje o se acerque al observador, esas variaciones de longitud de onda se dan siempre considerando el módulo del vector velocidad. Por lo tanto, vemos que para un posible efecto Doppler, esa ecuación nos dice poco, pues estamos acostumbrados a que las ondas de sonido o de la luz alarguen su longitud cuando la fuente que las genera se aleja de nosotros o acorte dicha longitud de onda cuando esa fuente se acerca. Pero, en las ondas de materia parece ser que esa variación sólo ocurre con la variación del módulo del vector velocidad, independientemente de que la partícula se aleje o se acerque al observador.

El experimento de Young (también llamado de la doble rendija) nos deja estupefactos cuando comprobamos una y otra vez que las partículas subatómicas (electrones, protones, neutrones, etc) se comportan como ondas cuando queremos conocer demasiado sobre sus trayectorias y estados. Eso quiere decir ni más ni menos que, intrínsecamente, las “partículas” subatómicas no son ni partículas ni ondas, sino todo lo contrario.

De Broglie descubrió que los cuerpos con masa se comportan como si fueran ondas, es decir, se propagan mostrando cierta longitud de onda o frecuencia (de algo que vibra, ¿campo de Higgs?, ¿Ëter?, ¿campo gravitacional?).

Seguidamente voy a demostrar que las ondas de materia sufren también el efecto Doppler. Y que la longitud de onda y la frecuencia de una onda de materia se expresan completamente de esta forma:

\displaystyle  \;\;\;f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)\;\;\;
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)

He demostrado muchas veces, por activa y por pasiva, que las fórmulas del efecto Doppler completo para una determinada frecuencia (o longitud de onda) electromagnética, se expresan así:

\displaystyle  f = f_0 \exp \left(\cfrac{v}{c}\right)  (1)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right)  (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Igualmente, para las ondas de materias debe existir un efecto Doppler similar. La velocidad de fase cph de una onda de materia, por ejemplo la de un electrón, se expresa como el cociente de su energía total dividida por su momento lineal:

\displaystyle  c_{ph} = \cfrac{E}{p}
En cuanto a la velocidad de grupo vg de dicha onda de materia sería la derivada de la energía total respecto del momento:

\displaystyle  v_{g} = \cfrac{dE}{dp}
La enegía total de una partícula con masa m y su momento lineal se expresarían así:

\displaystyle  E = mc^2 \cosh\left(\cfrac{v}{c}\right) \\ \\ \\  p = mc \sinh\left(\cfrac{v}{c}\right)
por lo tanto, la velocidad de fase y la velocidad de grupo se expresan así:

\displaystyle  c_{ph} = \cfrac{E}{p} = mc^2 \cfrac{\cosh(v/c)}{mc\sinh(v/c)} = c \coth\left(\cfrac{v}{c}\right) \\ \\ \\  v_{g} = \cfrac{dE}{dp}  = \cfrac{mc^2 \sinh(v/c)}{mc \cosh(v/c)}= c \tanh\left(\cfrac{v}{c}\right)
Todo esto está ya super demostrado (por activa y por pasiva). Ahora viene la parte novedosa. Sustituyamos la β = v/c en las fórmulas del efecto Doppler, por esta otra:

\displaystyle  \beta =\cfrac{v_g}{c_{ph}}
Esto significaría que el efecto Doppler quedaría expresado para ondas de materia en lugar de para ondas electromagnéticas, así:

\displaystyle  f = f_0 \exp \left(\cfrac{v_g}{c_{ph}}\right)  (3)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v_g}{c_{ph}}\right)  (4)

Pero es fácil ver que existe una relación de dispersión:

\displaystyle  v_g c_{ph} = \left(c \coth \frac{v}{c} \right) \left(c \tanh \frac{v}{c}\right) = c^2
con lo cual, las ecuaciones (3) y (4) quedarían así, si identificamos la velocidad de grupo de la onda de materia con la velocidad de la partícula, vg = v:

\displaystyle  f = f_0 \exp \left(\cfrac{v^2}{c^2}\right)  (5)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v^2}{c^2}\right)  (6)
Es decir, esta frecuencia f y esta longitud de onda λ ya no corresponden a ondas electromagnéticas, sino a ondas de materia. Y esto significa, ni más ni menos, que f0 y λ0 deben corresponder a la frecuencia y la longitud de Compton:

\displaystyle  f_0 = \cfrac{mc^2}{\hbar}  (7)
\displaystyle  \lambda_0 = \cfrac{\hbar}{mc}  (8)
Así, finalmente, tendremos que el efecto Doppler para las ondas de materia vendría expresado por estas dos ecuaciones:

\displaystyle  f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)  (9)
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)  (10)
CDQ. Con lo cual he demostrado lo que quería demostrar. Además, en estas dos ecuaciones del efecto Doppler de ondas de materia se ve muy claramente por qué la longitud de onda no depende de si la partícula se acerca o se aleja del observador. La causa de eso es porque la β está elevada al cuadrado, y por lo tanto el signo de v (negativo para alejamiento y signo positivo para acercamiento) no influye en el valor de ese efecto Doppler.

Sin embargo, la ecuación (6) no equivale a la ecuación que propuso de Broglie, λ = h/mv, cuando la velocidad de la luz c tiende a infinito, es decir, en el límite clásico (Newtoniano). Esta discordancia obedece al hecho de identificar la velocidad de grupo de una onda de materia con la velocidad de la partícula, lo cual no siempre es correcto. Para corregir ese hecho, simplemente sustituimos el momento lineal clásico, p = mv, por el relativista Galileano, p = mc sinh(v/c). Con lo cual la longitud de onda de una onda de materia quedaría así:

\displaystyle    \lambda = \cfrac{h}{mc \sinh(\tfrac{v}{c})}     11
de esta forma es fácil comprobar como:

\displaystyle     \lim_{c \to \infty} \lambda =  \lim_{c \to \infty}\ \cfrac{h}{mc \sinh(\tfrac{v}{c})} =\cfrac{h}{mv}

Y para la frecuencia, tendremos la ecuación:

\displaystyle    f = \cfrac{E}{h}=\cfrac{m c^2}{h} \cosh(\frac{v}{c})     12

Saludos

Anuncios

Posted in Física de partículas, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | Leave a Comment »

El mito de la expansión del universo: la anisotropía Doppler demuestra que la Teoria del Big Bang es un camelo, una pura patraña

Posted by Albert Zotkin en junio 30, 2015

Queridos y amables lectores de Tardígrados, hace tiempo que vengo reflexionando sobre el origen del universo, sopesando los datos científicos experimentales, y he llegado a una conclusión:

“Nuestro universo nunca tuvo un origen, ni de espacio ni de tiempo. Nuestro universo es estático, infinito en espacio y tiempo, nunca tuvo un principio, y nunca tendrá un final, y permanecerá eternamente idéntico a sí mismo”

Llegué a esta conclusión después de examinar minuciosamente el efecto Doppler que Hubble descubrió en galaxías y cúmulos galácticos distantes. Incluso el mismo Edwin Hubble siempre tuvo la duda de si atribuir ese efecto Doppler a un movimiento de alejamiento (recesión) o a otra causa, el tipo era un científico serio y el método científico le impedía afirmar rotundamente que el corrimiento al rojo de la luz de esas galaxias se debía sin duda a una velocidad cinemática de recesión. Pero, si no es un movimiento de recesión el que causa ese corrimiento hacia el rojo de la luz, ¿qué es?. La clave está en el modelo matemático que usemos para describir ese efecto Doppler. Hace ya mucho tiempo que descubrí que el mejor modelo matemático para describir el efecto Doppler, porque es autosimilar, es el siguiente:

\displaystyle f = f_0 \exp \left(\cfrac{v}{c}\right) (1)
\displaystyle \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right) (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Hay que advertir también que, la ley de Hubble, se ha convertido en una herramienta estándar para el cálculo de distancias de objetos distantes como galaxias, cúmulos galácticos o quasares. Tan es así que ya nadie discute si un corrimiento al rojo concreto corresponde a cierta distancia astronómica, lo dan por hecho. Es algo muy parecido a la famosa conjetura de Riemann respecto a los ceros de la función Zeta (se da por cierta la conjetura para extraer de ella teoremas a cerca de los números primos). La ley de Hubble, la cual relaciona (o mejor decir que correlaciona) la distancia r con la supuesta velocidad de recesión v, resulta en una ecuación lineal de la siguiente forma

\displaystyle \exp \left(\cfrac{v}{c}\right)= \exp \left(\cfrac{r}{R_0}\right) \\ \\ \\ \\ v  = \cfrac{cr}{R_0}

donde la constante R0 se llama radio de Hubble, como no podía ser de otra forma.

exp

Pero, pensemos un poquito. Seamos un poco escépticos y no nos creamos a pies juntillas que esa correlación lineal de que nos habla la ley de Hubble sea la verdad absoluta de la que no quepa ni siquiera dudar en ningún caso. Pensemos que nuestro universo (al menos nuestro universo observable) es básicamente estático y homogéneo, y que las galaxias y cúmulos de ellas se mueven con distintas velocidades relativas unas de otras, como las partículas de un gas. Pensemos, sólo por un momento, que nuestro universo (observable) no se está expandiendo y por lo tanto una supuesta expansión acelerada sería aún más impensable. Entonces al aplicar nuestra fórmula de doppler (1), observamos algo inédito: galaxias que en principio hemos dicho que se mueven con velocidades aleatorias, ahora resulta que los corrimientos al rojo son más pronunciados que los corrimientos al azul. Efectivamente, nuestra fórmula (1) produce, para un mismo valor absoluto de v, un mayor desplazamiento de la frecuencia. ¿Y qué importancia tiene esto?. Si ofrecemos esos datos a alguien para que, haciendo ingeniería inversa, reconstruya el puzzle y nos diga cuales eran las velocidades originales de cada una de las galaxias tabuladas, podria concluir erróneamente que dichas galaxias están dotadas mayoritariamente de velocidades de recesión si utiliza una fórmula Doppler distinta a la que hemos utilizado nosotros. Por ejemplo, si en lugar de las fórmulas (1) y (2), la cuales son completas porque son autosimilares, utiliza estas otras, la cuales son sólo una aproximación de primero orden de las anteriores:

\displaystyle f = f_0  \left(1+\cfrac{v}{c}\right)  (3)
\displaystyle \lambda = \lambda_0  \left(1-\cfrac{v}{c}\right)  (4)
llegará a la conclusión de que las galaxias (estadísticamente) se están alejando unas de otras. Pero, nosotros, que somos quienes hemos elaborado los datos iniciales, y se los hemos proporcionado a modo de acertijo, sabemos que las galaxias se mueven con velocidades aleatorias, tanto de acercamiento como de alejamiento. Sólo hay que pensar un poquito para darse cuenta de que todo esto de la expansión del universo es un camelo, producto de una alucinación por empecinarse en usar modelos matemáticos incorrectos.

Si, amigo lector de Tardígrados, el Big Bang nunca existió, ni la madre que lo parió tampoco. La expansión del universo es una patraña, un gran bulo que nos están metiendo. Cuando usas la Ley de Hubble para decretar a qué distancia debe estar una galaxia estás usando una herramienta ficticia que produce conclusiones engañosas. El método científico nos impide afirmar que sea siempre cierto que cuanto más alejada está una galaxia mayor es el corrimiento al rojo de su luz. ¿Qué pasa?. ¿Aún no te crees lo que te estoy contando?. ¿Aún piensas que, de verdad, el universo se expande y que, por lo tanto, una vez hubo un Big Bang?. Insistamos un poco más en todo esto. Desechemos la Ley de Hubble, de momento, como herramienta para catalogar distancias galácticas. Pensemos, como he hecho antes, que las velocidades de galaxias, quasares y cúmulos, se distribuyen uniformemente por el espacio como las partículas de un gas.

Pues bien, presentamos a nuestro investigador, una tabla con los corrimientos de una determinada longitud de onda, en concreto de la longitud de onda original λ0 = 486 nm (nanómetros). Esta longitud de onda corresponde a la linea verde-azulada del espectro del átomo hidrógeno para la transición que va desde n=4 a n=2. Es decir, la energía de ese fotón emitido en esa transición atómica es de 2.55 eV (electrón-voltios). Como digo, a nuestro investigador de astrofísica, le vamos a presentar una tabla con 1000 valores de corrimientos al rojo de esa longitud de onda λ0, que elaboraremos aplicando nuestra fórmula (2) de Doppler. Este es el gráfico de los puntos que representa las 1000 longitudes de onda:
f

El investigador, desde esta tabla, debe usar su fórmula Doppler para elaborar una tabla de velocidades. Y hemos supuesto ya que el investigador usará la fórmula Doppler incompleta (4). Con lo cual las velocidades que hallará serán las calculadas así:

\displaystyle \lambda = \lambda_0  \left(1-\cfrac{v}{c}\right) \\ \\ \\ \\  v=c\left(1-\cfrac{\lambda}{\lambda_0}\right) (5)
La tabla de velocidades que hallaría sería esta:
v1

Hemos asumido que la velocidad de la luz es c=1, y que las velocidades no superan dicha velocidad máxima. Observamos lo siguiente: aun siendo el número de velocidades de acercamiento hacia el observador aproximadamente igual al número de velocidades de recesión, vemos que las de acercamiento están más comprimidas en el intervalo [0, 0.6]. En cambio las velocidades de recesión están expandidas dentro de un intervalo más amplio, el [0, -1.6]. Si el investigador asume que la fórmula de Doppler empleada para deducir las velocidades es la correcta, entonces llegará a la conclusión de las galaxias que se alejan del observador lo hacen a mayor velocidad que las galaxias que se acercan.

Supongamos ahora que el investigador es muy avanzado y en lugar de la fórmula de Doppler anterior, y usa la fórmula del Doppler relativista siguiente, que se supone es más precisa:

\displaystyle \lambda = \lambda_0  \sqrt{\cfrac{1 - \tfrac{v}{c}}{1 + \tfrac{v}{c}}} \\ \\ \\ \\   (6)
la cual al resolver para v, tenemos ;

\displaystyle v= c\cfrac{\lambda_0^2 -\lambda^2}{\lambda_0^2 +\lambda^2} \\ \\ \\ \\   (7)

y el gráfico de velocidades para esa distribución de 1000 longitudes de onda sería este:
v2

Es decir, observando este último gráfico, el investigador vería incluso más distorsión que en el anterior, por lo que pensaría que las velocidades de recesión estarían en un intervalo incluso más amplio, el [0, -3.5], mientras que las velocidades de acercamiento estarían más apelotonadas en en intervalo [0, 0.5], casi apelotonadas alrededor del 0.

Por último, veamos qué ocurre cuando el investigador usa la misma fórmula Doppler que hemos usado nosotros para calcular la tabla de longitudes de onda que le hemos presentado. Es decir si usa la ecuación (2), las velocidades se deducen así:

\displaystyle v= -c\log\left ( \cfrac{\lambda}{\lambda_0} \right) \\ \\ \\ \\   (8)

y el gráfico para esta distribución de velocidades sería este:

v3

y observamos cómo estas 1000 velocidades se distribuyen al azar uniformemente en un único intervalo [-1, 1], con lo cual el investigador sólo podrá concluir en este caso que las galaxias se acercan o se alejan aleatoriamente, sin poder extraer ninguna correlación significativa.

Saludos

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments »

La Autosimilaridad Estricta Destroza la Consistencia Interna de la Relatividad Especial de Einstein

Posted by Albert Zotkin en octubre 12, 2013

Hola incondicionales de Tardígrados. Hoy voy a demostrar que la relatividad especial de Einstein es una burlería.
Desmostraré fehacientemente que el efecto Doppler de las ondas electromagnéticas es autosimilar estricto, y por lo tanto la relatividad especial, que pretende ser completa para todo sistema inercial, queda fuera de esa autosimilaridad estricta. Empecemos:

Sea una fuente de ondas electromagnéticas emitiendo a una frecuencia f0, y sea un detector que se aleja de la fuente a una velocidad v en el sistema de referencia de dicha fuente. Si dicha velocidad está muy proxima a c, entonces la relatividad especial afirma que la frecuencia medida en el detector será relativista:

\displaystyle  f = f_0 \sqrt{\cfrac{1- \frac{v}{c}}{1+\frac{v}{c}}}  (1)

y en mecánica clásica, el Doppler se calcula así:

\displaystyle  f = f_0 \left (1- \frac{v}{c}\right )  (2)
Dividamos ahora la velocidad v en dos mitades v = u + u, y situemos una antena retransmisora en el sistema de referencia intermedio que se mueve a la velocidad u respecto a la fuente, y el detector lo situaremos ahora en un sistema de referencia que se aleja del intermedio a la misma velocidad u. Puesto que la antena intermedia retransmite las ondas hacia el detector, entonces este recibe un Doppler compuesto (doble), que en mecánica clásica será

\displaystyle  f_1 = f_0 \left (1- \frac{u}{c}\right )\left (1- \frac{u}{c}\right ) =  \\ \\ \\ =f_0 \left (1- \frac{v}{2c}\right )^2  (3)
por lo tanto observamos que f1 no es igual a f de (2), y eso significa que en mecánica clásica el efecto Doppler no es autosimilar, y por lo tanto es incompleto. Pero, veamos ahora cómo es la predicción de la relatividad especial para este efecto Doppler doble,

\displaystyle  f_2 = f_0 \sqrt{\cfrac{1- \frac{u}{c}}{1+\frac{u}{c}}} \sqrt{\cfrac{1- \frac{u}{c}}{1+\frac{u}{c}}} =\\ \\ \\ = f_0 \cfrac{1- \frac{v}{2c}}{1+\frac{v}{2c}}  (4)
Vemos que f2 tampoco es igual a f de (1), y por lo tanto la relatividad especial predice un Doppler que no es autosimular, es decir sólo predice un Doppler incorrecto porque pretende ser completo. El Doppler completo debe ser autosimilar estricto. ¿Cómo conseguimos diseñar un modelo que prediga un Doppler completo, es decir, un Doppler autosimilar estricto?. Procedamos a elaborar ese modelo matemático.

Antes hemos dividido la velocidad v en dos partes iguales u. Dividamos ahora esa velocidad v en n partes iguales v = u + u + u + …. Compongamos las n partes desde la mecánica clásica, suponiendo que en cada sistema de referencia intermedio hay una antena retransmisora de la señal hacia la siguiente antena. Entonces tendremos que

\displaystyle  f_n= f_0 \left (1- \frac{v}{n c}\right )^n  (5)

Si ahora hallamos el limite de fn cuando n \to \infty, tendremos

\displaystyle  f = \lim_{n \to \infty} f_n= \lim_{n \to \infty} f_0 \left (1- \frac{v}{n c}\right )^n = \\ \\  = f_0 \exp\left(-\frac{v}{c}\right)  (6)
y vemos con agrado que (6) sí describe un Doppler autosimilar estricto, y por lo tanto es la fórmula del Doppler completo. Por si alguien se ha perdido algo, ¿qué significa que la ecuación (6) sea autosimular estricta?. Significa que la velocidad v a la que se mueve el detector respecto a la fuente, puede ser descompuesta en tantas velocidades intermedias como se quiera retransmitiendo la señal hacia adelante hasta llegar al detector en el último sistema de referencia, y el Doppler compuesto hallado siempre será igual al Doppler simple.

Y esto demuestra fehacientemente que la autosimilaridad estricta destroza la consistencia interna de la relatividad especial de Einstein, o lo que es lo mismo, la relatividad especial de Einstein es una burleria.

Saludos

Posted in Relatividad | Etiquetado: , , , , , | 16 Comments »

Breve indagación epistemológica de por qué la teoría de Relavidad Especial de Einstein es una falacia

Posted by Albert Zotkin en octubre 17, 2012

Las teorías de la relativad que nos propuso Einstein hace ya más de un siglo son casi pseudo-ciencia, y digo casi por ser algo generoso. Veamos a vuela pluma un sencillo ejemplo dentro del contexto de la relatividad especial.

La fórmula del efecto Doppler de las ondas electromagnéticas se escribe clásicamente como una aproximación de primer orden en la beta \beta = v/c  , así:

f = f_0 \left (1 + \cfrac{v}{c} \right)

Sabemos que esa ecuación sólo nos ofrece una aproximación válida para |v|\ll c  . Sin embargo, la correción relativista usa esa fórmula imperfecta para obtener una supuesta fórmula perfecta, multiplicándola por el factor de Lorentz,

f' = f_0 \left (1 + \cfrac{v}{c} \right) \gamma = f_0 \sqrt{\cfrac{1+v/c}{1-v/c} }

Euclides nos enseñó que la perfección se puede obtener de la imperfección sólo mediante un proceso infinito de integración desde lo infinitamente pequeño e imperfecto hacia la belleza de lo perfecto y finito. Es decir, solo desde una ecuación diferencial es posible integrar hacia el Doppler completo. Pero, si multiplicas la fórmula imperfecta del Doppler por el factor \gamma  , o por cualquier otro, lo único que obtienes es más imperfección.

La Relatividad Especial de Einstein usa las transformaciones de Galileo y les aplica el factor de Lorentz. Así la mayoría de las fórmulas de la Relatividad Especial son fórmulas clasicas de la Relatividad Galileana corregidas mediante ese factor de Lorentz. Pero, cuando se le dota a la Relatividad Galileana de todos los órdenes de aproximación, haciéndola completa, se convierte en una teoría de la relatividad muy poderosa, desde la cuál se podría obtener, si se deseara, la Relatividad Especial si se hacen algunas reducciones desde lo perfecto y completo hacia lo imperfecto e incompleto.

Es muy fácil ver que el factor Doppler clásico, \mathrm{D}(v) = 1+ \frac{v}{c}, modela incompletamente el efecto Doppler porque \mathrm{D}(v)\mathrm{D}(-v)\ne 1 . Efectivamente, vemos que \mathrm{D}(v)\mathrm{D}(-v) = (1+ \frac{v}{c})(1- \frac{v}{c})=1- \frac{v^2}{c^2}, que sólo se aproxima a 1 cuando v\rightarrow 0. Toda teoría de la relatividad que posea un factor Doppler con la propiedad \mathrm{D}(v)\mathrm{D}(-v)= 1 , para cualquier rango de v, posee también una relación momento-energía como la siguiente, E^2 -p^2c^2 =m^2 c^4 . Resulta por lo tanto sorprendente cómo en la Teoría de la relatividad Especial al multiplicar el factor Doppler clásico, que es incompleto, por otro factor (el factor de Lorentz), el resultado sea un factor Doppler completo. En la Relatividad Galileana Completa el factor Doppler Completo sólo se obtiene después de un proceso de integración del Doppler incompleto de primer orden, nunca mediante la multiplicación con ningún factor que sea función de v.

Posted in Relatividad | Etiquetado: , , , , , , , , | Leave a Comment »

El experimento de Pound y Rebka confirma que la Relatividad de Einstein es sólo una mala aproximación retorcida de la realidad – y se basa en graves malentendidos

Posted by Albert Zotkin en octubre 8, 2012

Históricamente el experimento de Pound y Rebka se pone como ejemplo de test para la relatividad de Einstein (ambas la Relatividad Especial y la Teoría General de la Relatividad), afirmando que dicho test verificó con éxito ambas teorías. En dicho experimento hay implicados dos efectos Doppler. El primer efecto es el llamado efecto Doppler gravitatorio, y el segundo es el efecto Doppler del movimiento relativo inercial. Cada tipo de efecto es modelado con sus propias ecuaciones. En este experimento, el objetivo era contrarrestar un tipo de efecto Doppler con el otro, de modo que las ondas electromagnéticas fueran medidas con una frecuencia igual a la original de emisión. Eso implicaba que si se emitian fotones desde lo alto de una torre hasta un detector situado abajo en el suelo, el efecto Doppler gravitatorio produciría un corrimiento al azul de dichos fotones, es decir, aumento de la frecuencia. Pero, si los fotones se situaban abajo en el terreno y fueran detectados en lo alto de la torre, la frecuencia medida sería menor, a causa del mismo efecto Doppler gravitatorio. Para conseguir el movimiento relativo inercial que produce el otro tipo de Doppler, se colocó la fuente emisora de fotones sobre el cono de un altavoz que vibraría a cierta frecuencia, produciendo así un movimiento oscilatorio que habría que ajustar y calibrar para la perfecta realización de la prueba. La distancia que los fotones debían recorrer era una altura de h = 22.6 \;\mathrm{metros} . Y el cambio fraccional de la energía de un fotón sería de \Delta E/E = gh/c^2= 2.5 \times 10^{-15} .

Desde la teoría de la Relatividad Galileana Completa, es muy fácil plantear los formalismos teóricos que modelan ese balance de los efectos Doppler. La diferencia de potencial que un fotón debe salvar es de \Delta \phi = gh , por lo tanto, el efecto Doppler gravitatorio se modela así:

f = f_0 \exp \left(- \cfrac{\Delta \phi}{c^2} \right )

donde obviamente, f es la frecuencia medida y f_0 la frecuencia original que se emite. De igual modo, y como ya sabemos, el efecto Doppler de movimiento relativo inercial, está modelado así:

f = f_0 \exp \left(\cfrac{v}{c} \right )

Como en el experimento de Pound y Rebka de lo que se trata es de contrarrestar ambos efectos de modo que la frecuencia observada coincida con la frecuencia original, compondremos ambas frecuencias, así:

f = f_0 \exp \left(\cfrac{v}{c} \right )\exp \left(- \cfrac{\Delta \phi}{c^2} \right )

y la frecuencia observada debe ser igual a la frecuencia original, f=f_0 , por lo que se ha de verificar que

\exp \left(\cfrac{v}{c} \right )\exp \left(- \cfrac{\Delta \phi}{c^2} \right ) = 1

y después de sencillos pasos algebráicos

\exp \left ( \cfrac{v}{c} -\cfrac{\Delta \phi}{c^2} \right ) = 1 \\ \\ \\  \cfrac{v}{c} -\cfrac{\Delta \phi}{c^2} =0 \\ \\  v = \cfrac{\Delta \phi}{c} \\ \\  v = \cfrac{gh}{c} \approx 7.5 \times 10^{-7} \; \mathrm{m/s}

Que es lo que experimentalmente se planteó como dato inicial, pues esa era la velocidad media a la que vibraba el cono del altavoz. Podemos comprobar de qué forma tan sencilla y natural ambos efectos se contrarrestan en este modelo que usa exponenciales.
Veamos ahora lo engorroso que resultan los formalismos para modelar lo mismo, pero en el contexto de la relatividad de Einstein. Para el efecto Doppler del movimiento inercial que modela la Relatividad Especial tenemos

f = f_0 \displaystyle \sqrt{\dfrac{1+ \cfrac{v}{c}}{1- \cfrac{v}{c}}}

y para el efecto Doppler gravitatorio usamos una ecuación que se obtiene de la Relatividad General,

f = f_0 \displaystyle \sqrt{\dfrac{1- \cfrac{2GM}{(R+h)c^2}}{1- \cfrac{2GM}{Rc^2}}}

donde M y R son la masa de la Tierra y su radio, respectivamente. Así, al contrarrestar ambos efectos Doppler, tendriamos,

\displaystyle\sqrt{\left (\dfrac{1+ \cfrac{v}{c}}{1- \cfrac{v}{c}} \right )\left ( \dfrac{1- \cfrac{2GM}{(R+h)c^2}}{1- \cfrac{2GM}{Rc^2}} \right )} =1

Esta brutalidad que hay escrita ahí arriba indica que el engorro es mayúsculo cuando usamos los formalismos de la relatividad de Einstein. Y esa brutalidad y fealdad en las expresiones matemáticas sólo nos puede indicar que hay más verdad en los formalismos empleados desde la Relatividad Galileana Completa que en los de la Relatividad de Einstein.
En está última y fea ecuación, se llega al resultado experimental si se considera una altura h\ll R , es decir se llega, aunque de forma muy aproximada, a la velocidad inercial

v \approx \cfrac{gh}{c} \approx 7.5 \times 10^{-7} \; \mathrm{m/s}

Además eso nunca será cierto si h se va aproximando a R . En cambio, en el contexto de la Relatividad Galileana Completa, esa predicción será cierta siempre para cualquier valor de h y de R .

Posted in Gravedad Cuántica, Relatividad | Etiquetado: , , , , , | Leave a Comment »

Deducción de la fórmula del Doppler Completo usando un telescopio reflector Newtoniano

Posted by Albert Zotkin en octubre 2, 2012

Consideremos un telescopio reflector newtoniano, por el que entra luz procedente de una fuente emisora que se aleja inercialmente por la misma linea de visión. La luz que refleja el espejo parabólico primario posee pues una frecuencia f, la cual, por el efecto Doppler, es  menor que la frecuencia original f0 que emite la fuente. Aceleremos ahora un diferencial de velocidad dv el espejo parabólico primario hacia el espejo central diagonal.

Eso significa que el espejo central diagonal está reflejando ahora luz hacia el objetivo con una frecuencia ligeramente mayor a f, es decir, esa frecuencia será f’ = f + df. Por lo tanto podemos escribir la siguiente ecuación diferencial y hallar su solución:

f+df = f \left(1 + \cfrac{dv}{c}\right) \\ \\ f+df = f + \cfrac{f\;dv}{c} \\ \\ df = \cfrac{f\;dv}{c} \\ \\ \cfrac{df}{f} = \cfrac{dv}{c} \\ \\ \ln \left (\cfrac{f}{f_0} \right) = \cfrac{v}{c} \\ \\ f = f_0\exp \left(\cfrac{v}{c}\right) \\ \\

Con lo cual hemos hallado la fórmula del Doppler completo.

En la ecuación diferencial inicial he usado la fórmula del efecto Doppler de primer orden de aproximación, es decir la clásica no relativista. Es importante recalcar que cuando se integra un diferencial de velocidad lo que se está haciendo es sumar infinitas cantidades infinitamente pequeñas, es decir, en el proceso de integración se está acelerando constantemente al sistema material, y al final de la integración el sistema material aceleró desde 0  hasta v  ,

\displaystyle\int \cfrac {dv}{c} = \cfrac{1}{c}\left(dv+dv+dv+... \right) =\cfrac{v}{c}

Alguien que se suponía entendido en la matería alegó que usar dicha fórmula de primer orden de aproximación para deducir una fórmula de Doppler completo no es correcto, porque desde ella  no es posible hallar ninguna fórmula que posea los infinitos órdenes. Por supuesto, dicha persona está muy equivocada al respecto. Ya Euclides demostró que es posible aproximarse al área de un circulo mediante rectángulos con la longitud de uno sus lados siendo un infinitesimal. En esta deducción, se aplica algo muy similar y que está en la naturaleza de la propia definición de integral. De hecho la solución hallada vemos que es un área. Dicha área es precisamente \beta=v/c  , que se corresponde con el área \ln(f/f_0)  .
Después vino otro supuesto entendido en la materia y afirmó que yo estaba muy confundido, porque lo que en esa fórmula aparece como \beta=v/c  es en realidad una  rapidez (rapidity). Esta persona me indicó que lo que yo llamo velocidad v  es en realidad una velocidad hiperbólica, tal y como está definida en la teoria de la relatividad especial de Einstein. Efectivamente, la velocidad hiperbólica de la relatividad especial, que también se llama celeridad, es igual a la rapidez multiplicada por c  . Efectivamente, si sustituimos en la exponencial que he hallado la \beta=v/c  por la  rapidez, \theta = \tanh^{-1}\beta  , obtenemos la famosa fórmula relativista del Doppler, f= f_0\sqrt{(1+v/c)/(1-v/c)}  . Pero, a este último supuesto experto en la materia le dije que, puesto que yo no estaba usando la relatividad especial, sino la relatividad Galileana, no hay confusión posible, por lo tanto la  velocidad v  , se postula como una velocidad real, y nunca como una velocidad hiperbólica.
Todos esos supuestos entendidos en la materia intentan refutar la fórmula del Doppler Completo hallada arriba, afirmando que los experimentos validan todos la relatividad especial pero invalidad la fórmula que yo hallé. Eso que afirman, es, por supuesto, una gran mentira. Lo dicen únicamente porque se dejan influenciar por su primera impresión de que yo debo de estar confundidísimo y la relatividad especial tiene que seguir siendo la mejor y más testada teoría al respecto. Pero si comparamos las expansiones en series de potencias (series de Taylor) en ambas fórmulas, tenemos:

\cfrac{f}{f_0} = \exp \left (\cfrac{v}{c}\right )= 1+\cfrac{v}{c}+\cfrac{v^2}{2 c^2}+\cfrac{v^3}{6 c^3}+\cfrac{v^4}{24 c^4}+... \\ \\ \\ \cfrac{f}{f_0} = \sqrt{\cfrac{1+v/c}{1-v/c}} = 1+\cfrac{v}{c}+\cfrac{v^2}{2 c^2}+\cfrac{v^3}{2 c^3}+\cfrac{3 v^4}{8 c^4}+...

Es decir, se necesitaría un experimento que pudiera discriminar ambas predicciones con una precisión tal que llegara hasta el tercer orden de aproximación, pero eso no es posible realizarlo con la tecnología actual. La precisión actual en los tests experimentales sólo llega hasta el segundo orden, v^2/2 c^2  .
Corolario 1: Es fácil  deducir el momento de una partícula desde el efecto Doppler :

\textbf{p} = \cfrac {m\textbf{c}}{2} \left (\mathrm{D}(v/c) - \mathrm{D}(-v/c) \right )

esta ecuación genérica del momento se cumple siempre para cualquier factor Doppler \mathrm{D}(v/c)  de cualquier teoría. Donde \textbf{c}  es un vector en la dirección del movimiento de la partícula. El factor Doppler Completo arriba deducido es \mathrm{D}(v/c) =\exp(v/c)  , por lo tanto, el momento que se deduce desde ese factor Doppler es:

\textbf{p} = m\textbf{c} \sinh \left ( \cfrac{v}{c} \right )

De igual forma, la energía total de una partícula deducida desde el Doppler saldría de la ecuación genérica:

E = \cfrac {m c^2}{2} \left (\mathrm{D}(v/c) + \mathrm{D}(-v/c) \right )

Por lo tanto, tenemos:

E = m c^2 \cosh \left ( \cfrac{v}{c} \right )

También es fácil ver que para el caso de la relatividad especial, tendriamos \mathrm{D}(v/c) =\sqrt{(1+v/c)/(1-v/c)}  . Por lo tanto, después de algunas manipulaciones algebráicas obtenemos E = mc^2 \gamma   y p = mv\gamma  , donde \gamma  es el factor de Lorentz.
Y por supuesto, tambien es fácil ver que las ecuaciones genéricas de arriba satisfacen la relación E^2 -c^2p^2 = m^2c^4  , si la función genérica \mathrm{D}(v/c)  posee la propiedad \mathrm{D}(v/c)\mathrm{D}(-v/c) =1  , propiedad que debe poseer todo factor Doppler que pretenda no ser inconsistente con el efecto físico que modela.

Corolario 2:  Este problema me lo planteó amarashiki, en una discusión dentro de un thread del blog Francis (th)E mule Science’s News, con la malsana intención de refutar definitívamente el modelo que yo propongo:

Ejercicio: calcula, usando TU definición de energía y momento, la energía mínima y la energía cinética mínima para crear un par protón antiprotón en la colisión de un protón A con un protón B en reposo. Nota, no puedes usar la definición relativista de energía E=m\gamma c^2 ni p=m\gamma v, sino que tienes que usar tus ecuaciones, a saber E=mc^2\cosh(v/c) y p=mc\sinh(v/c). Yo ya he hecho los cálculos. En relatividad especial sale que la energía mínima es 7mc^2 (donde m es la masa del protón), y la energía cinética mínima es 6mc^2. En tu teoría con TUS definiciones de energía y momento, antes escritas, yo digo que es IMPOSIBLE la creación de pares. Como la creación de pares se observa experimentalmente, entonces tu teoría es un cuento chino. Refútame, si puedes…Con ecuaciones…

Lo que sigue fue lo que yo le contesté:

Este ejercicio lo voy a resolver primero usando un sistema de referencia centrado en el centro de masas de los dos protones, por lo tanto el momento total será nulo. Primero voy a calcular suponiendo que la reacción creará un pión, \pi^0, con todas las partículas finales en reposo tras la colisión, (p,p,\pi^0). Usando mi modelo, la energía total del sistema será:

E = 2mc^2 = 2m_p c^2 + m_\pi c^2

donde

m = m_p \cosh(v/c)

por lo tanto para la creación de ese \pi^0 la velocidad de aproximación de cada protón hacia el centro de masas debe ser de

v = c \cosh^{-1} \left ( 1+ \cfrac{m_\pi}{2m_p} \right )

Y como en mi modelo las velocidades se suman trivialmente como suma de vectores, tenemos que la velocidad, v', de aproximación de uno de los protones en el sistema de referencia donde el otro protón está en reposo sería de

v' = v+ v = 2c \cosh^{-1} \left ( 1+ \cfrac{m_\pi}{2m_p} \right )

Esto sería para la reacción que crea un pión, p + p \rightarrow p+p+\pi^0. Y es muy fácil ver ahora que la reacción que crea un par protón-antiprotón, p + p \rightarrow p+p+p+\bar{p}, debe implicar una velocidad de aproximación de un protón hacia el otro de:

v' = 2c \cosh^{-1} \left ( 1+ \cfrac{2m_p}{2m_p} \right ) = 2c \cosh^{-1}(2) = 2.63392c

Lo cual significa que la energía cinética mínima será

E_k = m_p c^2 (\cosh (2.63392) -1) = 6 m_p c^2

Y la energía total mínima será de

E = m_p c^2 \cosh (2.63392) = 7 m_p c^2

Traducido al modelo de la SR, donde la constante c juega el rol falso de una velocidad límite, que no puede ser superada por nada, tendriamos una velocidad de

v'' = \tanh (2.63392) c = 0.989743 c

Ese es el engaño que la SR logró colar a toda la física desde hace más de un siglo. Creer que las partículas no pueden superar la velocidad c, cuando de hecho esa velocidad es superada rutinariamente en cualquier acelerador de partículas, incluso en los muones creados por rayos cósmicos en la atmósfera terrestre. Para perpetrar ese engaño, la SR ideó efectos como la dilatación del tiempo, o la contracción de las longitudes, o el más absurdo aún de la relatividad de la simultaneidad de eventos, y trampas teoréticas como la convención de Einstein para la sincronización de dos relojes en reposo muy alejados.
Corolario 3: Veamos cómo la dilatación del tiempo, que se afirma haberse testado con éxito en los muones de rayos cósmicos, es en realidad una gran falacia. Los muones poseen una vida media de 2.19703(4) \; 10^{-6} \; \mathrm{s}. Pero entonces un muón creado en las altas capas de la atmósfera terrestre no tendría suficiente tiempo de llegar a ser detectado en la superficie terrestre, incluso viajando a velocidad de c, o como mucho solo sería detectada una cantidad muy pequeña de muones, la cual no se correspondería con lo que se observa. El razonamiento mainstream es que los muones deben poseer velocidades relativistas muy altas, pero nunca superlumínicas, es decir esos muones deben tener velocidades del orden de 0.999c, o más cerca de caún. Según la SR, a esas velocidades tan cercanas a c, existe una significativa dilatación del tiempo propio del muón, con lo cual su vida media se prolongaría exactamente la cantidad necesaria de tiempo para observar lo que es observado. Se puede comprobar fácilmente que eso es una falacia. Lo que sucede realmente es que los muones conservan constante su vida media de 2.19703(4) \; 10^{-6} \; \mathrm{s} , pero sus velocidades son superiores a c. Veamos con más números por qué es una falacia la interpretación de la SR afirmando que lo que se observa es debido a una dilatación del tiempo. Supongamos que un muón posee, cuando es creado en altas capas de la atmósfera, una energía total de E= 20 \;\mathrm{GeV}. Entonces con esa energía es muy fácil calcular cuál debe ser la velocidad de un muón, pues

E = mc^2 \cosh(\cfrac{v}{c}) \\ \\ \\  v = c \cosh^{-1} \left (\cfrac{E}{mc^2}\right )

y como la energía en reposo de un muón es E_0 = mc^2 = 105.658367(4) \;\mathrm{MeV}, tenemos que

v = c \cosh^{-1} \left (\cfrac{20\; 10^9}{105.6\; 10^6 }\right ) = 5.93697c \approx 6c

O sea, los muones con energía 20 \;\mathrm{GeV} creados en las altas capas de la atmósfera llegan a los detectores en la superficie a tiempo porque poseen una velocidad de unas ¡seis veces la velocidad de la luz!. Esto demuestra también, irrefutablemente que los neutrinos muónicos, resultado de la desintregación de muones, medidos en el experimento OPERA viajaron realmente a velocidades superlumínicas, aunque, como he demostrado de forma fehaciente, es más que evidente que los formalismos de la SR enmascaran esa realidad.
Corolario 4: Podemos ver que la ecuación diferencial desde la cual se podría integrar el Doppler relativista de la Relatividad Especial sería,

\cfrac{df}{f} = \cfrac{dv}{c (1- \frac{v^2}{c^2})}

con lo que si integramos tenemos,

\ln \left (\cfrac{f}{f_0} \right )=\tanh^{-1}\left(\cfrac{v}{c} \right ) \\ \\ \\ \ln \left(\cfrac{f}{f_0} \right)=\cfrac{1}{2}\ln \left\{\cfrac{1+\frac{v}{c}}{1-\frac{v}{c}}\right\} \\ \\ \\  \displaystyle f = f_0 \sqrt{\cfrac{1-\frac{v}{c}}{1+\frac{v}{c}}}

El problema de esta ecuación de la Relatividad Especial reside en el hecho de que no está del todo claro de qué situación fisica o condición inicial podríamos plantear tal ecuación diferencial para que la deducción tuviera consistencia no sólo matemática sino fisica. De todas formas, intentemos profundizar un poco más en esta última relación. Vemos que al integrar la ecuación diferencial obtenemos \ln (\frac{f}{f_0})=\tanh^{-1}(\frac{v}{c} ), y vemos que esa arcotangente hiperbólica es precisamente la definición de rapidez(rapidity en inglés). O sea,

\theta =\tanh^{-1}\left(\cfrac{v}{c} \right )

Y eso significa que d\theta es un diferencial de rapidez, de tal forma que al integrar

d\theta= \cfrac{dv}{c (1- \frac{v^2}{c^2})}

obtenemos la rapidez \theta. Y este corolario demuestra que en la fórmula de Doppler Completo que deduje arriba no se confunde ninguna velocidad con la velocidad hiperbólica, ni ninguna \beta con la rapidez \theta, porque se ve cláramente que esta última posee su propia ecuación diferencial.

Posted in Relatividad | Etiquetado: , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: