TARDÍGRADOS

Ciencia en español

Posts Tagged ‘partícula’

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Anuncios

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Antimateria en una Banda de Möbius

Posted by Albert Zotkin en julio 31, 2015

Amables lectores de Tardígrados, hoy voy a insistir brevemente en una idea que ya apunté en un post anterior. Se trata de la hipótesis de que nuestro universo se materialice en un espacio tridimensional que posee una simetría en dos lados o caras. De esa forma, una partícula con carga eléctrica positiva viviría localmente en uno de esos lados, y su anti-partícula (eléctrica negativa) viviría en el lado opuesto. Si afirmamos que ese espacio dual (dos lados o caras opuestas) posee la característica de una banda de Möbius cuando se consideran distancias cósmicas, entonces estamos en disposición de afirmar que podríamos transformar una partícula en su anti-partícula si la desplazamos por su lado hasta completar un ciclo por esa banda de Möbius y situarla en su punto de partida. Eso implicaría que si queremos dejar invariante una partícula mediante su traslado cósmico deberíamos completar dos ciclos, es decir realizar una rotación de 720 grados.

Este hecho insólito nos está diciendo que dos cargas eléctricas de igual signo se repelen localmente por el alucinante hecho de que en realidad se están atrayendo. La repulsión eléctrica sería en realidad una forma de atracción, por eso las dos partículas de igual carga interaccionan alejándose una de la otra por el mismo lado de la Banda de Möbius, ya que al alejarse por ese lado lo que en realidad está ocurriendo es que tienden a encontrarse en un punto espacial en el que ambas estarán localmente en lados opuestos. Veamos con más detenimiento lo que quiero decir. Sean dos electrones que permanecen retenidos casi en el mismo punto espacial, y soltamos uno de ellos mientras el otro permanece retenido. Entonces el electrón liberado transforma su energía potencial en energía cinética de alejamiento, y seguirá alejándose hasta completar un ciclo en la banda de Möbius y llegar cerca del otro electrón, pero con su carga conjugada (la carga eléctrica negativa se ha convertido en positiva). En ese momento del reencuentro, el electrón viajero es un positrón respecto al que quedó fijo, y por lo tanto se aniquilarán colisionando.

Este hecho insólito, que la ciencia oficial parece no considerar, nos dice claramente que en nuestro universo existe tanta materia como antimateria (como no podía ser de otra forma), ya que la naturaleza no sabe diferenciar el signo de una carga eléctrica. En otras palabras, la carga eléctrica de una partícula no es algo absoluto, sino relativo.

Saludos

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , | Leave a Comment »

Meditaciones a cerca del efecto Doppler de las ondas de materia

Posted by Albert Zotkin en julio 26, 2015

Algo misterioso ocurre con las partículas con masa. Un electrón puede ser considerado como una partícula o como una onda, y eso depende de cómo dispongamos nuestros aparatos de medida en el experimento. El problema es que esa onda de materia parece estar deslocalizada respecto a la hipotética fuente que la genera. Según la hipótesis de De Broglie, las partículas poseen también una longitud de onda:

\displaystyle    \lambda = \cfrac{h}{mv}
donde h es la constante de Planck, m la masa de la partícula y v el módulo del vector velocidad. Por lo tanto, según esa ecuación, la longitud de onda de la partícula aumenta cuando disminuye la velocidad (el módulo del vector velocidad)., y disminuye cuando aumenta la velocidad. Pero lo mismo da que la partícula se aleje o se acerque al observador, esas variaciones de longitud de onda se dan siempre considerando el módulo del vector velocidad. Por lo tanto, vemos que para un posible efecto Doppler, esa ecuación nos dice poco, pues estamos acostumbrados a que las ondas de sonido o de la luz alarguen su longitud cuando la fuente que las genera se aleja de nosotros o acorte dicha longitud de onda cuando esa fuente se acerca. Pero, en las ondas de materia parece ser que esa variación sólo ocurre con la variación del módulo del vector velocidad, independientemente de que la partícula se aleje o se acerque al observador.

El experimento de Young (también llamado de la doble rendija) nos deja estupefactos cuando comprobamos una y otra vez que las partículas subatómicas (electrones, protones, neutrones, etc) se comportan como ondas cuando queremos conocer demasiado sobre sus trayectorias y estados. Eso quiere decir ni más ni menos que, intrínsecamente, las “partículas” subatómicas no son ni partículas ni ondas, sino todo lo contrario.

De Broglie descubrió que los cuerpos con masa se comportan como si fueran ondas, es decir, se propagan mostrando cierta longitud de onda o frecuencia (de algo que vibra, ¿campo de Higgs?, ¿Ëter?, ¿campo gravitacional?).

Seguidamente voy a demostrar que las ondas de materia sufren también el efecto Doppler. Y que la longitud de onda y la frecuencia de una onda de materia se expresan completamente de esta forma:

\displaystyle  \;\;\;f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)\;\;\;
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)

He demostrado muchas veces, por activa y por pasiva, que las fórmulas del efecto Doppler completo para una determinada frecuencia (o longitud de onda) electromagnética, se expresan así:

\displaystyle  f = f_0 \exp \left(\cfrac{v}{c}\right)  (1)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right)  (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Igualmente, para las ondas de materias debe existir un efecto Doppler similar. La velocidad de fase cph de una onda de materia, por ejemplo la de un electrón, se expresa como el cociente de su energía total dividida por su momento lineal:

\displaystyle  c_{ph} = \cfrac{E}{p}
En cuanto a la velocidad de grupo vg de dicha onda de materia sería la derivada de la energía total respecto del momento:

\displaystyle  v_{g} = \cfrac{dE}{dp}
La enegía total de una partícula con masa m y su momento lineal se expresarían así:

\displaystyle  E = mc^2 \cosh\left(\cfrac{v}{c}\right) \\ \\ \\  p = mc \sinh\left(\cfrac{v}{c}\right)
por lo tanto, la velocidad de fase y la velocidad de grupo se expresan así:

\displaystyle  c_{ph} = \cfrac{E}{p} = mc^2 \cfrac{\cosh(v/c)}{mc\sinh(v/c)} = c \coth\left(\cfrac{v}{c}\right) \\ \\ \\  v_{g} = \cfrac{dE}{dp}  = \cfrac{mc^2 \sinh(v/c)}{mc \cosh(v/c)}= c \tanh\left(\cfrac{v}{c}\right)
Todo esto está ya super demostrado (por activa y por pasiva). Ahora viene la parte novedosa. Sustituyamos la β = v/c en las fórmulas del efecto Doppler, por esta otra:

\displaystyle  \beta =\cfrac{v_g}{c_{ph}}
Esto significaría que el efecto Doppler quedaría expresado para ondas de materia en lugar de para ondas electromagnéticas, así:

\displaystyle  f = f_0 \exp \left(\cfrac{v_g}{c_{ph}}\right)  (3)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v_g}{c_{ph}}\right)  (4)

Pero es fácil ver que existe una relación de dispersión:

\displaystyle  v_g c_{ph} = \left(c \coth \frac{v}{c} \right) \left(c \tanh \frac{v}{c}\right) = c^2
con lo cual, las ecuaciones (3) y (4) quedarían así, si identificamos la velocidad de grupo de la onda de materia con la velocidad de la partícula, vg = v:

\displaystyle  f = f_0 \exp \left(\cfrac{v^2}{c^2}\right)  (5)
\displaystyle  \lambda = \lambda _0 \exp \left(- \cfrac{v^2}{c^2}\right)  (6)
Es decir, esta frecuencia f y esta longitud de onda λ ya no corresponden a ondas electromagnéticas, sino a ondas de materia. Y esto significa, ni más ni menos, que f0 y λ0 deben corresponder a la frecuencia y la longitud de Compton:

\displaystyle  f_0 = \cfrac{mc^2}{\hbar}  (7)
\displaystyle  \lambda_0 = \cfrac{\hbar}{mc}  (8)
Así, finalmente, tendremos que el efecto Doppler para las ondas de materia vendría expresado por estas dos ecuaciones:

\displaystyle  f = \cfrac{mc^2}{\hbar}\  \exp \left(\cfrac{v^2}{c^2}\right)  (9)
\displaystyle  \lambda = \cfrac{\hbar}{mc} \ \exp \left(- \cfrac{v^2}{c^2}\right)  (10)
CDQ. Con lo cual he demostrado lo que quería demostrar. Además, en estas dos ecuaciones del efecto Doppler de ondas de materia se ve muy claramente por qué la longitud de onda no depende de si la partícula se acerca o se aleja del observador. La causa de eso es porque la β está elevada al cuadrado, y por lo tanto el signo de v (negativo para alejamiento y signo positivo para acercamiento) no influye en el valor de ese efecto Doppler.

Sin embargo, la ecuación (6) no equivale a la ecuación que propuso de Broglie, λ = h/mv, cuando la velocidad de la luz c tiende a infinito, es decir, en el límite clásico (Newtoniano). Esta discordancia obedece al hecho de identificar la velocidad de grupo de una onda de materia con la velocidad de la partícula, lo cual no siempre es correcto. Para corregir ese hecho, simplemente sustituimos el momento lineal clásico, p = mv, por el relativista Galileano, p = mc sinh(v/c). Con lo cual la longitud de onda de una onda de materia quedaría así:

\displaystyle    \lambda = \cfrac{h}{mc \sinh(\tfrac{v}{c})}     11
de esta forma es fácil comprobar como:

\displaystyle     \lim_{c \to \infty} \lambda =  \lim_{c \to \infty}\ \cfrac{h}{mc \sinh(\tfrac{v}{c})} =\cfrac{h}{mv}

Y para la frecuencia, tendremos la ecuación:

\displaystyle    f = \cfrac{E}{h}=\cfrac{m c^2}{h} \cosh(\frac{v}{c})     12

Saludos

Posted in Física de partículas, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | Leave a Comment »

El mundo de los muertos y la cinemática de los walking dead (Mecánica estadística)

Posted by Albert Zotkin en octubre 25, 2014

El “mundo de los muertos” es el infra-mundo de orden -1. En ese universo, las cosas son, se mueven y evolucionan de una forma muy peculiar. El “mundo de los muertos” es el reino de los objetos y fenómenos cuánticos por antonomasia. Por otro lado, la definición de función de partición en mecánica estadística es muy importante.

En un sistema de partículas en equilibrio que sólo intercambia energía térmica con su entorno, tenemos que la función de partición para dicho sistema es:

\displaystyle  \mathcal{Z} = \sum_{s} e^{\beta \epsilon_s}  (1)
donde la suma se ha realizado sobre todos los microestados s, εs representa la energía del microestado s y β se define como menos el inverso del producto de la temperatura por la constante de Boltzmann:

\displaystyle  \beta = -\frac{1}{k_BT}
Así desde estas definiciones podemos por ejemplo expresar la ecuación de estado de los gases ideales así:

\displaystyle  \langle PV\rangle=-\frac{\ln(\mathcal{Z})}{\beta} = -\frac{\epsilon_1\oplus\epsilon_2\oplus\epsilon_3\oplus\dots}{\beta}   (2)
donde εi representa la energía del microestado i. Es decir, la energia PV de los gases nobles es simplemente la infra-suma ⊕ de orden -1 de las distintas energias de los micro-estados. En general, toda ecuacion en la que aparezca el logaritmo de la función de partición, ln(Z), implica una infra-suma de energias de micro-estados. Pero alguien diría, muy bien y ¿dónde está el mérito de todo esto?. Pues el mérito de todo esto está en darse cuenta de que la infra-suma de orden -1 de energias de micro estados genera la emergencia de la energia del sistema macroscópico. Clásicamente la energía es una magnitud escalar que se suma o se resta canónicamente, con la aritmética de orden 0, pero lo curioso de todo esto es que las energias de los micro-estados se suman y se restan mediante la aritmética de orden -1. O sea, el macrocosmos (orden 0) emerge como consecuencia de infra-interacciones de orden -1.

infra
Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Energía total y momento de una partícula expresados con infra-sumas

Posted by Albert Zotkin en octubre 20, 2014

Todos sabemos, o deberíamos de saber ya a estas alturas del curso, que la energía total y el momento de una partícula de masa m, que se está moviendo a cierta velocidad v, se expresan así:

\displaystyle  E= mc^2 \cosh \left(\beta \right) \\ \\   p = mc\sinh \left(\beta\right) \\ \\   (1)

Donde β = v/c. Por otro lado, ya sabemos, o deberiamos de saber, que la infra-suma e infra-resta de orden -1 se definen así:

\displaystyle   x \oplus y =\log(\exp(x) +\exp(y))\\ \\   x \ominus y =\log(\exp(x) -\exp(y))  (2)
Por lo tanto, la energía total y momento de una partícula se expresa con infra-sumas así:

\displaystyle  E = \tfrac{1}{2} mc^2 \exp \left(\beta \oplus (-\beta)\right) \\ \\  p = \tfrac{1}{2} mc \exp \left(\beta \ominus (-\beta)\right)   (3)
Y si exploramos un poco sobre la mecánica de las partículas en este infra-mundo, veremos cosas muy sorprendentes. Por ejemplo, en este infra-mundo de orden -1, la opuesta v’ a una velocidad v no sería –v, sino v’ = v + icπ, es decir una velocidad compleja cuya parte imaginaria sería el producto de dos constantes, . Evidentemente, si infra-sumamos una velocidad v con su opuesta v’ = v + icπ, obtenemos el elemento neutro de la infra-suma de orden -1, que es -∞

\displaystyle   v \oplus v' =\log(\exp(v) +\exp(v + ic\pi))\\ \\   v \oplus v' =\log(\exp(v)(1 +\exp( ic\pi))\\ \\   v \oplus v' =\log(\exp(v)(1 - 1)\\ \\    v \oplus v' =\log(0)=-\infty\\ \\  (4)
Eso nos hace pensar, en el ámbito de la relatividad, que quizás cuando una partícula (o cualquier cuerpo con masa) acelera desde cualquier velocidad infra-lumínica v < c, nunca llegaría a alcanzar dicha c, porque lo que ocurriría es que la velocidad se conjuga pasando de ser real a ser compleja cuyo valor sería v + icπ

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: