TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘constante gravitacional’

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde f‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) ? x, cuando x << 1, y μ (x) ? 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol, \displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional, \displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND \displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz \displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Anuncios

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Unificando gravedad y electromagnetismo

Posted by Albert Zotkin en febrero 5, 2014

Al contrario de lo que pudiera parecer, es sorprendentemente fácil unificar gravedad y electromagnetismo. Veamos cómo. Lo primero que debemos hacer es prestar atención al siguiente mecanismo con el que unificamos ambas fuerzas. Todo esto tiene mucho que ver con lo que llamamos inercia: Si se aplica una fuera F a una masa m en reposo durante el intervalo de tiempo t, y después se aplica una fuerza opuesta a la anterior, -F, durante el tiempo t’, se obtiene la velocidad intermedia vf, y la velocidad final vf’, tal que:

\displaystyle v_f  =   \frac{F}{m}\; t  \\ \\v_{f'} = v_f -   \frac{F}{m}\; t' \,\\ \\ v_{f'} = \frac{F}{m}(t - t'). (1)
Este resultado es equivalente a aplicar una fuerza efectiva f a m durante el intervalo de tiempo T = t + t’, y como la aceleración media es

\displaystyle                     a = \frac{v_f'}{t + t'} =  \frac{F}{m}\left (\frac{t - t'}{t + t'}\right ),                 (2)

entonces, la fuerza efectiva es:

\displaystyle                      f = m\ a =  F\left (\frac{t - t'}{t + t'}\right ),                 (3)
por lo tanto, con cualquier par de fuerzas opuestas invariantes, F y -F, podemos conseguir cualquier fuerza efectiva f dentro del intervalo [-F, F] para todo intervalo de tiempo T.

t es el tiempo total durante el que la fuerza F ha estado actuando t’ es el tiempo total durante el que la fuerza -F ha estado actuando T = t + t’ es el tiempo total

Una vez que tenemos una fuerza efectiva, f, la podemos dividir en dos fuerzas opuestas f1 y f2, tal que

\displaystyle                    f_1 =  F\left (\frac{t}{T}\right ) \\ \\ \\                  f_2 = - F\left (\frac{t'}{T}\right ) = -F \left (1 - \frac{t}{T}\right ),\\ \\ \\                  f_2 = -F + f_1 \\ \\ \\                       f = f_1 + f_2 \\ \\ \\                    F = f_1 - f_2.                 (4)
Transformemos ahora este mecanismo en uno que sea estocástico. Esto significa que distribuiremos aleatoriamente copias de F y de -F a lo largo del intervalo de tiempo T, pero conservando la fuerza efectiva f como resultado neto. Asi pues, ahora tendremos que considerar probabilidades. La probabilidad p de que este mecanismo nos de el valor f1 es

\displaystyle                   p = \frac{t}{T},                 (5)

y la probabilidad de que este mecanismo nos de f2 es

\displaystyle                  q = \frac{t'}{T} = \left (1 - \frac{t}{T}\right ),                 (6)

y por supuesto

\displaystyle                  p + q = 1.                 (7)
En este mecanismo está prohibido que instancias de F y F actúen simultáneamente en el cuerpo, la superposición no está permitida (cuando F está actuando F no actúa, y viceversa).

Por lo tanto estamos ya preparados para unificar la gravedad con el electromagnetismo por medio de este mecanismo estocástico. Empecemos, por algo aparentemente simple, como es la interacción electrón-electrón.
Identifiquemos la fuerza f1 como la fuerza electrostática que uno de esos electrones ejerce sobre el otro a la distanca r,

\displaystyle                       f_1 = K_c \ \frac{e^2}{r^2}                 (8)

donde

K_c is la constante electrostática, y e es la carga eléctrica del electrón.

Identifiquemos ahora f2 como la fuerza gravitacional clásica (Newtoniana) que un electrón ejerce sobre el otro a la distancia r

\displaystyle                       f_2 = -G \ \frac{m_e^2}{r^2}                 (9)

donde

G is la constante gravitacional, y m_e es la masa del electrón

Así que, tenemos la fuerza efectiva:

\displaystyle                       f = f_1 + f_2  = K_c \ \frac{e^2}{r^2} - G \ \frac{m_e^2}{r^2}                 (10)

y la fuerza unificada:

\displaystyle                       f = f_1 - f_2  = K_c \ \frac{e^2}{r^2} + G \ \frac{m_e^2}{r^2}                 (11)

pero, ¿dónde está el intervalo T?. Este intervalo está definido en la distancia r,

\displaystyle                      T = \frac{r}{c}                 (12)

donde c es la velocidad de la luz en el vacio.

Por lo tanto, estamos considerando una interacción unificada a lo largo de T. Esto significa que deben existir fluctuaciones no locales del vacio. Las fuerzas F y -F están aleatoriamente distribuidas a lo largo de T, pero conservan sus probabilidades complementarias p y q. Despues de algunos sencillos pasos algebráicos tenemos:

\displaystyle                      p= \frac{t}{T}= \cfrac{1}{G\ \frac{m_e^2}{K_c\ e^2 }+1} \\ \\ \\                   q= \frac{t'}{T}= 1-\cfrac{1}{G\ \frac{m_e^2}{K_c\ e^2}+1}\\ \\ \\                   p= \cfrac{K_c\ e^2}{G\ m_e^2 \ + K_c\ e^2}\\ \\ \\                  q= 1-\cfrac{K_c\ e^2}{G\ m_e^2 \ + K_c\ e^2}\\ \\ \\                  q =\cfrac{G\ m_e^2}{G\ m_e^2 \ + K_c\ e^2}                 (13)
Si la fuerza unificada F actúa en el electrón A un instante, entonces la fuerza opuesta -F debe actuar simultáneamente sobre el electrón B, y viceversa. Por lo tanto, ambos electrones están entrelazados cuánticamente en el instante dt, y sus estados colapsan en el siguiente instante, produciendo las fuerzas correlacionadas F y -F. Despues de todo colapso, se produce un nuevo entrelazamiento con lo que el ciclo de interacciones se cierra

Esta unificación nos está diciendo que la carga eléctrica y la masa del electrón pueden ser predichas desde una “hipercarga” Ye. Si definimos la potencia S de la interacción electrón-electrón unificada como

\displaystyle                      S = 4\pi\ Y_e                 (14)

el campo unificado es entonces,

\displaystyle                      U_e = \frac{ Y_e}{r^2}                 (15)

que es la ley del inverso del cuadrado (gravedad Newtoniana, clásica).

Si identificamos Ue como

\displaystyle                      U_e = \frac{F}{Y_e} \\ \\                   U_e = \frac{K_c\ e^2+ G\ m_e^2}{Y_e\ r^2}                   (16)

entonces

\displaystyle                                     Y_e = \pm \sqrt{K_c\ e^2+ G\ m_e^2}                  (17)
donde la signatura \pm experimenta fluctuaciones, gobernada por las probabilidades p y q.

Por consiguiente, es trivial “predecir” e y m_e:

\displaystyle                                     e = Y_e \sqrt{\frac{p}{K_c}} \\ \\ \\                   m_e = Y_e \sqrt{\frac{q}{G}} \\ \\ \\                 (18)

ya que

\displaystyle                                     q =\cfrac{G\ m_e^2}{G\ m_e^2 \ + K_c\ e^2}\\ \\ \\                   p =\cfrac{K_c\ e^2}{G\ m_e^2 \ + K_c\ e^2}                 (19)

tenemos que

\displaystyle                                    a = \sqrt{p}                 (20)

es la amplitud de probabilidad del mecanismo estocástico que produce la fuerza F en un tiempo infinitesimal dt, a lo largo del intervalo de tiempo T = \frac{r}{ c}. Y

\displaystyle                                    b = \sqrt{q}                 (21)

es la amplitud de probabilidad del mecanismo estocástico que produce la fuerza -F.

Saludos

Posted in Física de partículas, Gravedad Cuántica, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: