TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘año-luz’

Distancia al centro del universo. El tamaño del presente: ¿Por qué parece imposible superar la velocidad de la luz en el vacío, y por qué esa velocidad parece ser una constante universal aunque no lo sea?

Posted by Albert Zotkin en noviembre 7, 2019

La velocidad de la luz en el vacío es c = 299.792.458 m/s, la cual nos llevaría a las inmediaciones de la Luna desde la superficie terrestre en menos de 1 segundo. Dicen que dicha velocidad es una constante universal, y que además de ser constante no puede ser superada independientemente del sistema de referencia desde el que se considere. Pero, si tenemos en cuenta las inmensas escalas de espacio y tiempo de nuestro universo observable, esa supuesta constante universal resulta insufriblemente lenta. Para que un rayo laser pudiera atravesar el diámetro de nuestra galaxia, la Vía Láctea, se necesitarían más de cien mil años. Está claro que las ondas electromagnéticas no son el vehículo idóneo para comunicarnos a escalas intergalácticas. De hecho hay fuerzas titánicas, que la naturaleza puede desatar, que podrían, al menos teóricamente, impulsar partículas a velocidades superlumínicas (pero, la Dirección General de Tráfico, que algunos llaman Relatividad Especial, nos prohíbe viajar a más de 299.792.458 m/s por autopistas intergalácticas 😛 ).
Hace 65 millones de años, según cierta teoría, de la que parece que se están acumulando las evidencias a favor, los dinosaurios se extinguieron debido a que un meteorito de 15 kilómetros de ancho chocó contra la Tierra. Para saber si eso fue exactamente así, alguien podría sugerirnos lo siguiente: “bastaría viajar por el espacio a una velocidad superior a la de la luz hasta llegar a un punto clave situado a más de 65 millones de años-luz de la Tierra, y observar con un potente telescopio nuestro planeta. Es decir, estaríamos observando un evento muy remoto del pasado terrestre. Eso deberia ser así porque los fotones de la colisión del meteorito con la Tierra aún no habrían llegado a ese punto clave donde colocamos nuestro telescopio. Es decir, esos fotones aun no han sido absorbidos. Pero, ¿estamos seguros de que eso sería así?. Si viajamos al doble de la velocidad de la luz (v = 2c), nuestro punto clave para observar un evento de nuestro pasado de hace 65 millones de años, estaría exactamente a 130 millones de años-luz. Si viajamos a n veces la velocidad de la luz, nuestro punto clave estaría a 65 millones de años-luz más 65/(n-1) millones de años-luz. En general, para observar un evento que ocurrió hace un tiempo t, habría que viajar a un punto clave x a una velocidad de v = nc, tal que

\displaystyle  x = c\;t+\frac{c\;t}{n-1}\\\\\\

y la observación del evento sería inmediata, es decir, no tendríamos que esperar a que ocurriera. Si quisiéramos esperar cierto intervalo de tiempo Δt a que ocurriera el evento, tendríamos que incrementar la localización x a otra más distante x‘, o incrementar nuestra velocidad superlumínica:

\displaystyle  x' = x+\Delta x = x + c\; \Delta t

Pero, ¿estamos seguros de que fotones que fueron emitidos hace 65 millones de años, desde la Tierra, aún siguen por ahí revoloteando, esperando ser absorbidos por algún sistema material?. ¿Y si resulta que es imposible superar la velocidad de la luz c en el vacío por la sencilla razón de que el fotón emitido fue instantaneamente absordbido por algún sistema material, independientemente de la distancia que separó al emisor del receptor?. La hipótesis que planteo es simple. Existiría un desfase de tiempos presentes entre dos sistemas materiales distantes. Si Alicia está separada de Bob por una distancia x constante, entonces sus tiempos presentes están desfasados un intervalos Δt = x/c. Ese desfase es relativo, y significa que el presente del sistema remoto está siempre en algún tiempo pasado del sistema material localizado en el origen de nuestro sistema de referencia.

Tu presente está en mi pasado, y en tu pasado está mi presente, porque entre tú y yo existe la distancia“.

De esta forma tan poética, eliminamos las paradojas de la Relatividad Especial de Einstein. La luz no viaja, simplemente permanece estacionaria, hasta que el fotón es eventualmente alcanzado por un sistema material anclado en una expansión concéntrica relativa.

Posted in Astrofísica, Cosmología, curiosidades y analogías, lameculos, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde f‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) ? x, cuando x << 1, y μ (x) ? 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol, \displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional, \displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND \displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz \displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

 
A %d blogueros les gusta esto: