TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Newton’

Primer siglo sin Einstein en la Era de Acuario: El origen de la inercia

Posted by Albert Zotkin en enero 26, 2018

¿Es pronto aún para evaluar los estragos causados por las teorías de Einstein (la general y la restringida) en el árbol de la ciencia y la tecnología?. En realidad, el señor Einstein no tuvo toda la culpa de que sus teorías se implantaran como paradigma actual de la física teórica, y más concretamente de la física de la gravitación universal. De hecho, aún estamos sin saber qué es realmente la gravedad, y una teoría cuántica de la gravedad parece aún algo utópico de alcanzar. Ningún avance tecnológico se ha producido basado en los dictados de la Teoría General de la Relatividad de Einstein, y menos en la Restringida o Especial. Por ejemplo, la cacareada afirmación de que el sistema de geolocalización global GPS funciona gracias a que tiene incorporadas rutinas para hacer correcciones relativistas basadas en las teoría de Einstein es falsa. Se ha demostrado, no sólo que el GPS puede funcionar correctamente sin esas correcciones relativistas, sino que son innecesarias, y lo único que consiguen es complicar todo el proceso computacional para al final dar el mismo resultado que da la física clásica de Newton, aunque, eso sí, con el efecto Sagnac debidamente calculado y tenido en cuenta. Por cierto, un efecto Sagnac que las teorías de la relatividad de Einstein no pueden explicar, por mucho que se empeñen sus santones en convencernos de lo contrario.

Efectivamente, la relatividad de Einstein tiene santones (defensores a ultranza de sus dogmas) como cualquier religión o secta. La enrevesada matemática de la Relatividad General hace casi imposible, no ya para un profano, sino para cualquiera que se llame experto en la materia, usarla con éxito para el cálculo práctico de algo en concreto. Con las ecuaciones de Newton para la gravitación se puede llegar hasta resolver analíticamente el problema de los dos cuerpos, y el problema de los tres cuerpos hasta se puede resolver para ciertos casos y condiciones iniciales sin dar soluciones caóticas. Con la Relatividad General de Einstein es prácticamente imposible resolver nada, y un problema de multi-cuerpo, como es el de la gravitación a nivel de galaxias y cúmulos, se hace intratable ad infinitum. De hecho el legado de Einstein consiste en que gozamos de una serie de anomalías y paradojas que lo único que consiguen es poner palos en la rueda del progreso científico, porque se dedica mucho esfuerzo intelectual, de recursos humanos y económicos a falsar temas teóricos que lo único que consiguen es bloquear más aún las mentes hacia el entendimiento y el avance científico real. Ejemplo de esas anomalías es la llamada materia oscura, un conundrum que consume grandes cantidades de recursos para ser esclarecido (intentan por todos los medios descubrir las partículas de materia oscura). Pero no quieren darse cuenta, que la única forma real de resolver ese enigma consiste en desechar la Relatividad General y proponer un modelo mejor, otra teoría de la gravitación que prediga el mismo efecto, pero sin materia oscura, y que sea capaz también de predecir otros efectos gravitacionales explicados y/o inexplicados por la teoría reinante actual. El problema de desechar la Relatividad General es que está demasiado integrada en los fundamentos de la física actual, y desecharla implicaría derribar todo el edificio, y nadie está dispuesto a derribar su casa ni su centro de trabajo sin tener garantizado otro mejor al que acudir a trabajar o a vivir, en eso consiste la definición de paradigma.

Pero, la cuestión que me ha movido hoy a escribir este pequeño artículo no es otra que el tema de qué es la inercia, y como encaja dentro de la gravitación universal. A nadie se le debe ocultar el hecho de que a la física clásica de Newton se le escapan muchas cosas, porque el diablo está en los detalles, aunque básicamente la podemos considerar correcta. Una de las cosas que se le escapa es por qué existe la inercia. A menudo se dice que la ciencia debe describir hechos. nunca explicar sus causas. Pero, me parece a mi que eso lo dicen siempre aquellos ignorantes que son incapaces de saber las causas científicas. ¿Por qué es más importante saber las causas que describir sus efectos?. Por la sencilla razón de que sabiendo la causa puedes explicar más de un efecto. Es decir, una única causa puede ser el origen de muchos efectos diferentes, que aparentemente parecían inconexos. Por ejemplo, la física de Newton no predice correctamente el funcionammiento de un giroscopio, aunque a primera vista pudiera parecer lo contrario. Observemos con atención cómo el siguiente giroscopio, cuando está en funcionamiento, parece que sea capaz hasta de levitar:

En un giroscopio no sólo existe inercia giroscópica, también existe la llamada precesión y la llamada nutación. Pero todo esos efectos tienen una única causa. Una causa que, simple y llanamente, nos está diciendo que la gravedad posee una velocidad finita de propagación, aunque es muchos miles de ves más grande que la velocidad de la luz en el vacío.

Veamos ahora un bonito ejemplo de cómo la velocidad de la gravedad es finita y más grande que la de la luz. Desde hace ya más de un siglo se viene afirmando que la Relatividad General de Einstein predice con pasmosa exactitud la precesión extra del perihelio del planeta Mercurio que la física clásica de newton es incapaz de predecir. Eso es correcto, esa predicción es muy exacta, pero lo que a menudo se olvida, o peor aún se ignora, es que antes que Einstein ya hubo alguien, un tal Paul Gerber, que pudo predecir con la misma precisión, si cabe, lo mismo, aunque desde planteamientos muy diferentes. En su documento histórico “Die Fortpflanzungsgeschwindigkeit der Gravitation” publicado en Annalen der Physik, Vol. 52.¡, nos detalla minuciosamente todos sus pasos y fundamentos hasta llegar a su famoso Potencial Gravitatorio de Gerber, FG, cuya ecuación posee el siguiente aspecto

\displaystyle  \Phi_G(r)=-{\frac {GM}{r\left(1-{\frac {1}{c}}{\frac {dr}{dt}}\right)^{2}}} (1)
donde M es la masa del cuerpo central, r es la distancia del cuerpo test (de masa insignificante comparada con M) al centro de M, c es la velocidad de la gravedad, que en este supuesto de Gerber, coincide con la velocidad de la luz, y donde dr/dt es la velocidad radial del cuerpo test que gravita alrededor del cuerpo principal (Mercurio alrededor del Sol, por ejemplo). Y si expresamos esa ecuación desde una expansión binomial tenemos esta otra:

\displaystyle  \Phi_G(r)=-{\frac {GM }{r}}\left[1+{\frac {2}{c}}{\frac {dr}{dt}}+{\frac {3}{c^{2}}}\left({\frac {dr}{dt}}\right)^{2}  + {\frac {4}{c^{3}}}\left({\frac {dr}{dt}}\right)^{3} \dots  \right] (2)
El problema del Potencial de Gerber es esencialmente que sólo puede explicar las anomalías de precesión, pero otras predicciones de gravitación quedan bastante desdibujadas si se aplican esas ecuaciones Gerberianas. ¿Por qué?. De hecho la Relatividad General tuvo un éxito tan rotundo porque ofrecía respuestas muy revolucionarias para la época a todos esos efectos que aún permanecían inexplicados por la teoría clásica. Pero en el fondo existe algo mucho peor que todo eso. La Relatividad General venia a sustituir definitivamente a la Gravitación de Newton, ofreciendo afirmaciones sobre algo muy extraordinario llamado espacio-tiempo, y cómo una supuesta curvatura del mismo podía predecir todos y cada uno de los fenómenos y efectos conocidos y por conocer del universo entero. La mente humana quedó definitivamente seducida por algo encantador y de una belleza matemática sin igual. Sin embargo, a pesar de esa obnubilación del ánimo y la mente racional debida a las artimañas relativistas, aun es posible recuperar la sensatez racional y entrever de qué va todo esto.

El potencial de Gerber es básicamente el potencial gravitatorio de Newton pero con un factor de retardo debido a que la velocidad de la gravedad es considerada finita. Gerber, y después Einstein, nos dice que esa velocidad de la gravedad es igual a la velocidad de la luz, c. En cambio, Newton quedó estupefacto al verse forzado a admitir que su gravitación universal solo podía funcionar si la velocidad de propagación de la gravedad era considerada infinita, es decir, instantánea. Pues mire usted por donde, que no va a ser ni una cosa ni la otra, sino que en el termino medio está la virtud. Es decir, ni infinita ni la velocidad de la luz c, sino una magnitud intermedia que podría ser miles de veces c, según los casos. Y la razón de todo esto la tiene el momento cuadrupolar del Sol. Se lanzó de una forma demasiado aventurera la Relatividad General de Einstein a explicar la precesión extra del perihelio de Mercurio, sin que en principio se supiera cual era el momento cuadrupolar del Sol. De hecho, aún hoy en día se desconoce el valor exacto de ese momento cuadrupolar del Sol, y esa ignorancia hay que “agradecérsela” al paradigma actual, que nos impide hacer sustituciones en fundamentos de física teórica. Aceptar que la precesión observada del perihelio de Mercurio se debe enteramente al momento cuadrupolar del Sol sería enterrar definitivamente la Relatividad de Einstein. Algo tan revoluoinario y escrito con matemáticas tan bellas, tirado a la papelera por algo que nadie quería mirar de frente y con los ojos bien abiertos, preferían la sopa boba del dogmatismo irracional, que es la que les da de comer. Al final, siempre queda la física de Newton, pero alterada con factores, que según los casos explican y predicen todos y cada uno de los efectos y anomalías. Este momento cuadrupolar nos dice que el Sol al girar deja de ser una esfera perfecta y presenta cierto achatamiento en los polos, adquiriendo una forma oblonga, lo mismo que le pasa al planeta Tierra, pero de forma aún más pronunciada.

Presentemos ahora el momento cuadrupolar del Sol como factor de corrección aplicado a un potencial Newtoniano F(r): La formula general para los distintos momentos es la siguiente

\displaystyle \Phi(r) = -\frac {G M }{r}\left[1- \sum_{n=1}^{\infty} \left(\frac{R_s}{r}\right)^2 J_n P_n (\cos \theta)\right] (3)
En coordenadas polares (r, ?, f), donde Rs es el radio del Sol, Pn son polinomios de Legendre de grado n, y Jn son los distintos coeficientes para modelar las distorsiones de la esfera en sus diferentes grados. El momento cuadrupolar de grado 2, el J2, es el que explica casi en tu totalidad la anomalía del perihelio de Mercurio.

Ya empezamos a vislumbrar ciertas similitudes entre el potencial de Gerber, FG, expresado en las ecuaciones (1) y (2) y el potencial gravitatorio Newtoniano corregido F(r). Efectivamente, lo que para Gerber era un retardo gravitacional de la propagación, aquí es ahora un simple momento cuadrupolar. Por lo tanto, lo que antes era una velocidad de la gravedad igual a la de la luz c, ahora es aquí una velocidad Newtoniana instantánea, como clásicamente se ha de considerar, o también como una velocidad superlumínica muy superior a c. Es más que evidente que en las ecuaciones (1) y (2), el factor que está entre corchetes es una corrección multipolar del campo gravitatorio, y dentro de ella se encuentra el sumando cuadroplar que es muy significativo para el caso del Sol como cuerpo central respecto de la órbita de Mercurio. Por esa razón, la llamada gravedad de Gerber no puede ser aplicada para predecir otros efectos distintos, como la deflexión de la luz, etc, ya que, como digo, el factor entre corchetes sólo corrige la precesión de satélites alrededor de cuerpo central, y el campo gravitatorio sigue siendo el clásico Newtoniano.

¿Cuál es el problema?. Si el valor exacto del momento cuadrupolar del Sol sigue siendo desconocido, y a fecha de hoy sabemos que sigue desconocido, ¿en qué lugar queda la Relatividad General, si toda la anomalía de la precesión del perihelio de Mercurio puede ser explicada desde el conocimiento exacto del momento cuadrupolar del Sol y con sólo la física clásica de Newton?.

APÉNDICE: Y para aquellos incrédulos que aún se resisten a admitir que la velocidad de la gravedad es miles de veces mayor que la velocidad de la luz en el vacío, aquí va un pequeño apéndice final: Demostraré que la velocidad de la gravedad se puede deducir incluso observando un péndulo simple batiendo segundos en la superficie terrestre:

1. El potencial gravitatorio clásico en la superficie de la Tierra viene dado por la ecuación F = – GM / R, y la de la intensidad de la gravedad por g = G M / R2

2. Por otro lado, sabemos ya que el potencial gravitatorio puede ser expresado asi:

\displaystyle  \Phi= -\cfrac{G\ M}{R}= -\cfrac{c^4}{c_g^2}    (4)
donde c es la velocidad de la luz, y cg es la velocidad de la gravedad, en el sistema gravitatorio terrestre. Y eso indica que la intensidad de la gravedad se puede expresar también así:

\displaystyle  g= \cfrac{G\ M}{R^2 }= \cfrac{c^4}{R c_g^2}    (5)
3· Dispongamos ahora de un péndulo simple, de longitud de hilo L, en la superficie terrestre, que bata segundos. Su periodo de oscilación será:

\displaystyle   T=2\pi {\sqrt  {L  \over g}}\,  (6)
4· Sustituyendo g de ecuación (5) en ecuación (6), y despejando cg tenemos:

\displaystyle  c_g=\frac{T c^2}{2 \pi  \sqrt{L R }}  (7)
5. Y como hemos dispuesto el péndulo para que bata segundos, su periodo será de T = 2 s, por lo que la longitud de su hilo será:

\displaystyle      L = g\left( \frac {T}{2\pi } \right)^2  = 0.994 \;\; \text{m}  (8)
6. Simplificando la ecuación (7), y sin perder de vista el correcto análisis dimensional:

\displaystyle  c_g=\frac{c^2}{\pi  \sqrt{0.994  R }}  (9)
7. Sólo resta introducir los valores de las magnitude de c y R (radio de la Tierra) para saber la velocidad de la gravedad en la superficie terrestre.

\displaystyle  c = 3 \times 10^8\;\; \text{m/s} \\ \\  R = 6.378  \times 10^6 \;\; \text{m} \\ \\ c_g=\frac{(3 \times 10^8)^2}{ \pi  \sqrt{0.994  (6.378  \times 10^6) }}= 1.13778\times 10^{16}\;\;  \text{m/s} \\ \\ \\  c_g=3.79259\times 10^7 c  (10)
Es decir, si mis cálculos no son incorrectos, obtenemos, en la superficie de la Tierra, una velocidad de la gravedad igual a casi 38 millones de veces la velocidad de la luz c.

Saludos

Anuncios

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 24 Comments »

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m1 y m2, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r1 y r2, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0). 2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m1, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a12 y en a21. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin en septiembre 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}} (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}} (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle a_n = \sqrt[3]{a_{n-1}^3} (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: