TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘espacio’

La velocidad de la luz no es una verdadera velocidad, es una latencia

Posted by Albert Zotkin en mayo 25, 2018

Hola amigos de Tardígrados. Hoy vamos a estudiar algunos aspectos de uno de los fenómenos más extraños y misteriosos de nuestro universo, la luz. Tambíén llamada fotones, ondas, energía o radiación electromagnética. La luz es, junto con la gravedad, uno de los misterios más grandes de la física. Aunque pudiera parecer que las ondas electromagnéticas ya no poseen ningún misterio para la Física, en realidad si los posee, y profundos. ¿Qué es la luz?, ¿Es una onda o es una partícula?. Depende (como diría un gallego). Depende, del instrumento y el experimento que realicemos, la luz nos aparecerá como partícula o como onda, pero nunca como una mezcla de las dos. En un experimento nos parecerá que es una partícula que llamamos fotón, y en otro bien distinto, como una onda electromagnética de cierta frecuencia y longitud de onda. Eso es ya bien conocido en la Física, y se llama dualidad onda-partícula. Sin embargo, independientemente del experimento que realicemos para saber si la luz es partícula o es onda, lo que sí parece ser invariante es que se nos manifiesta siempre como propagándose a cierta velocidad finita. Según el medio en que se propague, dicha velocidad tendrá un valor u otro, pero siempre el mismo si el medio es el mismo.

El vacío puede también ser considerado un medio. El realidad el vacío sería el único medio por el que puede propagarse la luz, y su velocidad sería la constante c. Sería pues una especie de éter, aunque la palabra éter es una palabra maldita para los maintreamófilos, ya que suplantaría al sacrosanto espacio-tiempo de la relatividad Einsteniana, y eso sería un sacrilegio (Einstein dijo: “no hay éter“, y eso es Verbum Dei). Cualquier otro medio distinto al vacío ya implica la existencia de materia intermedia entre emisor y receptor, con lo cual, la velocidad de propagación, en ese medio distinto al vacío, sería siempre menor a la original c. Pero, un fotón no debe ser nunca visto como una “pelotita” que revolotea por ahí, desde que es lanzada por el emisor hasta que es captada por el receptor. Los fotones, no son partículas libres, sino partículas virtuales. ¿Qué significa que una partícula sea virtual en lugar de libre?. La principal propiedad es que una partícula virtual parece haber sido emitida “hacia atrás en el tiempo” a la vez que “hacia adelante“. Existe una especie de transacción secreta entre el emisor del fotón y el receptor. Y esa transacción (“papeleo burocrático“) empieza a tener lugar mucho antes de que la partícula sea emitida realmente. ¿Por qué es eso así?. Imagina que una fuente emisora de fotones los lanzara al medio (el vacío), sin que existiera un receptor para cada una de esas partículas emitidas. Esos fotones, o algunos de ellos, nunca serían absorbidos. Y si un fotón no es absorbido no existe transferencia de energía, con lo cual, el fotón virtualmente nunca habría sido emitido. Esa es la razón por la cual, cuando un fotón es emitido, será con absoluta seguridad absorbido eventualmente por algún sistema material. ¿Qué ocurriría si una fuente emite realmente un fotón que nunca será absorbido?. Pues sencillamente que esa energía se perdería, y eso significaría, que el universo perdería energía, se enfriaría, sería un sistema termodinámico abierto. Seria un absurdo más. Pensemos por ejemplo, el caso contrario, un sistema material que absorbe un fotón, el cual nunca fue emitido por ninguna fuente. Señoras y señores, estamos ante la presencia de las famosas paradojas que tanto les gustan a los Einsteinianos y demás especímenes, mainstreamófilos. Esa energía, que salió del emisor, no llegaría a ninguna parte, sería como si la energía pudiera destruirse. Puesto que la energía no puede destruirse ni perderse para siempre, cuando un fotón es emitido es porque será absorbido con total seguridad tarde o temprano, y cuando un fotón es absorbido es porque antes fue emitido por una fuente. Ese es el realismo que hay que imponer en la física, el sentido común, nada de paradojas ni viajes en el tiempo.

Enfoquemos nuestra atención un poco más en el punto del que estamos hablando hoy: la velocidad de la luz en el vacío, c. De hecho, esa supuesta velocidad sería una velocidad de fase, c = vp, en contraposición a la velocidad de grupo, vg. Es decir, según el conocimiento de la Física oficial, la mainstreamófila, la del Libro Sagrado, toda onda posee una velocidad de fase y una velocidad de grupo, las cuales no siempre coinciden en un mismo valor. La velocidad de fase está definida como el cociente entre la longitud de onda y el periodo, vp = λ / T, o lo que es lo mismo, el cociente entre la frecuencia angular y el número de ondas, vp = ω / k. En cambio, en el Libro Sagrado de la Física Mainstreamófila, la velocidad de grupo se define como la derivada parcial de esa frecuencia angular respecto del número de ondas, es decir, vg = ∂ω / ∂k. Luego la información y la energía que transporta una onda electromagnética, viajarían por el espacio según la velocidad de grupo. Pero, si nada hay que disperse en el vacío a dicha onda electromagnética, entonces esa velocidad de grupo coincidiría con su velocidad de fase, vp = vg. Y eso siempre ocurre cuando la frecuencia angular, ω, es directamente proporcional al número de ondas, k.

Veamos ahora que significaría que esa velocidad de la luz en el vacío sea una constante c = 299792458 m/s, siempre la misma, independientemente del sistema de referencia desde el cual la midas. Imagina que viajas cómodamente en tu coche por la autopista, y cada cierto tiempo miras el velocímetro, (sobre todo para controlar que no te cace uno de esos radares ocultos y te pongan una multa por exceso de velocidad). Compruebas que tu velocidad es constante v = 90 km/h. Sin embargo, tu velocidad real podría ser otra muy distinta a esa que lees en el velocímetro del tu coche. Matemáticamente hablando, la velocidad que lees en tu velocimétrico es un residuo o resto. Imagina que tu velocímetro es como la esfera de un reloj, pero en lugar de tener 12 divisiones, una por cada hora, posee 299792458, una por cada metro por segundo. Cuando tu velocímetro marca el cero, entonces eso indicaría que tu coche está parado, o también que tu coche viaja a la velocidad de la luz, c. Pero, eso parece imposible, ¿no?. Si algo está parado, no puede estar viajando a la vez a otra velocidad distinta a cero, si se mide en el mismo sistema de referencia, ¿verdad?.

El problema es que el velocímetro de nuestro coche es circular, y sólo posee 299792458 divisiones, una por cada metro por segundo. Por lo tanto, toda velocidad v, superior a c, será matemáticamente truncada a su residuo:

\displaystyle v\equiv 0{\pmod {c}}
Hay una clase de partículas elementales llamadas leptones. Y nos preguntamos: ¿qué ocurriría si un electrón, que es un leptón, supera la velocidad de la luz, c?. Sí, ya sé que eso, en el libro gordo de los maintreamófilos, se dice que es imposible. Pero, ¿qué apariencia tendría en nuestro universo relativista tal “imposible fenómeno“?. Pues, si eso ocurriera, lo que veríamos sería un muón, viajando a una velocidad residual, es decir, una velocidad sublumínica. Y en contrapartida por truncar su velocidad superlumínica, su masa se incrementaría, de tal forma que la energía total de la partícula siguiera siendo la misma. Eso explicaría por qué vemos hasta tres generaciones de leptones, pero claro, esa explicación tan bizarra y estúpida está descartada por la sacrosanta verdad absoluta del libro gordo de los maintreamófilos.

Profundicemos un poco en esta idea de los leptones superlumínicos. Supongamos que un electrón supera la velocidad de la luz en el vacío, llegando hasta una

\displaystyle v_e = k c + \frac{c}{n}

Donde k y n son enteros positivos mayores que la unidad. Esto significa que el residuo es

\displaystyle \frac{c(k n + 1)}{n}\equiv 0{\pmod {c}} = \frac{c}{n}
Eso quiere decir que, en nuestro universo observable, lo que veríamos sería un muón viajando a una velocidad sublumínica, el residuo vμ = c/n. Luego la energía total del electrón superlumínico debe ser igual a la energía total del muón sublumínico (la energía total de una partícula es la suma de su energía potencial y su energía cinética):

\displaystyle m_e c^2 + K_e = m_{\mu}c^2 + K_{\mu}

Dividamos ambos lados de la ecuación por la energía potencial del electrón, m_e c^2:

\displaystyle 1+ \frac{K_e}{m_e c^2} = \frac{m_{\mu}}{m_e} + \frac{K_{\mu}}{m_e c^2}
Si aproximamos clásicamente la energía cinética del electrón y la del muón tendremos:

\displaystyle K_e=   \frac{m_e v_e^2}{2} = \frac{m_e c^2 (kn+1)^2}{2n^2}\\ \\ K_{\mu}=   \frac{m_{\mu} v_{\mu}^2}{2} =  \frac{m_{\mu} c^2}{2n^2}
Con lo cual, la relación entre la masa del electrón y la del muón sería:

\displaystyle 1+ \frac{(kn+1)^2}{2n^2}=  \frac{m_{\mu}}{m_e} + \frac{m_{\mu}}{m_e}\left(\frac{1}{2n^2}\right) \\ \\ \\  \frac{m_{\mu}}{m_e} = \frac{1+2 k n+2 n^2+k^2 n^2}{1+2 n^2}
Por otro lado, sabemos experimentalmente que la ratio entre la masa del muón y la del electron es:

\displaystyle  \frac{m_{\mu}}{m_e} = \frac{105.6583745}{0.510998928}=206.768
Eso significa que, desde la aproximación clásica, un electrón sólo podría superar la velocidad de la luz en el vacío (n = 1) a partir de cierto número de ciclos k de c, que serían:

\displaystyle k =-1\pm \sqrt{3\frac{m_{\mu}}{m_e} -2}=-1 \pm 24.8657
Luego, desde la aproximación clásica, para que un electrón emerja como un muón debe adquirir una velocidad superlumínica base de:

\displaystyle v_e = c(k + 1)= 25.8657 c
Pero, ¿por qué digo en el título de este artículo que “La velocidad de la luz no es una verdadera velocidad, es una latencia?. Pues lo digo, porque, no es la velocidad clásica con la que imaginamos a un objeto moverse en el espacio. Lo que llamamos luz no se mueve por ningún espacio, es simplemente una transacción cuántica no-local entre dos o más sistemas materiales. Es no-local porque se produce a distancia, sin que el intermediario, el fotón, tenga que pasar por todos los puntos intermedios del intervalo espacial que los separa. Por eso, esa transacción posee una latencia, es decir, un retardo. Al dividir el intervalo espacial por el retardo siempre obtendremos la constante c, si esa transacción es en el vacío. Y para que esa constante sea una verdadera constante, debe ocurrir que la latencia (el retardo) sea directamente proporcional al intervalo espacial. La implicación más interesante de que esto sea así es que esa transacción empieza instantaneamente, sin demora.

Por ejemplo, supongamos que hacemos un ping (eco) con un rayo láser sobre la superficie de la Luna.

Tardaremos aproximadamente 2.5 segundos en ver nuestro rayo Laser reflejado, es decir, que la transacción electromagnética duró (tuvo una latencia de) 1.25 segundos en la ida, y otros tantos 1.25 segundos en la vuelta (reflejo). Pero, la transacción en la ida comenzó instantaneamente desde el mismo momento en que el rayo láser es lanzado desde la superficie de la Tierra, y dicha transacción termina exactamente a los 1.25 segundos. ¿Qué significa esto?. Significa que si supiéramos y pudiéramos construir un detector de media transacción (ansible), nuestro ping lunar sería detectado en la mitad de tiempo. Sería como si el fotón emitido por el láser hubiera viajado a dos veces la velocidad de la luz en el vacío. Pero, esa tecnología de los detectores de submúltiplos de transacción electromagnética no parece que se vaya a hacer realidad pronto, sobre todo si tenemos en cuenta qué teorías físicas imperan en la actualidad, y cuánto tiempo queda aún para que sean desterradas definitivamente. Los detectores de submúltiplos no serán realidad al menos hasta dentro de 1000 años o más, si tenemos en cuenta el ritmo real al que avanza la ciencia y la tecnología humanas.

Pero, podemos entrever cómo funcionaría un detector de submúltiplos. Cuando hacemos ping sobre la Luna, sabemos que observaremos el fotón reflejado al cabo de 2.5 segundos, y ese sería un suceso seguro, es decir, existiría una probabilidad p = 1 de que al cabo de 2.5 detectaremos el reflejo. Con un detector de submúltiplos de media onda, esa probabilidad se reduciría a la mitad si queremos detectarlo al cabo 1.25 segundos. Supongamos que nuestro ping contiene la información de un bit, representado por un 1. Entonces para detectar el submúltiplo con probabilidad segura, p = 1, necesitaríamos más de una antena, separadas espacialmente cierta distancia, cuantas más mejor. Pero, el problema se complica, ya que al estar separadas las antenas, no podremos integrar clásicamente la información completa en tiempos inferiores al de la latencia de la transacción.

¿Qué sería básicamente un ansible de submúltiplos (detector)?. Básicamente sería una antena multibanda. Supongamos que una antena normal, estándar, emite un único fotón hacia un ansible que se encuentra a 299792458 metros en el vació, y lo sintonizamos a media onda. Entonces, ¿seremos capaces de detectar el fotón en la mitad de tiempo, es decir, en 0.5 segundos¿. El ansible conseguiría ver un submúltiplo de ese fotón, no el de la frecuencia principal, con lo cual, la información sería redundante en todos y cada uno de sus múltiplos y submúltiplos, y cada uno llegaría a su ansible detector (no necesariamente el mismo) a un tiempo distinto.

Anuncios

Posted in Astrofísica, Cosmología, Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Negacionismo del Big Bang, ¿qué es el tiempo?, elongación espacio temporal o mengua matérica universal

Posted by Albert Zotkin en octubre 6, 2016

Dicen que nuestro universo se expande. Peor aún, dicen que se expande aceleradamente, y nos muestran las evidencias. A menudo, en física y otras disciplinas, no sólo científicas, las evidencias son sólo interpretaciones o medias verdades. ¿Hacia dónde se expande nuestro universo?. Como la respuesta a eso es simplemente “hacia ningún sitio”, y como pretenden mantener como cierta la afirmación de que el universo se expande aceleradamente, sólo les queda argumentar que lo que se expande realmente es el espacio-tiempo, por lo que la materia que se encuentra enclavada en él formando cúmulos está en proceso de recesión relativa. Por lo tanto, la elongación espacio-temporal parece ser un hecho irrefutable, pero no, no es irrefutable. Ese supuesto hecho se basa en el desplazamiento hacia el rojo de las rayas espectrales de la luz de galaxias y cúmulos de galaxias que nos está llegando. Ese desplazamiento al rojo se interpreta como si fuera un efecto Doppler, y por lo tanto, se interpreta que existe una velocidad de recesión de cada galaxia que es aproximada y directamente proporcional a la distancia. Pero a mi me surgen muchas dudas sobre todas esas afirmaciones. La primera es si es cierto que el espacio-tiempo se expande y de forma acelerada ¿por qué han de separarse unas de otras las partículas materiales?. O dicho de otra forma. ¿Dónde y qué clase de ancla tiene cada partícula material clavada en ese espacio-tiempo para que sea arrastrada con su expansión?. Alguien puede argumentar con el ejemplo de un gas dentro de un recipiente. Si el recipiente se expande el gas se expande con él, enfriándose y disminuyendo su presión. Pero yo puedo argumentar también que ese gas se expande acompañando al recipiente porque las partículas de ese gas impactan y rebotan continuamente en las paredes del recipiente. Las partículas del gas intercambian calor continuamente con las paredes del recipiente. Pero, ¿dónde están las paredes de nuestro universo?, o peor aún, ¿alguien ha visto alguna vez que las galaxias reboten contra unas supuestas paredes universales?. Nuestro universo no posee bordes materiales, fronteras, barreras sobre las que impactar, colisionar. Parece ser un universo infinito espacial y temporalmente, por lo tanto, cualquier supuesta expansión del espacio-tiempo no arrastraría materia, no puede haber anclaje de la materia en el espacio-tiempo. Cuando matemáticamente sumas a infinito cualquier número real, sigue dando infinito.

big-bang-camelo

Esta reflexión nos lleva inexorablemente a la pregunta: ¿qué es el tiempo?. El tiempo es simplemente el método que utiliza nuestro cerebro para ordenar nuestras experiencias en la memoria. El tiempo es la acción de un librero numerando las páginas del libro de nuestra vida. Objetivamente, el tiempo no existe. En la naturaleza sólo hay presente, y no hay ni futuro ni pasado. Por esa razón los viajes en el tiempo (como los de las pelis de ciencia-ficción) son realmente imposibles. No se puede viajar a un tiempo futuro por la sencilla razón de que no se puede viajar hacia algo que aún no existe. Igualmente, no se puede viajar a un tiempo pasado por la sencilla razón de que ese tiempo pasado no existe. Evidentemente si pudieras viajar a un tiempo pasado te encontrarías con una duplicación de materia, salida de la nada. Pero no hay atajos ni caminos por los que pueda transcurrir la materia hacia tiempos pasados o futuros. Cuando los físicos teóricos actuales entiendan mejor qué es el tiempo y por qué el tiempo no es sólo esa cosa que miden los relojes, estarán en mejores condiciones de elaborar teorías más certeras sobre la naturaleza. Otra característica que define al tiempo es su inexorabilidad: dime cualquier fecha en el pasado y siempre es imaginable saber que esa fecha ocurrió realmente. Dime cualquier fecha en el futuro y te puedo asegurar que esa fecha llegará. Es como el juego de escribir un número real, siempre podemos escribir otro número real mayor o menor que ese. O al escribir dos números reales, siempre podemos encontrar otro distinto entre ambos. Por lo tanto, el tiempo es cuantificable, y para ello usamos los relojes.

Respecto a la pregunta ¿qué es el espacio?, cabe responder de una forma muy análoga a como lo hemos hecho con el tiempo. Pero el espacio no se nos presenta como el tiempo. Nuestros cerebros no ven al espacio como algo que transcurre, sino literalmenete como un recipiente donde están las cosas que percibimos. El tiempo pasa (siempre hay tiempo pasando, nunca se acaba), el espacio permanece. Percibimos el tiempo como algo dinámico y al espacio como algo estático. Pero ambas cosas son productos imprescindibles para ordenar nuestra experiencia.

¿Por qué percibimos el espacio como poseyendo tres dimensiones?. Cuando algunos físicos teóricos nos hablan de otras dimensiones espaciales extra, además de las tres clásicas (ancho, alto y profundo), para esconder su falta de evidencia científica, nos cuentan que esas dimensiones están como enrolladas sobre sí mismas, plegadas microscópicamente y por eso no podemos verlas. Todos sabíamos desde el principio, porque lo aprendimos bien, que lo que caracteriza a un sistema espacial de referencia es la ortogonalidad de sus ejes. Si una dimensión está plegada, retorcida microscópicamente, creo yo que no es una buena opción para un sistema espacial de referencia, porque ese “enrollamiento” no es precisamente la mejor definición de ortogonalidad. Evidentemente, nuestro espacio puede ser descrito matemáticamente mediante muchos ejes (no sólo tres) que no sean ortogonales, pero todos pueden ser reducidos a tres ejes ortogonales desde los que nuestras ecuaciones se simplifican drásticamente para describir lo mismo con igual éxito. El espacio que percibimos posee infinitas direcciones desde las que nos puede llegar el peligro o la salvación. Son infinitas direcciones por las que podemos huir del peligro, o estar alerta, por las que nos puede llegar el depredador a cazarnos. Nuestras tres dimensiones espaciales tienen mucho más que ver con las características de nuestro cerebro (de nuestra mente), que de algo externo. Nuestros antecesores, simios arborícolas, vivían casi todo el día encaramados a sus ramas, y el alimento lo conseguían desplazándose de rama en rama, al mismo tiempo que miraban en todas direcciones para estar alerta de los acechadores. Nuestro sentido de la vista es capaz de percibir con tres colores básicos de los que se derivan todos los demás. Eso es así por evolución natural. Nuestros parientes ancestrales necesitaban distinguir qué fruta estaba madura por su color, qué alimento era aparentemente comestible por su color y cual no. Del mismo modo que nuestro cerebro y nuestros órganos sensoriales han evolucionado para percibir todos los colores de las cosas que pueden ser expresados mediante esos tres colores básicos, una evolución similar se ha producido para percibir lo que llamamos el espacio. Al igual que los tres colores básicos desde los que podemos percibir cualquier otro color, nuestro cerebro percibe el espacio desde tres direcciones básicas, y cualquier otra dirección puede ser expresada mediante ellas. Así pues, cuando nos preguntamos por qué tres dimensiones espaciales, hay que preguntarse por qué tres colores básicos, y la respuesta es más de fisiología humana que de física universal.

El llamado espacio-tiempo, es pues un constructo, algo más teórico que real. Nuestro cerebro casa muy mal el espacio y el tiempo como un espacio de cuadro dimensiones. Nuestro cerebro no admite como muy natural que el tiempo sea un eje más como los otros tres ejes espaciales. Notamos muy bien qué es intuitivamente el tiempo, y por qué no puede ser una dimensión espacial más. La flecha del tiempo es algo muy subjetivo. El futuro es algo que aún no existe y por lo tanto no puede ser apuntado por ninguna fecha con certeza. El pasado es algo que ya no existe, y por lo tanto ninguna flecha pudo apuntar con certeza hacia nuestro presente.

Y por ultimo. ¿Qué hacemos con el Big Bang?. Puesto que toda la evidencia nos viene de supuestos desplazamientos al rojo de lineas espectrales, y que los santones del paradigma cosmológico actual se han encargado de darnos de comer ese fenómeno como si fuera un efecto Doppler cosmológico, lo que tenemos es un universo en creciente estampida. Pero si pensamos un poquito vemos, que ese efecto Doppler, que también se da en las diferencias de potencial gravitatorio, es simplemente algo relativo, de perspectiva, de horizonte, más que ningún supuesto Big Bang. La distancia a escala cosmológica produce sencillamente una diferencia de potencial gravitatorio, pero esa diferencia de potencial no significa ninguna expansión ni ningún alejamiento de las galaxias. Toda la materia permanecería esencialmente estática en nuestro universo, y lo único que cabría explicar es ¿por qué la distancia cosmológica produce diferencias relativas de potencial gravitatorio?. Cuando dibujamos la gráfica de un potencial gravitatorio producido por una masa puntal, lo solemos hacer como una curva en forma de campana invertida cuyos bordes se aproximan infinitamente hacia un eje horizontal, el cual marca un potencial nulo (potencial cero). Es decir, ese potencial es una curva gaussiana invertida, que posee valores negativos, y que se hacen menos negativos a medida que se aproximan al eje horizontal de potencial cero. Pero a escala cosmológica, esa linea de potencial cero podría ser más un arco de circunferencia que una recta real, por lo que además de las diferencias locales de potencial debido a la presencia cercana de materia, existirían diferencias relativas de potencial gravitatorio debido a la distancia.

Supongamos que un Radio de Hubble, es la mayor distancia cosmológica de la que nos puede llegar luz. Existe pues un horizonte cósmico, que podemos cuantificar de la siguiente forma: Supongamos que el potencial cosmológico es la superficie lisa de una esfera, y que los potenciales gravitatorios locales son pequeños montículos que destacan sobre esa superficie. Cuando nos situamos en un montículo se crea un horizonte desde el cual podemos percibir luz procedente de puntos de otros montículos. Si nos situamos en un punto de la superficie el radio de nuestro horizonte se reduce, y solo podremos ver luz procedente de montículos muy promimentes y cercanos. Pero, si nos situamos en una montaña de potencial local muy grande, nuestro horizonte para ver luz será muy grande. Esto resuelve la Paradoja de Olbers. En otras palabras, vemos el número de estrellas y galaxias que vemos por nuestra posición peculiar dentro de nuestra galaxia. Si estuvíéramos en una región remota, muy alejada de cúmulos grandes de materia, como son las galaxias, es decir, en una región muy cercana al potencial cero, veríamos muy pocas estrellas y galaxias en el cielo, menos de las que somos capaces de ver, porque nuestro horizonte observacional sería mas reducido.

Esto significaría que cuanto más cercanos estamos de una gran masa nuestro horizonte cósmico (observacional) será mas grande. Así, nuestra distancia al nuestro horizonte será:

\displaystyle  d={\sqrt {(R+h)^{2}-R^{2}}} \\ \\  s=R\arccos {R \over R+h} (1)
donde R el radio de Hubble, h nuestra altura local de potencial gravitatorio, s la distancia real al punto H, d la distancia tangencial que recorre la luz.

Figura 1

Figura 1

Esto significa que, según esta teoría del potencial cosmológico, que me estoy inventando, no sólo existe por la misma linea de vision el punto H del horizonte, sino otros más remotos, H1, H2, etc, si están situados sobre potenciales gravitatorios de cierta altura.

Luego en una esfera universal, sin defectos topológicos (como los campos gravitatorios locales), el potencial de deriva cósmica vendrá expresado por la ecuación:

\displaystyle  \phi (r) = c^2  \left (1-\sqrt {1- \frac{r^2}{R^2}}\right ) \\ \\ (2)

cuya gráfica es la siguiente: hemi-circle

Obviamente, si r es muy pequeña respecto a R, ese potencial de deriva cósmica se reduce a cero. Y cuando r tiende a R, el potencial f tiende a c². En un campo de potencial gravitatorio local, los valores son escalares negativos que crecen con la distancia hacia cero. Pero, en el campo de potencial de deriva cósmica los valores escalares son positivos y tienden con la distancia r hacia el cuadrado de la velocidad de la luz en el vacío.

Desde esa expresión explicita de potencial de deriva cósmica es fácil descubrir que el desplazamiento al rojo de las rayas espectrales de la luz de galaxias remotas es el siguiente:

\displaystyle  z=\frac{\Delta\lambda}{\lambda} = \exp\left( \frac{\phi (r)}{c^2}\right) -1 (3)
donde ? es la longitud de onda original (emitida), y ?? es la diferencia entre la longitud de onda observada y la emitida. Y si queremos expresar la distancia r en función del desplazamiento al rojo z y del radio de Hubble, tendremos:

\displaystyle  z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\  \ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle  r = R\sqrt{2\ln (z+1)-\ln^2 (z+1) } (4)
Esto cambia drásticamente las distancias estándar calculadas hasta ahora para las galaxias y cúmulos remotos. Por ejemplo, se ha observado que los desplazamientos al rojo más grandes corresponden a unos extraños objetos remotos que se llaman cuásares. Estos extraños objetos nos ofrecen desplazamientos al rojo que van de z = 0.16 hasta z = 3.53. Lo cual, según mi hipótesis, implica distancias entre r = 0.524R y r = 0.875R.

Mi hipótesis tiene una serie de ventajas frente a las teorías del Modelo Cosmológico Estándar. En mi hipótesis:

  1. No existe recesión de galaxias y demás objetos remotos, sino que permanecen esencialmente en reposo. Ese desplazamiento al rojo se debe casi en su mayoría a la diferencia de potencial de la deriva cósmica. Después hay que sumar o restar otros efectos Doppler, debidos a potenciales gravitatorios locales, y/o a velocidades cinemáticas.
  2. La localización de la fuente emisora y la del observador en sus respectivos potenciales gravitatorios locales contribuyen al efecto de desplazamiento al rojo, ya que hay que calcular sobre la diferencia neta de potencial (sumando y/o restando potenciales locales y cinemáticos al potencial cosmológico).
  3. La Radiación de fondo de Microondas sería según mi hipótesis vulgares fotones emitidos mayoritariamente por átomos de hidrógeno procedentes de galaxias y cúmulos en el horizonte H, incluso más allá de él, en una franja cercana. Es decir de puntos H1, H2, etc, tal como los he dibujado en la figura 1.
  4. Los cuásares serían, ni más ni menos que galaxias y cúmulos con alta acumulación de materia y muy cercanos al horizonte cósmico H, pero dentro (no fuera) de la esfera de Hubble.
Por lo tanto, según mi hipótesis cosmológica, nuestro universo observable sería tan sólo un hemisferio de la gran esfera cósmica, esfera universal (no confundir con la esfera de Hubble), que tendría cuatro dimensiones espaciales. El otro hemisferio quedaría inaccesible, en su mayor parte, a nuestra observación de ondas electromagnéticas. Esa cuarta dimensión espacial es sobre la que se curva la linea de potencial cero. Es decir, nuestro universo (el observable y el no observable) sería simplemente la superficie de una hiperesfera de cuatro dimensiones espaciales.

figura 2 (Esfera universal)

Figura 2 (Esfera universal)

Si queremos traducir los potenciales a velocidades de recesión o viceversa debemos establecer la siguiente equivalencia, la cual es posible porque se usan coordenadas cosmológicas:

\displaystyle   \exp\left( \frac{v}{c}\right) =z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\   \frac{v}{c}=\ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle   v =c \ln (z+1) =  c \left(1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\ (5)
Por ejemplo. Se observó que la galaxia 8C1435+635 posee un corrrimento al rojo de z = 4.25, que es el más grande que se ha conseguido ver hasta ahora. Así desde el Modelo Estándar, ese desplazamiento correspondería a una velocidad de recesión de v = 0.93c. Pero, si usamos las coordenadas cosmológicas tenemos una velocidad de recesión de:

\displaystyle   v = c \ln (z+1) = = c \ln (5.25) = 1.70475 c (6)
es decir, una velocidad superlumínica. Y en terminos de diferencia de potencial cosmológico tendriamos:

\displaystyle  \Delta\phi = c^2\ln(z+1) = 1.70475 c^2 (7)
Por lo que esta lejana galaxia estaría algo más allá de nuestro horizonte cósmico. Pero nuestros telescopios la pueden ver porque es una gran acumulación de materia, ya que su altura de potencial gravitatorio sobresaldría un poco por encima de nuestro horizonte cósmico. Toda galaxia o cúmulo más allá de nuestro horizonte que no posea suficiente altura de potencial para destacar, sino que estuviera a ras de él. solo puede ser vista como formando parte de la Radiacíón Cósmica de Fondo. Esto significa que cuando una fuente emisora de luz cercana al horizonte posee poca altura de potencial, no sólo su luz nos llegaría con desplazamiento al rojo, sino con poca intensidad (pocos fotones), y cuanto más grande sea su potencial gravitatorio local más intensa veremos su luz y bien diferenciada del ruido de fondo cósmico.

Saludos

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde f‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) ? x, cuando x << 1, y μ (x) ? 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol, \displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional, \displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND \displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz \displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante 😛 Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle I = Mr^2  (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle I = \sum m_ir_i^2  (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle r = \cfrac{2GM}{c^2} (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\  \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\  v_e = \sqrt{\frac{2GM}{r}} (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: