TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘sumatorio’

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin on November 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante 😛 Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

Cómo evitar caer en un agujero negro cuando haces footing

Posted by Albert Zotkin on September 25, 2015

Cuando sales a hacer footing una mañana cualquiera, es muy fácil evitar caer en un agujero negro si te encuentras alguno en tu camino. Lo único que tienes que hacer es saltar sobre él. De esa forma, como si de un charco de agua se tratara, evitarás caer en el y ser ‘espaguetizado’. athletisme-50
¿Tienes algunas dudas sobre como podrías saltar sobre ese agujero negro y no caer en él?. Veamos matemáticamente cómo.

El tamaño de ese agujero negro viene dado por su masa. Podemos decir que su horizonte de sucesos es su borde natural. Sería algo así como una esfera tridimensional (tres dimensiones, no cuatro, ya que por el principio holográfico toda la información cuántica estaría en la superficie exterior de su 4-esfera espacio-temporal). El radio de esa 3-esfera sería el radio de Schwarzschild, rs:

\displaystyle r_s = {2 G M \over c^2}  (1)
Es decir, tendrías que saltar una longitud de al menos 2rs. Pero, para saltar sobre una 3-esfera necesitas algo que aún no sabes qué es. Ese algo se llama “salto cuántico” o “túnel cuántico” (un ‘salto cuántico’ es como suprimir instantáneamente el espacio existente entre dos puntos, de modo que ambos puntos, que antes estaban separados, llegan a ser el mismo punto espacio-temporal, pero sólo ocurre exclusivamente para el objeto que realiza el salto, y después del salto, los puntos restauran su distancia original). Para calcular cómo realizar ese “salto cuántico” hemos de calcular la longitud de onda de tu onda de materia. Para ese cálculo necesitaremos saber qué onda de De Broglie has de desarrollar en el borde de ese agujero negro. La longitud de tu onda de materia es

\displaystyle \lambda = \cfrac{\hbar}{mv} (2)
donde m es tu masa corporal y v es tu velocidad haciendo footing. ¿Cuándo conseguirás saltar sobre ese agujero sin caer dentro de él?. Evidentemente cuando saltes al menos una longitud igual a 2rs. Para ello igualamos ambas ecuaciones, (1) y (2), la primera multiplicada por 2:

\displaystyle 2r_s = \lambda  \\ \\  {\cfrac{4 G M}{c^2} = \cfrac{\hbar}{mv} }  \\ \\ \\ v = \cfrac{\hbar c^2}{4 G M m}
Calculas numéricamete ese valor, y te aseguro que, si eres capaz de desarrollar esa velocidad o una inferior, no caerás dentro de ese agujero negro que te encontraste en tu feliz camino al hacer footing. A esa velocidad v tu salto cuántico sería exactamente de dos radios de Schwarzschild. Cuanto menor es la velocidad más larga es la longitud de tu onda de materia, y por lo tanto más probabilidad tendrás de saltar cuánticamente ese diámetro. De hecho, la probabilidad de caer en un agujero negro es tan grande como la probabilidad de encontrarte uno.

Esta idea nos sirve para indicar que la velocidad mínima no nula, c0, de un cuerpo de masa m, sería tal que la longitud de onda de su onda de materia sería igual a un radio de Hubble:

\displaystyle R_\text{H} = \cfrac{\hbar}{mc_0}
Por otro lado sabemos que una velocidad mínima tal vendría dada por la expresión:

\displaystyle   c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}
Esto significa que la masa m, en función de esa c0, debería ser:

\displaystyle   m =\sqrt{\frac{\hbar c_0}{G}}
Lo cual nos sugiere que las masas de las partículas fundamentales surgiría por que una partícula más fundamental aún se movería o vibraría a velocidades muy cercanas al reposo.
Paradójicamente“, cuanto mayor sea el radio de Schwarzschild del agujero negro sobre el que deseas saltar cuánticamente, menor ha de ser tu velocidad hacia él, según queda explícito en la ecuación (2). Y esto demuestra que para saltar cuánticamente una distancia infinita sólo necesitas alcanzar el reposo exacto matemático si tu masa corporal es finita. Ese salto infinito te dejaría exactamente en el mismo punto donde empezó el salto, con lo que un universo infinito sería además un universo transfinito, como apunté en un reciente post mio titulado Un universo eterno y transfinito: una foliación conforme del espaciotiempo.
Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Tagged: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El universo según Einstein, ¿quien inventó el cero y para qué?

Posted by Albert Zotkin on September 18, 2015

Muchos errores matemáticos se cometen por culpa de una mala aplicación de los métodos aritméticos y algebraicos en los que entra en juego el uso del número cero. Por ejemplo, está bien documentado que el mismo Einstein cometió, en muchas y cruciales ocasiones, el error infantil de dividir los dos lados de una misma ecuación por cero. Al dividir por cero se obtiene una indeterminación, y los resultados numéricos o algebraicos que se obtienen de eso son imprevisibles y disparatados, además de incorrectos, como es obvio. Robert Jastrow nos contó, hace ya algún tiempo, que el matemático ruso Alexander Friedman le escribió una carta a Einstein haciéndole saber que había cometido el error de dividir por cero (ese error resulta ser fatal para la consistencia interna de cualquier teoría que use las matemáticas para ser definida). Sin embargo, Einstein decidió no dar la razón a Friedman sobre su error, y escribió una carta de respuesta, no a Friedman directamente, sino a la revista científica que publicó dicha carta, en la que incluía cálculos que supuestamente demostraba que Friedman estaba equivocado respecto a su error. Friedman respondió pronto haciéndole ver a Einstein que había cometido un segundo error al intentar demostrar que su primer error no era un error, y añadió la apostilla “le agradecería que cuando usted crea que mis cálculos son correctos quizás entonces quiera escribir una corrección”. Al final Einstein tuvo que admitir que había divido por cero (error infantil donde los haya). De esa manera tan rocambolesca Alexander Friedman demostró que la teoría de Einstein sobre un universo estático era incorrecta por que contenía inconsistencias matemáticas internas fruto de dividir repetidamente por cero en las ecuaciones.

Pero no sólo la división por cero da lugar a inconsistencia. Veamos el siguiente ejemplo que propugna que existe error en algunos métodos de adición linear:

Un método de adición que sea linear y estable no puede dar una suma finita para la serie 1 + 2 + 3 + … . Que sea estable significa que sumando un término al principio de la serie incrementa la suma en la misma cantidad. Esto se muestra como sigue: Si

1 + 2 + 3 + … = x

entonces sumando 0 a ambos lados tenemos

0 + 1 + 2 + … = 0 + x = x por estabilidad.

Por linearidad, podemos restar la segunda ecuación a la primera para obtener

1 + 1 + 1 + … = x – x = 0

sumando 0 a ambos lados da

0 + 1 + 1 + 1 + … = 0,

y restando estas dos ultimas series tenemos:

1 + 0 + 0 + … = 0 1 = 0

lo cual contradice la propiedad de estabilidad.

¿Dónde está el error en todo ese proceso de manipulación aritmética?. El error está en que la x del lado derecho de la ecuación es tratada como si fuera un número finito, cuando en realidad es ∞ En cambio, la serie del lado izquierdo es tratada como si tuviera un número infinito de sumandos. Esto significa que x – x ≠ 0, sino un valor indeterminado, por lo que todos los demás resultados intermedios y la conclusión final son incorrectos.

La conclusión de todo esto es que hay que tener mucho cuidado a la hora de formular teorías científicas donde las matemáticas juegan un papel central, porque cualquier inconsistencia matemática puede echar por tierra toda una teoría que se las prometía muy felices.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Tagged: , , , , , , , | 2 Comments »

Gravitación universal: Resolución de la paradoja de la región lenticular

Posted by Albert Zotkin on February 14, 2015

En mi último post (Gravitación universal: Viaje insólito al centro de la Tierra) llegué a afirmar que una masa de pruebas en el interior de una esfera sólida de densidad uniforme sí podría sentir el campo gravitatorio creado por la masa de dicha esfera, contradiciendo así Newtom con su famoso teorema de la cáscara esférica (teorema del shell). Sin embargo, un análisis mas minucioso de dicho teorema nos lleva a concluir que Newton estaba en lo cierto. Veamos cómo Sir Isaac Newton demostró el teorema del shell:

Una de las razones por las que Newton inventó el cálculo infinitesimal fue para poder demostrar que la ley de la gravedad que él descubrió ofrece una aceleración gravitatoria nula dentro de una cáscara esférica para cualquier masa de pruebas, y también demostrar que si la masa de pruebas está fuera de esa cáscara esférica, la aceleración gravitatoria sería la misma que la que ofrecería si toda la masa de la cáscara estuviera situada en su centro.

Decir también que este teorema puede ser derivado desde la ley de Gauss para la gravedad. Empecemos:

TEOREMA DE LA CÁSCARA ESFÉRICA:
La Ley de la Gravitación Universal de Newton que para dos masas puntuales m y M separadas una distancia r la fuerza mutua ejercida sobre cada una de ella será:

\displaystyle F = \frac{G m M}{r^2}  (1)
donde la constante universal G posee el valor aproximado de

\displaystyle G \approx 6.67 \times 10^{-11} \mathrm{\ N.m^2/Kg^2}  (2)
A menudo es más útil usar el campo gravitario que genera la masa M,en lugar de la fuerza, así:

\displaystyle E = \frac{G M}{r^2}  (3)
Si en lugar de una masa puntual tenemos toda esa masa repartida homogéneamente sobre una cáscara esférica, el problema será saber que campo gravitatorio existe en un punto cualquiera dentro y fuera de esa la cáscara. Consideremos que el radio de dicha esfera es R, y situemos una masa de pruebas a la distancia r al centro de dicha esfera.

La densidad de esa cáscara esferica de masa M será:

\displaystyle \sigma =\frac{M}{4\pi R^2}  (4)
Si ahora descomponemos la cáscara esférica en pequeños anillos, y decimos que la distancia de uno cualquiera de dichos anillos al punto p donde está nuestra masa de pruebas es s, tendremos la siguiente configuración:

fig-1

La masa total del anillo seria entonces

\displaystyle \begin{aligned} M_a &=\sigma 2\pi R (\sin\phi) R d\phi \\  &=\frac{1}{2}M (\sin\phi)  d\phi   \end{aligned}  (5)
Seguidamente, nos damos cuenta que toda la masa está a la misma distancia s del punto p. Sin embargo, ya que (por simetría) la dirección del campo es hacia el centro de la esfera, la contribución de este pequeño anillo, tenemos que:

\displaystyle dE =\frac{G M \cos\theta \sin \phi d\phi}{2s^2} =-\frac{G M \cos\theta d(\cos \phi)}{2s^2}   (6)
Y usando la ley de los cosenos tenemos

\displaystyle R^2 = s^2+r^2-2rs\cos\theta, \\ s^2= R^2+r^2-2Rr\cos\phi  (7)
por lo que:

\displaystyle \cos\theta = \frac{s^2+r^2-R^2}{2rs} \\ \\ \cos\phi = \frac{R`2+r^2-s^2}{2Rr} \\ \\ s^2= R^2+r^2-2Rr\cos\phi  (8)
con lo cual:

\displaystyle -d(\cos\phi)=\frac{s}{Rr}ds.  (9)
y sustituyendo en (6) se obtiene la contribución del pequeño anillo:

\displaystyle dE =\frac{GM(s^2+r^2-R^2)ds}{4Rr^2s^2}  (10)
Desde esta última ecuación se concluye que el campo gravitacional total inducido por la cáscara esférica sobre la masa de pruebas situada en el punto p es la integral de las contribuciones de todos los anillos:

\displaystyle \begin{aligned} E &= \int_{s=r-R}^{s=r+R}dE = \frac{GM}{4Rr^2} \int_{s=r-R}^{s=r+R}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\  &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{r-R}^{r+R}= \frac{GM}{4Rr^2}\; 4R = \frac{GM}{r^2} \end{aligned}  (11)
y eso probaría la primer aparta del teorema gravitacional de la cáscara esférica de newton. Para probar la segunda parte, es decir que el campo gravitacional dentro de la cáscara esférica es cero, hay que darse cuenta de que la contribución de cada uno de esos anillos es la misma de antes,

fig-2

y lo único que cambia son los límites de integración para s, que ahora son s = Rr y s = R + r. Por lo tanto:

\displaystyle \begin{aligned} E &= \int_{s=R-r}^{s=R+r}dE = \frac{GM}{4Rr^2} \int_{s=R-r}^{s=R+r}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\  &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{R-r}^{R+r}= 0 \end{aligned}  (12)
Finalmente, calculamos el campos gravitacional inducido por una esfera sólida y homogénea de masa total M, en un punto cualquiera externo y después para un punto cualquiera del interior. La densidad de dicha esfera sólida sería:

\displaystyle \mu= \frac{3M}{4\pi R^3}  (13)
Y como antes, sea r la distancia de la masa de pruebas en el punto p al centro de la esfera. Ahora dividamos la esfera en sucesivas cáscaras esféricas concéntricas, cada una con un grosor de dρ y radio ρ, con lo cual la masa de cada una de esas cáscaras sería:

\displaystyle dM = 4\pi \rho^2 \mu d\rho = \frac{3M \rho^2}{R^3}d\rho.  (14)
Desde la primera parte del teorema de la cáscara de Newton, tenemos que la contribución al campo gravitacional de esa cáscara es:

\displaystyle dE = \frac{3GM \rho^2}{r^2R^3}d\rho;  (15)
y el campo total lo obtenemos integran todas las cáscaras concéntricas desde 0 hasta R:

\displaystyle E = \int_0^R dE=\int_0^R\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM\rho^3}{r^2R^3}\biggr\rvert_0^R =\frac{GM}{r^2}  (16)
Y para finalizar estas demostraciones de teoremas, si el punto p de nuestra masa de pruebas está en el interior de la esfera homogénea (r < R), entonces según la segunda parte del teorema de newton arriba demostrado, vemos que la contribución al campo gravitacional por las cáscaras concéntricas de radio ρ está definida por

\displaystyle dE = \begin{cases} \frac{3GM \rho^2}{r^2R^3}d\rho & \quad \text{if } 0\leq\rho\leq r, \\ 0  & \quad \text{if } r\leq\rho\leq R.\\ \end{cases}  \\ \\ \\   (17)
Por lo tanto, la contribución total al campo es la integral:

\displaystyle E = \int_0^r dE=\int_0^r\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM r^3}{r^2 R^3}  (18)
con lo que vemos que

\displaystyle M_r = \frac{M r^3}{R^3}
es la masa contenida en el volumen de la esfera de radio r.

Y hasta aquí la demostración del teorema de la cáscara de Newton. He destacado toda la demostración con fondo amarillo, y un párrafo (el que incluye la ecuación #6) lo he destacado especialmente sobre fondo amarillo más intenso para señalar que quizás alguien podría tener dudas de que esa deducción sea correcta. De hecho, si Ma es la masa de uno de eso pequeños anillos, tal y como se expresa en la ecuación (5). Podemos calcular fácilmente que la aceleración de la gravedad, para una masa de pruebas situada sobre el eje central a cierta distancia z del centro del anillo, será:

\displaystyle E_a = = \frac{G M_a z}{\sqrt{(R^2 + z^2)^3}} (19)
pero z = s cos φ, y R2 + z2 = s2, por lo que

\displaystyle E_a =  \frac{G M_a s \cos\phi}{s^3}=  \frac{G M_a \cos\phi}{s^2} \\ \\ \frac{1}{2} \frac{G M (\sin\phi)\cos\theta}{s^2} d\phi=-\frac{G M \cos\theta d(\cos \phi)}{2s^2}  (20)
es la misma ecuación (6).

Para resolver la paradoja de la región lenticular hemos de ver que si esa región es la correspondiente de substraer las masas elementales cuyas fuerzas opuestas en la masa de pruebas se cancelaban totalmente, entonces la masa de la esfera horadada restante, que sigue influyendo gravitacionalmente (sus fuerzas dos a dos no se anulan totalmente), es mayor que la que predice el teorema de la cáscara de newton. La solución a esta aparente anomalía está en ver que la masa de la región lenticular sustraída no es exhaustiva, es decir, es necesaria pero no es suficiente.
Esa región lenticular es sólo la correspondiente a fuerzas que se cancelan totalmente. Pero, aún permanecen en la esfera horadada restante pares de fuerzas que se cancelan sólo parcialmente, y eso implica que las masas elementales respectivas del par no se substraen del volumen totalmente pero deben substraerse parcialmente. Cuando completamos todas esas sustracciones parciales de masa veremos que la masa que permanece corresponde exactamente a la predicha en el teorema de la cáscara de Newton.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravitación universal: Viaje insólito al centro de la Tierra

Posted by Albert Zotkin on February 6, 2015

En este pequeño artículo voy a calcular cuánto vale la gravedad en un punto cualquiera del interior de un cuerpo esférico y de densidad constante.

Empecemos. Si el radio de dicho cuerpo esférico es R, y un punto p cualquiera de su interior está a la distancia r de su centro, tendremos que si trazamos segmentos de rectas centrados en dicho punto p, hacia todas las direcciones, podremos ir viendo cómo se van anulando pares de fuerzas. Cuando se anula un par de fuerzas, su influencia sobre una partícula de prueba situada en p es nula, y por lo tanto es como si las masas elementales que generan esas dos fueras opuestas no existieran. Estas anulaciones efectivas, dos a dos, produce una especie de oquedad, a modo de un cráter.

Ese hueco gravitacional en la esfera es en realidad el producto de la intersección de otra esfera de igual radio

Esa intersección es un volumen que tiene forma de lenteja. Si desprendemos ese volumen de masa, que no influye gravitacionalmente sobre nuestra masa de pruebas, tendremos una esfera horadada, que se ve claramente en las siguientes ilustraciones que he dibujado. La lenteja intersección, que he pintado de amarillo, cuyo centro es el punto p donde esta nuestra masa de pruebas, la voy a desprender de la esfera azul que representa nuestro planeta Tierra, quedando pues el hueco de no-gravedad,

Ahora nuestro problema matemático se reduce a calcular el volumen de esa lenteja que hemos desprendido de la esfera principal. Una vez que sabemos el valor de ese volumen lo restaremos del volumen de la esfera, con lo cual sabremos cual es el volumen de la esfera azul horadada, que es la que en definitiva influye gravitacionalmente sobre nuestra masa de pruebas.

Para calcular el volumen de esa lenteja (volumen intersección de dos esferas iguales), bastará calcular la mitad. Esa mitad es lo que se llama casquete esférico

\displaystyle v = \frac {\pi h}{6} (3a^2 + h^2) (1)
O también: \displaystyle v = \frac {\pi h^2}{3} (3R - h) (2)
O en función de R y r: \displaystyle v =\frac{1}{3} \pi  (r-R)^2 (r+2 R) (3)
Con lo cual el volumen total de esa lenteja será:

\displaystyle V = 2v = \frac{2}{3} \pi  (r-R)^2 (r+2 R) (4)

Esto significa que el volumen que permanece en la esfera principal horadada (esfera azul) será pues:

\displaystyle V_E =\frac{4}{3} \pi  R^3 - \frac{2}{3} \pi  (r-R)^2 (r+2 R) \\ \\ \\ \\ V_E = \frac{2}{3} \pi  r \left(3 R^2 - r^2\right) (5)
Pero según la Ley de Gauss para la Gravedad, y según el teorema del Shell, ese volumen VE, debería corresponder al volumen de una esfera de radio r. Es decir,

\displaystyle V_E =\frac{4}{3} \pi  r^3 (6)
¿Dónde está pues el error?.

Obviamente, si nuestra masa de pruebas está localizada en el centro de la Tierra, la lenteja que extraemos (intersección de las dos esferas) tendria un volumen igual al volumen total de la esfera, lo cual implicaría que la gravedad en el centro de la Tierra es nula. Pero, la pregunta está hecha ya. ¿Dónde está pues el error en mis cálculos?. Está claro, que algo debe estar equivocado en mis cálculos y/o consideraciones ya que la probabilidad de que yo no esté equivocado y sí lo esté Gauss al respecto es casi nula, por no decir absolutamente nula.

Actualización (2/8/2015): La ecuación (5) del volumen de masa efectiva (masa que influye efectivamente sobre nuestra masa de pruebas) nos sirve para hallar la masa efectiva. Ya que sabemos que la esfera inicial de radio R y masa total M es homogénea , la densidad constante de dicha esfera inicial es:

\displaystyle \mu =\frac{3M}{4\pi R^3}  (7)
Por lo tanto, si dividimos la masa efectiva ME por el volumen efectivo VE obtendremos esa densidad constante μ:

\displaystyle \frac{M_E}{V_E}=\mu =\frac{3M}{4\pi R^3}  (8)
y por lo tanto la masa efectiva será:

\displaystyle M_E=\frac{2}{3} \pi  r \left(3 R^2 - r^2\right)\frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=\tfrac{1}{2}M\left(\frac{3 r}{R}\text{  }- \frac{r^3}{R^3}\right) (9)
Pero, según el teorema de la cáscara esférica de Newton (el teorema del Shell), el volumen efectivo sería el de la ecuación (6), es decir, toda la masa efectiva estaria dentro de una esfera de radio r, y por lo tanto, la masa efectiva ME (según predice la gravitación universal de Newton, que es la conocida ley del inverso del cuadrado de la distancia) sería:

\displaystyle M_E=\frac{4}{3} \pi  r^3 \frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=M\frac{r^3}{R^3} (10)
Y según la gravitación universal de Newton, la fuerza efectiva sobre nuestra masa de pruebas sería:

\displaystyle F_E= G M\frac{r^3}{r^2 R^3} \\ \\ \\ \\  F_E= G M\frac{r}{R^3} (11)
O sea, la ley de gravitación universal de newton dice que considerando el radio R y la masa M constantes, la fuerza efectiva de la gravedad en el interior de esa esfera homogénea es directamente proporcional a r (distancia al centro de la esfera).

En conclusión: Según los cálculos que he realizado, el volumen efectivo hallado es independiente de la teoría de gravitación que consideremos ( no empleo la asunción de que la fuerza de la gravedad sea la ley del inverso del cuadrado de la distancia), sino que sólo asumo que a distancias iguales le corresponderán fuerzas iguales. Ahí radica la discrepancia entre el resultado que yo he hallado y el resultado oficial (el de la Ley de gravitación de Newton). Si los cálculos que he realizados son correctos, esto implicaría que la masa efectiva sería siempre mayor o igual que la masa efectiva oficial. Y esto tiene una implicación muy importante en gravitación, ya que explicaría nada más y nada menos que la anomalía que llamamos materia oscura. En la siguiente representación gráfica, para M = 1 y R = 1, comparo ambas predicciones de masa efectiva (la gráfica en azul es la que yo he calculado y la roja es la predicción clásica Newtoniana).

lines1

La región en gris definida entre ambas gráfica en el intervalo [0, R] es, según mis presagios, lo que se viene llamando erróneamente materia oscura. Es decir, la materia oscura sería simple y llanamente una anomalía ficticia producto de un mal entendimiento de la gravedad a lo largo de los siglos.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El Motor Inercial Mach-Lorentz nos llevará a las estrellas

Posted by Albert Zotkin on December 30, 2014

Un Motor Inercial Mach-Lorentz es un hipotético artefacto basado en el efecto Woodward que instalado en un vehículo espacial sería capaz de proporcionarle empuje sin necesidad de eyectar gases o cualquier otro material.

La idea del efecto Woodward se basa en la posibilidad de que se pueda inducir un cambio de masa inercial a un cuerpo cuando aceleramos eléctrica y magnéticamente algunos de sus componentes. Ese cambio temporal o cíclico de la masa inercial podría ser aprovechado para generar una fuerza con la que el vehículo aceleraría en el espacio. Es decir, que el vehículo no tendría que eyectar materia para acelerar. ¿Cómo se consigue eso?. La masa inercial es como un ancla en el espacio. Supongamos que dos personas, de igual peso, se suben a dos vagonetas que están sobre unos raíles. Si uno de ellos empuja la otra vagoneta, ambas se moverán en sentido contrario la misma distancia. Pero, si uno de ellos es más pesado que el otro, entonces la vagoneta con menos masa llegará más lejos. Está claro que la vagoneta más pesada está anclada a los raíles. Avanzar por el espacio con este artilugio también sería semejante a remar sobre una barca. Cuando alzamos el remo para llevarlo a una posición mas avanzada la masa del mismo rozando el aire es menor que cuando su pala está dentro del agua. Cuando hacemos fuerza para remar con la pala en el agua, eso es semejante a cuando empujamos a un cuerpo de mayor masa que nosotros. Existe siempre un cambio virtual de masas. Las ruedas de un coche sobre la calzada también experimentan ese cambio cíclico virtual de masas. La parte de la rueda que pisa la calzada es semejante a la vagoneta de mayor masa (queda más anclada que las otras partes del sistema). Cuando una parte queda más anclada, podemos aplicar empuje para aproximar hacia ella las partes más atrasadas. Es evidente que si el aire fuera más denso que el agua no podríamos remar en nuestra barca con eficiencia, ya que al llevar el remo por aire para ponerlo en la posición avanzada, nuestra barca se iría hacia atrás. De hecho, cuando remamos, la barca experimenta un impulso retrógrado (hacia atrás) cuando el remo va por aire hacia la posición avanzada. Lo que ocurre es que esa fuerza es insignificante frente a la fuerza de avance que conseguimos con la pala del remo dentro del agua.

Así, con un motor inercial, tipo Mach-Lorentz, queremos que exista una desproporción cíclica de fuerzas, de modo que siempre obtengamos ventaja con un avance que sea mayor que el retroceso. El problema con esta clase de “motores” que aplican el efecto Woodward es que no está claro si tal efecto existe en realidad, y cómo se realizan los anclajes para poder avanzar. ¿Cómo puede un vehículo espacial acelerar por el espacio como si fuera una oruga?.

En lugar de dos vagonetas imaginemos dos bolas de acero de igual volumen unidas por un muelle, y pongamos dicho sistema a vibrar. Si, de alguna forma, transferimos (mediante bombeo de gas, por ejemplo) masa de una bola hacia la otra mientras el sistema vibra por medio del muelle, es posible conseguir que dicho sistema experimente una fuerza que lo impulse en una determinada dirección espacial.

James F. Woodward afirma que en un motor Mach-Lorentz, el cual se basa en el efecto Woodward, cuando se carga un condensador eléctrico, su dieléctrico experimenta un aumento pasajero de su masa inercial, y cuando el condensador se descarga, el dieléctrico experimenta una disminución de masa. La fórmula que deduce Woodward para ese incremento de masa del dielétrico es:

\displaystyle \delta m_0 = \frac{1}{4\pi G}\left[\frac{1}{\rho_0 c^2}\frac{\partial P}{\partial t} - \left(\frac{1}{\rho_0 c^2}\right)^2 \frac{P^2}{V}\right]

donde m0 es la masa propia, G es la constante de gravitación universal, c es la velocidad de la luz en el vacio, ρ0 es la densidad propia del dieléctrico, V es el volumen del dieléctrico, y P es la poencia eléctrica instantanea enviada al sistema.

El problema con esa fórmula es que nadie sabe si predice un efecto real o es falsa ya que nadie ha sido capaz aún de medir ese supuesto efecto Woodward.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Gravedad cuántica: ¿existe una velocidad mínima no nula para el movimiento de los cuerpos con masa?

Posted by Albert Zotkin on December 22, 2014

Si nos creemos el hecho de que existe una velocidad máxima (insuperable) en nuestro universo, la cual identificamos como la velocidad de la luz en el vacío, c, entonces tambien debe ser razonable pensar que debe existir una velocidad mínima no nula, no sólo para los cuerpos con masa, sino para la misma luz. Este hecho de una cota minima nos lleva a fenómenos como el de la refracción de la luz en medios extremos. Decimos que un medio posee un indice de refraccíon n mayor que la unidad cuando la velocidad de la luz cn en dicho medio es inferior a la que posee en el vacio:

\displaystyle n = \frac{c}{c_n} (1)
Si afirmamos que ha de existir una velocidad mínima no nula para la luz en algún medio (por ahora desconocido), entonces dicho medio poseerá un índice de refracción muy alto, pero no infinito, porque si fuera infinito la velocidad de la luz en dicho medio sería nula. Por otro, lado sabemos que la longitud de Planck lP está definida de esta forma:

\displaystyle \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \approx 1.616\;199 (97) \times 10^{-35} \mbox{ m} (2)
Esto significa que es posible expresar la velocidad de la luz en función de la Longitud de Planck:

\displaystyle c =\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}}  (3)
Y esto quiere decir que para una posible velocidad mínima no nula, c0, de la luz en un medio extremo (aún desconocido) debemos encontrar una longitud “extrema” muy grande, que llamaremos RH, tal que:

\displaystyle c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}  (4)
por lo que el índice de refracción para ese medio en el cual la luz se ralentiza hasta llegar a propagarse a la mínima velocidad no nula posible, será:

\displaystyle n_0 =\cfrac{\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}} }{\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}} } =\sqrt[3]{\frac{R_\text{H}^2}{\ell_\text{P}^2}} (5)

Es pues posible hipotetizar que esa longitud RH no puede ser otra que un Radio de Hubble:

\displaystyle R_\text{H} =\cfrac{c}{H_0} (6)

donde H0 es la constante de Hubble, y su valor aproximado es de

\displaystyle R_\text{H} \approx  13.000 \ \text{millones de a\~nos luz} (7)
Luego la velocidad mínima que buscamos será:

\displaystyle c_0 =\sqrt[3]{\frac{\hbar G H_0^2}{c^2}}  (8)
Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: Análisis pormenorizado de la componente entrópica de la gravedad

Posted by Albert Zotkin on December 19, 2014

Hace ya algún tiempo un tal Erik Verlinde publicó un artículo en el que supuestamente deducía la ley de gravitación universal de Newton desde primeros principios, incluso dedujo las ecuaciones de campo de Einstein de la Relatividad General, concluyendo que la gravedad es una fuerza entrópica, es decir una fuerza que no es fundamental y que emerge naturalmente del aumento de entropía de los sistemas materiales. Verlinde usó el principio holográfico y las conocidas leyes de la termodinámica, junto con algunas cosillas más, para deducir dicha fuerza entrópica. Las fuerzas entrópicas emergen desde el microcosmos hacia el macrocosmos debido a que los sistemas materiales tienden a adoptar estados de máxima entropia. Cuando estiras una goma elástica debes de ejercer una fuerza para contrarrestar temporalmente su estado maximizado de entropía. Al estirar la goma estás rebajando su entropia, y por lo tanto la goma se opone a ese cambio ejerciendo una fuerza en sentido contrario que intenta restaurar su estado de máxima entropía.

Pero, como vamos a ver ahora, esa fuerza entrópica deducida por Verlinde desde primeros principios, y que emerge siendo la fuerza de gravitación de Newton, es sólo una componente de la gravedad total. En concreto vamos a ver cómo esa componente entrópica es engullida brutalmente por un tiburón cuántico que habita en las profundidades del microcosmos termodinámico.

Comencemos expresando la Primera Ley de la Termodinámica para sistemas homogeneos cerrados:

\displaystyle dU=TdS-PdV (1)
donde dU es el cambio de energía interna, T es la temperatura, dV es el cambio de volumen, dS es el cambio de entropia, y P es la presión. Sabemos que PdV es el cambio de energía libre del sistema, por lo tanto puede ser expresada como suma de los cambios de energía de cada uno de los microestados

\displaystyle \langle PV\rangle=-\frac{\ln(\mathcal{Z})}{\beta} = -\frac{\epsilon_1\oplus\epsilon_2\oplus\epsilon_3\oplus\dots}{\beta}    2
Donde es representa la energía del microestado s, Z es la función de partición, y β es menos el inverso del producto de la temperatura por la constante de Boltzmann:

\displaystyle   \mathcal{Z} = \sum_{s} e^{\beta \epsilon_s}  \\ \\ \\  \beta = -\frac{1}{k_BT}
La ecuación (1) para un proceso con presión y temperatura constantes queda así:

\displaystyle U=TS-PV (3)
por lo tanto sustituyendo (2) en (3) tenemos:

\displaystyle U=TS + \frac{\ln(\mathcal{Z})}{\beta} \\ \\  U=\frac{\beta}{\beta} \ln \exp(TS) + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\  U=\frac{\ln \exp(\beta TS )}{\beta} + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\  U=\frac{\ln \left (\mathcal{Z}\exp(\beta TS ) \right)}{\beta}  \\ \\ \\  (4)

Según el postulado fundamental de la mecánica estadística, la entropía S es directamente proporcional al logaritmo del número Ω de microestados:

\displaystyle S = k_B \ln \Omega

es decir

\displaystyle TS = Tk_B \ln \Omega= -\frac{\ln \Omega}{\beta} (5)

por lo que (4) lo podemos calcular más fácilmente:

\displaystyle U=TS + \frac{\ln \mathcal{Z}}{\beta} \\ \\  U=-\frac{\ln \Omega}{\beta} + \frac{\ln \mathcal{Z}}{\beta} \\ \\ \\
\displaystyle \boxed{U=\cfrac{1}{\beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}  (6)
Esta energía interna U es lo que en gravedad debe identificarse como la energía potencial gravitatoria, la cual si es dividida por la masa m de una partícula de prueba tendremos el potencial gravitatorio (con todas sus componentes) en el punto espacial donde está localizada dicha partícula:

\displaystyle \boxed{V = \cfrac{U}{m}=\cfrac{1}{m \beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}  (7)
Recapitulemos. La componente entrópica debe ser identificada con la gravitación clásica de Newton, y la componente de energía libre (PV) debe ser identificada con lo que se llama gravitomagnetismo. O lo que es lo mismo, la función de partición Z mapea dicho gravitomagnetismo, mientras que el número Ω de microestados mapea la componente estática de gravitación Newtoniana.

Pongamos un pequeño ejemplo. Supongamos que queremos calcular el número Ω de microestados de un sistema gravitatorio binario, con masas M y m. Igualamos el potencial gravitatorio así:

\displaystyle   V =-\frac{\ln \Omega}{m\beta} = -\frac{GM}{r}  \\ \\  \Omega = \exp\left(\frac{GMm\beta}{r}\right)

pero en β está incluida la temperatura T, por lo tanto si igualamos esa temperatura con la temperatura de Unhru: ,

\displaystyle T = \frac{\hbar a}{2\pi c k_\text{B}} \\ \\ \\ \beta= -  \frac{2\pi c}{\hbar a} \\ \\ \\

y la aceleración a la igualamos a la aceleración del campo gravitatorio estático, a = g:

\displaystyle a = \frac{GM}{r^2}\\ \\ \\ \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\

Por lo que el número Ω de microestados para ese sistema gravitatorio será:

\displaystyle a = \frac{GM}{r^2}\\ \\ \\ \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\ \Omega = \exp \left(\frac{GMm\beta}{r}\right) = \exp\left(\frac{m c \ 2\pi r}{\hbar}\right)
Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: definición de nuevo centro de masas desde micro-estados mediante infra-sumas de orden -1

Posted by Albert Zotkin on October 28, 2014

Clásicamente, se define el centro de masas de un sistema de n partículas asi:

\displaystyle \mathbf{R} = \frac 1M \sum_{i=1}^n m_i \mathbf{r}_i,
donde mi es la masa de la partícula i, ri es su vector distancia (desplazamiento) al origen de coordenadas, M es la masa total del sistema de partículas y R es el vector distancia (desplazamiento) del centro de masas. Desde esta definición de centro de masas vemos claramente que ese punto que nos señala el vector R debe ser tal que

\displaystyle  \sum_{i=1}^n m_i(\mathbf{r}_i - \mathbf{R}) = 0

se cumpla siempre para dicho sistema de partículas. Podemos hacer esa suma adimensional si la dividimos por el producto de la masa de Planck y la longitud de Planck, mP×lP

\displaystyle  \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \\ \\ m_\text{P}=\sqrt{\frac{\hbar c}{G}} \\ \\ m_\text{P} \ell_\text{P} =\cfrac{\hbar}{c}

es decir

\displaystyle \sum_{i=1}^n \cfrac{m_ic(\mathbf{r}_i - \mathbf{R})}{\hbar} = 0
Ahora viene la parte interesante de todo esto. Una vez que hemos hecho adimensional dicha suma, nos vamos al ámbito de las infra-sumas, y decir que si usamos el operador ⊕ de orden -1 tendremos un nuevo centro de masas ℜ tal que:

\displaystyle  \cfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar} \oplus \cfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar} \oplus \dots= -\infty

debe ser igual a -∞ por que ese es el elemento neutro de la infra-suma de orden -1. Y según la definición de infra-suma de orden -1, tendremos que

\displaystyle  \log\left(\exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots\right)=-\infty=\log 0 \\ \\   \exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots =  0 \\ \\  \sum_{i=1}^n \exp \left(\frac{m_ic(\mathbf{r}_i - \cal{R})}{\hbar}\right) = 0
Es evidente que la magnitud ħ/mic es la longitud de onda de Compton reducida de la partícula i del sistema, una forma muy natural de expresar la masa a escala cuántica. Pero, lo interesante está en el valor de ℜ, y ver a dónde apunta. Espero que alguien serio lea este pequeño artículo de gravedad cuántica y lo tenga en cuenta como una modesta y pequeña contribución para el progreso de la ciencia, y en particular de la gravedad cuántica.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »