TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘hadrones’

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante 😛 Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Anuncios

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Velocidades superlumínicas en el LHC del CERN

Posted by Albert Zotkin en marzo 30, 2015

El Gran Colisionador de Hadrones (LHC) tiene previsto este año (2015) reiniciar sus colisiones protón-protón, después de dos años de parada técnica por tareas de mantenimiento. En principio se tenia previsto llegar a colisiones con el máximo de energía para la que fue diseñada la compleja máquina. Esa máxima energía es de 14 TeV (14 Tera-electrón-voltios), pero por razones de optimización posterior, y atendiendo a las características técnicas de los 1232 imanes dipolares superconductores de que está dotado el anillo de 27 kilometros de circunferencia del LHC, la energía a la que llegarán las colisiones este año será de 13 TeV. Aun así, esa energía es significativamente mayor que la que se utilizó al principio, que fue de 7 TeV, llegando después hasta 8 TeV.

Según la Relatividad Especial, la energía total E de una partícula de masa m se expresa así:

\displaystyle E = \gamma mc^2

siendo γ el famoso factor de Lorentz

Si la energía total a desarrollar para los dos protones que colisionan en el LHC es de 13 TeV, entonces para uno de esos protones, y en un sistema de referencia centrado en el centro de masas de ambas partículas, la energía sería de 6.5 TeV y le correspondería un factor de Lorentz de:

\displaystyle    6.5 \times 10^{12} \;  \mathrm{eV} \times 1,602 \times 10^{-19} \frac{\mathrm{J}}{\mathrm{eV}} = \gamma \; 1,67 \times 10^{-27} \; \mathrm{Kg} \times 3 \;10^8 \; \left(\frac{\mathrm{m}}{\mathrm{s}}\right )^2  \\ \\  \gamma = 6937.7

y ese factor de Lorentz representaría una velocidad de :

\displaystyle   v = c\sqrt{1-\frac{1}{\gamma^2}}= 0.9999999896c

muy próxima a c, pero sin superarla, como dicta la Relatividad Especial.

La velocidad de la luz es, si cabe, uno de los fenómenos físicos más extraños y menos entendidos desde el punto de vista científico. Ni siquiera nadie puede afirmar con rotundidad que esa sea una verdadera velocidad de algo (un fotón) que se desplace por el llamado espacio-tiempo (constructo teorético que también se las trae como concepto bastante artificioso).
Veamos ahora cómo se modela el movimiento de un protón desde otra teoría de la relatividad, en la que la dilatación del tiempo, y/o del espacio, no es necesaria para explicar nada. En dicha teoría la energía total viene definida así:

\displaystyle E = mc^2 \cosh \left(\frac{v}{c}\right)

con lo que obtenemos una velocidad para un único protón de:

\displaystyle   v = 9.5378784612c

proton-proton

es decir, ¡nueve veces y media la velocidad de la luz! Representemos en dos gráficas comparativas el factor de Lorentz γ y el factor coseno hiperbólico, el cual pertenece a la teoría de la relatividad Galileana:

sl

¿A partir de qué energía total un protón superaría la velocidad de la luz c?

\displaystyle   E=m c^2\cosh 1=1.4457 \;\mathrm{GeV}
A los incrédulos les diré que para comprobar si una partícula supera o no la velocidad de la luz, lo primero que hay que hacer en el experimento es sincronizar dos o más relojes distantes. Ahí está la clave de todo este meollo. La sincronización de relojes es algo absolutamente convencional, es decir, algo arbitrario que ha emanado de la invención humana. La naturaleza no necesita sincronizar relojes para poder funcionar ni comprobar nada, simplemente funciona. En cambio, dependiendo de qué convención arbitraria utilicemos para sincronizar dos o más relojes distantes, obtendremos diferentes resultados dispares en las mediciones de las velocidades. Hay que saber que existen infinitas convenciones de sincronización de relojes, todas ellas igual de válidas. Elije una de ellas y estarás creando una teoría de la relatividad ni más ni menos válida que la actualmente reinante en el mundo de la física.

Pero, los físicos de partículas no son tontos, no se complican la vida afirmando o negando que una partícula, o un puñado de ellas, supera la velocidad de la luz en el vacío. Los físicos de partículas simplemente usan algo llamado rapidez, que se aproxima algo al concepto de velocidad, pero no es igual. Sólo decir, por último, que si llamamos f a dicha rapidez, entonces la velocidad v, que consideramos en la teoría de la relatividad Galileana, se relaciona con ella de la siguiente forma:

\displaystyle   v = c\varphi

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , | 1 Comment »

 
A %d blogueros les gusta esto: