TARDÍGRADOS

Ciencia en español

Gravedad cuántica: ¿existe una velocidad mínima no nula para el movimiento de los cuerpos con masa?

Posted by Albert Zotkin en diciembre 22, 2014

Si nos creemos el hecho de que existe una velocidad máxima (insuperable) en nuestro universo, la cual identificamos como la velocidad de la luz en el vacío, c, entonces tambien debe ser razonable pensar que debe existir una velocidad mínima no nula, no sólo para los cuerpos con masa, sino para la misma luz. Este hecho de una cota minima nos lleva a fenómenos como el de la refracción de la luz en medios extremos. Decimos que un medio posee un indice de refraccíon n mayor que la unidad cuando la velocidad de la luz cn en dicho medio es inferior a la que posee en el vacio:

\displaystyle  n = \frac{c}{c_n}  (1)
Si afirmamos que ha de existir una velocidad mínima no nula para la luz en algún medio (por ahora desconocido), entonces dicho medio poseerá un índice de refracción muy alto, pero no infinito, porque si fuera infinito la velocidad de la luz en dicho medio sería nula. Por otro, lado sabemos que la longitud de Planck lP está definida de esta forma:

\displaystyle  \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \approx 1.616\;199 (97) \times 10^{-35} \mbox{ m}  (2)
Esto significa que es posible expresar la velocidad de la luz en función de la Longitud de Planck:

\displaystyle  c =\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}}   (3)
Y esto quiere decir que para una posible velocidad mínima no nula, c0, de la luz en un medio extremo (aún desconocido) debemos encontrar una longitud “extrema” muy grande, que llamaremos RH, tal que:

\displaystyle  c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}   (4)
por lo que el índice de refracción para ese medio en el cual la luz se ralentiza hasta llegar a propagarse a la mínima velocidad no nula posible, será:

\displaystyle  n_0 =\cfrac{\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}} }{\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}} } =\sqrt[3]{\frac{R_\text{H}^2}{\ell_\text{P}^2}}  (5)

Es pues posible hipotetizar que esa longitud RH no puede ser otra que un Radio de Hubble:

\displaystyle  R_\text{H} =\cfrac{c}{H_0}  (6)

donde H0 es la constante de Hubble, y su valor aproximado es de

\displaystyle  R_\text{H} \approx  13.000 \ \text{millones de a\~nos luz}  (7)
Luego la velocidad mínima que buscamos será:

\displaystyle  c_0 =\sqrt[3]{\frac{\hbar G H_0^2}{c^2}}   (8)
Saludos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: