TARDÍGRADOS

Ciencia en español

Gravitación universal: Resolución de la paradoja de la región lenticular

Posted by Albert Zotkin en febrero 14, 2015

En mi último post (Gravitación universal: Viaje insólito al centro de la Tierra) llegué a afirmar que una masa de pruebas en el interior de una esfera sólida de densidad uniforme sí podría sentir el campo gravitatorio creado por la masa de dicha esfera, contradiciendo así Newtom con su famoso teorema de la cáscara esférica (teorema del shell). Sin embargo, un análisis mas minucioso de dicho teorema nos lleva a concluir que Newton estaba en lo cierto. Veamos cómo Sir Isaac Newton demostró el teorema del shell:

Una de las razones por las que Newton inventó el cálculo infinitesimal fue para poder demostrar que la ley de la gravedad que él descubrió ofrece una aceleración gravitatoria nula dentro de una cáscara esférica para cualquier masa de pruebas, y también demostrar que si la masa de pruebas está fuera de esa cáscara esférica, la aceleración gravitatoria sería la misma que la que ofrecería si toda la masa de la cáscara estuviera situada en su centro.

Decir también que este teorema puede ser derivado desde la ley de Gauss para la gravedad. Empecemos:

TEOREMA DE LA CÁSCARA ESFÉRICA:
La Ley de la Gravitación Universal de Newton que para dos masas puntuales m y M separadas una distancia r la fuerza mutua ejercida sobre cada una de ella será:

\displaystyle  F = \frac{G m M}{r^2}   (1)
donde la constante universal G posee el valor aproximado de

\displaystyle  G \approx 6.67 \times 10^{-11} \mathrm{\ N.m^2/Kg^2}   (2)
A menudo es más útil usar el campo gravitario que genera la masa M,en lugar de la fuerza, así:

\displaystyle  E = \frac{G M}{r^2}   (3)
Si en lugar de una masa puntual tenemos toda esa masa repartida homogéneamente sobre una cáscara esférica, el problema será saber que campo gravitatorio existe en un punto cualquiera dentro y fuera de esa la cáscara. Consideremos que el radio de dicha esfera es R, y situemos una masa de pruebas a la distancia r al centro de dicha esfera.

La densidad de esa cáscara esferica de masa M será:

\displaystyle  \sigma =\frac{M}{4\pi R^2}   (4)
Si ahora descomponemos la cáscara esférica en pequeños anillos, y decimos que la distancia de uno cualquiera de dichos anillos al punto p donde está nuestra masa de pruebas es s, tendremos la siguiente configuración:

fig-1

La masa total del anillo seria entonces

\displaystyle      \begin{aligned}  M_a &=\sigma 2\pi R (\sin\phi) R d\phi \\   &=\frac{1}{2}M (\sin\phi)  d\phi    \end{aligned}     (5)
Seguidamente, nos damos cuenta que toda la masa está a la misma distancia s del punto p. Sin embargo, ya que (por simetría) la dirección del campo es hacia el centro de la esfera, la contribución de este pequeño anillo, tenemos que:

\displaystyle  dE =\frac{G M \cos\theta \sin \phi d\phi}{2s^2} =-\frac{G M \cos\theta d(\cos \phi)}{2s^2}    (6)
Y usando la ley de los cosenos tenemos

\displaystyle  R^2 = s^2+r^2-2rs\cos\theta, \\  s^2= R^2+r^2-2Rr\cos\phi   (7)
por lo que:

\displaystyle  \cos\theta = \frac{s^2+r^2-R^2}{2rs} \\ \\  \cos\phi = \frac{R`2+r^2-s^2}{2Rr} \\ \\  s^2= R^2+r^2-2Rr\cos\phi   (8)
con lo cual:

\displaystyle  -d(\cos\phi)=\frac{s}{Rr}ds.   (9)
y sustituyendo en (6) se obtiene la contribución del pequeño anillo:

\displaystyle  dE =\frac{GM(s^2+r^2-R^2)ds}{4Rr^2s^2}   (10)
Desde esta última ecuación se concluye que el campo gravitacional total inducido por la cáscara esférica sobre la masa de pruebas situada en el punto p es la integral de las contribuciones de todos los anillos:

\displaystyle  \begin{aligned}  E &= \int_{s=r-R}^{s=r+R}dE = \frac{GM}{4Rr^2} \int_{s=r-R}^{s=r+R}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\   &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{r-R}^{r+R}= \frac{GM}{4Rr^2}\; 4R = \frac{GM}{r^2}  \end{aligned}   (11)
y eso probaría la primer aparta del teorema gravitacional de la cáscara esférica de newton. Para probar la segunda parte, es decir que el campo gravitacional dentro de la cáscara esférica es cero, hay que darse cuenta de que la contribución de cada uno de esos anillos es la misma de antes,

fig-2

y lo único que cambia son los límites de integración para s, que ahora son s = Rr y s = R + r. Por lo tanto:

\displaystyle  \begin{aligned}  E &= \int_{s=R-r}^{s=R+r}dE = \frac{GM}{4Rr^2} \int_{s=R-r}^{s=R+r}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\   &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{R-r}^{R+r}= 0  \end{aligned}   (12)
Finalmente, calculamos el campos gravitacional inducido por una esfera sólida y homogénea de masa total M, en un punto cualquiera externo y después para un punto cualquiera del interior. La densidad de dicha esfera sólida sería:

\displaystyle  \mu= \frac{3M}{4\pi R^3}   (13)
Y como antes, sea r la distancia de la masa de pruebas en el punto p al centro de la esfera. Ahora dividamos la esfera en sucesivas cáscaras esféricas concéntricas, cada una con un grosor de dρ y radio ρ, con lo cual la masa de cada una de esas cáscaras sería:

\displaystyle  dM = 4\pi \rho^2 \mu d\rho = \frac{3M \rho^2}{R^3}d\rho.   (14)
Desde la primera parte del teorema de la cáscara de Newton, tenemos que la contribución al campo gravitacional de esa cáscara es:

\displaystyle  dE = \frac{3GM \rho^2}{r^2R^3}d\rho;   (15)
y el campo total lo obtenemos integran todas las cáscaras concéntricas desde 0 hasta R:

\displaystyle  E = \int_0^R dE=\int_0^R\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM\rho^3}{r^2R^3}\biggr\rvert_0^R =\frac{GM}{r^2}   (16)
Y para finalizar estas demostraciones de teoremas, si el punto p de nuestra masa de pruebas está en el interior de la esfera homogénea (r < R), entonces según la segunda parte del teorema de newton arriba demostrado, vemos que la contribución al campo gravitacional por las cáscaras concéntricas de radio ρ está definida por

\displaystyle    dE =  \begin{cases}  \frac{3GM \rho^2}{r^2R^3}d\rho & \quad \text{if } 0\leq\rho\leq r, \\  0  & \quad \text{if } r\leq\rho\leq R.\\  \end{cases}  \\ \\ \\    (17)
Por lo tanto, la contribución total al campo es la integral:

\displaystyle  E = \int_0^r dE=\int_0^r\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM r^3}{r^2 R^3}   (18)
con lo que vemos que

\displaystyle  M_r = \frac{M r^3}{R^3}
es la masa contenida en el volumen de la esfera de radio r.

Y hasta aquí la demostración del teorema de la cáscara de Newton. He destacado toda la demostración con fondo amarillo, y un párrafo (el que incluye la ecuación #6) lo he destacado especialmente sobre fondo amarillo más intenso para señalar que quizás alguien podría tener dudas de que esa deducción sea correcta. De hecho, si Ma es la masa de uno de eso pequeños anillos, tal y como se expresa en la ecuación (5). Podemos calcular fácilmente que la aceleración de la gravedad, para una masa de pruebas situada sobre el eje central a cierta distancia z del centro del anillo, será:

\displaystyle  E_a = = \frac{G M_a z}{\sqrt{(R^2 + z^2)^3}}  (19)
pero z = s cos φ, y R2 + z2 = s2, por lo que

\displaystyle  E_a =  \frac{G M_a s \cos\phi}{s^3}=  \frac{G M_a \cos\phi}{s^2} \\ \\  \frac{1}{2} \frac{G M (\sin\phi)\cos\theta}{s^2} d\phi=-\frac{G M \cos\theta d(\cos \phi)}{2s^2}   (20)
es la misma ecuación (6).

Para resolver la paradoja de la región lenticular hemos de ver que si esa región es la correspondiente de substraer las masas elementales cuyas fuerzas opuestas en la masa de pruebas se cancelaban totalmente, entonces la masa de la esfera horadada restante, que sigue influyendo gravitacionalmente (sus fuerzas dos a dos no se anulan totalmente), es mayor que la que predice el teorema de la cáscara de newton. La solución a esta aparente anomalía está en ver que la masa de la región lenticular sustraída no es exhaustiva, es decir, es necesaria pero no es suficiente.
Esa región lenticular es sólo la correspondiente a fuerzas que se cancelan totalmente. Pero, aún permanecen en la esfera horadada restante pares de fuerzas que se cancelan sólo parcialmente, y eso implica que las masas elementales respectivas del par no se substraen del volumen totalmente pero deben substraerse parcialmente. Cuando completamos todas esas sustracciones parciales de masa veremos que la masa que permanece corresponde exactamente a la predicha en el teorema de la cáscara de Newton.

Saludos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: