TARDÍGRADOS

Ciencia en español

Gravitación universal: Viaje insólito al centro de la Tierra

Posted by Albert Zotkin en febrero 6, 2015

En este pequeño artículo voy a calcular cuánto vale la gravedad en un punto cualquiera del interior de un cuerpo esférico y de densidad constante.

Empecemos. Si el radio de dicho cuerpo esférico es R, y un punto p cualquiera de su interior está a la distancia r de su centro, tendremos que si trazamos segmentos de rectas centrados en dicho punto p, hacia todas las direcciones, podremos ir viendo cómo se van anulando pares de fuerzas. Cuando se anula un par de fuerzas, su influencia sobre una partícula de prueba situada en p es nula, y por lo tanto es como si las masas elementales que generan esas dos fueras opuestas no existieran. Estas anulaciones efectivas, dos a dos, produce una especie de oquedad, a modo de un cráter.

Ese hueco gravitacional en la esfera es en realidad el producto de la intersección de otra esfera de igual radio

Esa intersección es un volumen que tiene forma de lenteja. Si desprendemos ese volumen de masa, que no influye gravitacionalmente sobre nuestra masa de pruebas, tendremos una esfera horadada, que se ve claramente en las siguientes ilustraciones que he dibujado. La lenteja intersección, que he pintado de amarillo, cuyo centro es el punto p donde esta nuestra masa de pruebas, la voy a desprender de la esfera azul que representa nuestro planeta Tierra, quedando pues el hueco de no-gravedad,

Ahora nuestro problema matemático se reduce a calcular el volumen de esa lenteja que hemos desprendido de la esfera principal. Una vez que sabemos el valor de ese volumen lo restaremos del volumen de la esfera, con lo cual sabremos cual es el volumen de la esfera azul horadada, que es la que en definitiva influye gravitacionalmente sobre nuestra masa de pruebas.

Para calcular el volumen de esa lenteja (volumen intersección de dos esferas iguales), bastará calcular la mitad. Esa mitad es lo que se llama casquete esférico

\displaystyle v = \frac {\pi h}{6} (3a^2 + h^2) (1)
O también:
\displaystyle v = \frac {\pi h^2}{3} (3R - h)
(2)
O en función de R y r:
\displaystyle v =\frac{1}{3} \pi  (r-R)^2 (r+2 R)
(3)
Con lo cual el volumen total de esa lenteja será:

\displaystyle V = 2v = \frac{2}{3} \pi  (r-R)^2 (r+2 R) (4)

Esto significa que el volumen que permanece en la esfera principal horadada (esfera azul) será pues:

\displaystyle V_E =\frac{4}{3} \pi  R^3 - \frac{2}{3} \pi  (r-R)^2 (r+2 R) \\ \\ \\ \\ V_E = \frac{2}{3} \pi  r \left(3 R^2 - r^2\right) (5)
Pero según la Ley de Gauss para la Gravedad, y según el teorema del Shell, ese volumen VE, debería corresponder al volumen de una esfera de radio r. Es decir,

\displaystyle V_E =\frac{4}{3} \pi  r^3 (6)
¿Dónde está pues el error?.

Obviamente, si nuestra masa de pruebas está localizada en el centro de la Tierra, la lenteja que extraemos (intersección de las dos esferas) tendria un volumen igual al volumen total de la esfera, lo cual implicaría que la gravedad en el centro de la Tierra es nula. Pero, la pregunta está hecha ya. ¿Dónde está pues el error en mis cálculos?. Está claro, que algo debe estar equivocado en mis cálculos y/o consideraciones ya que la probabilidad de que yo no esté equivocado y sí lo esté Gauss al respecto es casi nula, por no decir absolutamente nula.

Actualización (2/8/2015): La ecuación (5) del volumen de masa efectiva (masa que influye efectivamente sobre nuestra masa de pruebas) nos sirve para hallar la masa efectiva. Ya que sabemos que la esfera inicial de radio R y masa total M es homogénea , la densidad constante de dicha esfera inicial es:

\displaystyle \mu =\frac{3M}{4\pi R^3}  (7)
Por lo tanto, si dividimos la masa efectiva ME por el volumen efectivo VE obtendremos esa densidad constante μ:

\displaystyle \frac{M_E}{V_E}=\mu =\frac{3M}{4\pi R^3}  (8)
y por lo tanto la masa efectiva será:

\displaystyle M_E=\frac{2}{3} \pi  r \left(3 R^2 - r^2\right)\frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=\tfrac{1}{2}M\left(\frac{3 r}{R}\text{  }- \frac{r^3}{R^3}\right) (9)
Pero, según el teorema de la cáscara esférica de Newton (el teorema del Shell), el volumen efectivo sería el de la ecuación (6), es decir, toda la masa efectiva estaria dentro de una esfera de radio r, y por lo tanto, la masa efectiva ME (según predice la gravitación universal de Newton, que es la conocida ley del inverso del cuadrado de la distancia) sería:

\displaystyle M_E=\frac{4}{3} \pi  r^3 \frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=M\frac{r^3}{R^3} (10)
Y según la gravitación universal de Newton, la fuerza efectiva sobre nuestra masa de pruebas sería:

\displaystyle F_E= G M\frac{r^3}{r^2 R^3} \\ \\ \\ \\  F_E= G M\frac{r}{R^3} (11)
O sea, la ley de gravitación universal de newton dice que considerando el radio R y la masa M constantes, la fuerza efectiva de la gravedad en el interior de esa esfera homogénea es directamente proporcional a r (distancia al centro de la esfera).

En conclusión: Según los cálculos que he realizado, el volumen efectivo hallado es independiente de la teoría de gravitación que consideremos ( no empleo la asunción de que la fuerza de la gravedad sea la ley del inverso del cuadrado de la distancia), sino que sólo asumo que a distancias iguales le corresponderán fuerzas iguales. Ahí radica la discrepancia entre el resultado que yo he hallado y el resultado oficial (el de la Ley de gravitación de Newton). Si los cálculos que he realizados son correctos, esto implicaría que la masa efectiva sería siempre mayor o igual que la masa efectiva oficial. Y esto tiene una implicación muy importante en gravitación, ya que explicaría nada más y nada menos que la anomalía que llamamos materia oscura. En la siguiente representación gráfica, para M = 1 y R = 1, comparo ambas predicciones de masa efectiva (la gráfica en azul es la que yo he calculado y la roja es la predicción clásica Newtoniana).

lines1

La región en gris definida entre ambas gráfica en el intervalo [0, R] es, según mis presagios, lo que se viene llamando erróneamente materia oscura. Es decir, la materia oscura sería simple y llanamente una anomalía ficticia producto de un mal entendimiento de la gravedad a lo largo de los siglos.

Saludos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: