TARDÍGRADOS

Ciencia en español

Posts Tagged ‘Einstein’

Espejismo Gravitacional: Las ondas gravitacionales detectadas por LIGO son sólo ruido mediático

Posted by Albert Zotkin en junio 20, 2017

Ola amigos de Tardígrados. Si, ola sin “h”. No, no es ninguna falta de ortografía. Esa palabra la he escrito intencionadamente así sin “h” para indicar que el asunto de las ondas gravitacionales se parece más a una ola mediática, o a una ola espuría. Los altos dirigente del “observatorio/experimento” LIGO estaban todos calladitos para ver si el mundo entero les “hacía la ola” hacia el Premio Nobel, que era su último y primer (y único) objetivo. Hacer la ola significa aqui que todo el mundo (sobre todo los medios de comunicación de masas) colabore como lobby de presión sobre el Comité de los Premios Nobel. Parece ser que los españoles somos de los primeros siempre en ser timados. Sí, les hemos concedido el Premio Princesa de Asturias a los ricachones del LIGO por su sensacional descubrimiento fraudulento. ¿Qué ocurrirá cuando antes de que les den el Premio Nobel se descubra todo el pastel y la detección de las ondas gravitaciones quede toda en aguas de borrajas?. O después. Imagina por un momento que los tres timadores generales de LIGO se presentan a recoger el suculento cheque del Premio Princesa de Asturias, y al día siguiente se demuestra que todo eso fue en el mejor de los casos, un simple error sistemático al calcular las frecuencias transformadas de Fourier, por no decir la fea palabra timo. ¿En qué lugar queda la Princesa de Asturias. ¿En qué lugar queda Asturias?. ¿En qué lugar queda España?. Bueno, no pasa nada. Los españoles estamos ya muy acostumbrados a que nos la “metan doblada” por todos los lados. Yo diría que hasta nos gusta. Que vengan aquí los ingleses de turismo y nos timen, nos gusta. Se tiran casi un mes de orgías en Benidorm, todo a cuerpo de rey, y después cuando vuelven a su país denuncian (falsa denuncia) al hotel. Dicen que se intoxicaron con la comida o la bebida que estaba supuestamente en mal estado. El resultado es que son indemnizados por el hotel, saliéndoles las vacaciones más que gratis. Ese timo, y otros igual de injustos o más, nos produce a los españoles, cuando nos lo hacen a nosotros, casi un orgasmo cósmico. Pero los miembros del Comité de los Premios Nobel no son tan idiotas, ellos saben que para premiar un descubrimiento de Fundamentos de la Física, hay que ser muy paciente y riguroso, no hay que precipitarse. Si el descubrimiento fue real, está claro que podrá ser observado muchas veces en el futuro. No hay que dar el premio a la primera vez que se observa. Hay que esperar a que otros observatorios independientes lo observen también muchas veces, hasta llegar al aburrimiento. De momento, que sepamos, las ondas gravitacionales han sido supuestamente observadas tres veces, pero por el mismo “observatorio”, y no han sido constatadas por ningún observatorio independiente. Dar un Premio Nobel a un descubrimiento que sólo presenta tres eventos sin constatación independiente es demasiado arriesgado y prematuro. El prestigio de los Premios Nobel volaría por los aires si se viera después que todo eso de LIGO, fue en el mejor de los casos, sólo un espejismo.

Los cientificos son seres humanos, pero los seres humanos tenemos virtudes y defectos. Uno de los defectos más perniciosos del ser humano, cuando se dedica a hacer ciencia, es el llamado sesgo de conocimiento . En cualquier experimento científico, el sesgo de conocimiento (ó prejuicio cognitivo) influye catastróficamente sobre los resultados del mismo, y de la peor forma posible. El experimentador poda irracional e inconscientemente de los resultados muchos de los datos que no contribuirán a confirmar la hipótesis científica que en el experimento se está poniendo a test. Esa poda irracional de datos es debida a su prejuicio cognitivo, pero eso no es todo. Aquellos datos que él piensa que sí contribuyen a confirmar la hipótesis son favorecidos. Al final, el resultado del experimento se parece más a la decisión injusta y prevaricadora de un juez o un jurado altamente manipulable.

Veamos las ultimas noticias sobre LIGO: Hace unos días se presentó un análisis independiente sobre los eventos GW que publicó LIGO. Los eventos son GW150914, GW151226 y GW170104, cada uno muy bien documentado. Ese análisis fue realizado por cinco científicos, James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, todos del Instituto Niels Bohr. El análisis lo puedes ver en este preprint arXiv:1706.04191. Y la conclusión de ese análisis en resumen, y en pocas palabras, es que todo lo que afirman los de LIGO que se había detectado resulta ahora que sólo es ruido, y por lo tanto no hay señales de ondas gravitacionales ahí. Ahora viene el juego de los prejuicios cognitivos. Los que crean que las ondas gravitacionales no existen tenderán a creer a más a estos cinco científicos daneses que a los de LIGO. Los que crean más en LIGO tienden a pensar que estos científicos daneses están equivocados, y muchos hasta escribirán ( si no lo han hecho ya) precipitadas respuestas para demostrar que “estos cinco oportunistas tienen que estar equivocados”. Pero, como dijo una vez Abraham Lincoln:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

.

Los del sesgo cognitivo inclinado hacia LIGO se precipitan a escribir contra los “cinco oportunistas daneses”. La bloquera y científica Sabine Hossenfelder nos lo cuenta rápidamente en su artículo, de la revista Forbes, Was It All Just Noise? Independent Analysis Casts Doubt On LIGO’s Detections. Y al final viene a decirnos ” es muy probable que esos daneses hayan cometido algún error”. He ahí el sesgo cognitivo de Sabine. ¿Por qué, según ella, es tan probable que hayan cometido un error?. Pues simplemente porque tiene la creencia de que LIGO si ha detectado realmente ondas gravitacionales. Como en su mente ese supuesto descubrimiento es una verdad incuestionable, todo lo que contribuya a derrumbar esa “verdad” debe ser un error. Sabine da la noticia, pero es escéptica con las conclusiones de ese análisis independiente. Lo mismo le ocurre al prolífico bloguero y cientifico Luboš Motl, que en su artículo de su blog califica el análisis de esos daneses directamente como bazofia. Una respuesta algo mas elaborada, pero igual de precipitada, de los creyentes de LIGO, es la del científico Ian Harry perteneciente al equipo de LIGO, que fue publicada en el blog de Sean Carroll. Este especialista viene a decirnos, en resumen, que esos daneses están equivocados porque no saben hacer análisis de datos con transformadas de Fourier. O sea, un error que no comete ni un principiante de Fisicas de primer año sí lo cometen estos cientificos daneses. ¡Vamos!, ¡eso no se lo cree ni “el que asó la manteca“, colega!. De hecho, ya están tardando en responderle a Ian harry, o quizás es el propio Sean Carroll el que esté censurando en su blog (the preposterous Universe) aquellas respuestas que puedan desmantelar todo ese tinglado de LIGO, y sólo filtra las que son benévolas o las que lo favorecen descaradamente.

¿Qué es lo que pienso yo al respecto?. Puesto que yo poseo la profunda convicción de que las ondas gravitacionales, si es que existen realmente, no pueden ser detectadas por interferómetros como el de LIGO, poseo un sesgo cognitivo anti-LIGO, y por lo tanto, todo lo que escribo y pienso tiende a favorecer mi hipótesis. Puesto que yo conozco mis limites, y sé analizar cómo pueden mis razonamientos estar contaminados de ese prejuicio, estoy en las mejores condiciones de ser algo más objetivo que una defensa ciega a favor o en contra. Mis conclusiones sobre LIGO por lo tanto son estas:

Los científicos daneses, en su análisis On the time lags of the LIGO signals, han descubierto algo muy profundo que ni ellos mismo siquiera sospechan. Ellos afirman algo sorprendente, que el ruido está correlacionado, y también la supuesta señal. Es decir, en los dos observatorios de LIGO, el de Livingston y el de Hanford, al analizar los datos han observado que los dos ruidos de fondo están correlacionados, y por lo tanto no hay forma de destacar una señal sobre el ruido. Pero, eso no puede ocurrir en la realidad, el ruido es ruido, no puedes observar secuencias aleatorias repetidas que sean muy largas en más de un sitio a la vez. La correlación de ruido indica error sistemático. Por lo tanto, lo que estos científicos han descubierto, y no saben aún que lo han descubierto, es un método para detectar inyecciones ciegas de señales que fueron usabas para suplantar a supuestas señales reales. Hasta ahora se venía diciendo que una inyección ciega de señal en LIGO no podía diferenciarse de una señal real, y eso era aprovechado para adiestrar a los científicos (engañarles) en su búsqueda de señales reales. Lo que estos cinco científicos han descubierto sin saberlo, y pronto será el notición mundial, es que a partir de ahora ya existe un método objetivo para descubrir qué señales en LIGO son reales y cuales son simuladas. Y que estas tres señales, que LIGO afirma que son reales, se ha descubierto que son simuladas (alguien las inyectó deliberadamente), porque los ruidos están correlacionados.

Saludos correlacionados a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin en mayo 12, 2017

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  2. Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

  3. El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

  4. El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:

    distance

    \displaystyle  \theta= \frac{s}{r} \\ \\  x = r \cos \theta \text{;} \;  y = r \sin \theta \\ \\  d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\   d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  5. La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

  6. Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.
Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle    ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle     0 = -c^2 dt_x^2 +(1+h) dx^2  \\ \\   dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle  \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\   dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\    t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\    2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\  2 t_x - 2 t =  \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c}  \\ \\ \\   2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle     0 = -c^2 dt_y^2 +(1-h) dy^2  \\ \\   dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle  2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle  \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\    \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle  \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\   \Delta\phi =  \frac{4 \pi  L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle  h = \cfrac{\lambda_x -  \lambda}{ \lambda} \\ \\   \lambda_x = (h+1)\lambda \\ \\ \\ \\  -h = \cfrac{\lambda_y -  \lambda}{ \lambda} \\ \\   \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle  2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\  c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle  c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle  \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda  \\ \\   \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

¿De qué está hecho el espacio?: Primer apunte sobre la Teoría Impertérrita de la Gravitación Universal

Posted by Albert Zotkin en noviembre 17, 2015

Sí, el nombre de Teoría Impertérrita de la Gravitación Universal me lo acabo de inventar en este preciso instante :-P. Esta teoría va propugnar lo siguiente:
Supongamos un universo con sólo dos cuerpos eléctricamente neutros de masas m1 y m2. Entonces, esos dos cuerpos sólo podrán moverse si lo hacen el uno hacia el otro. Nunca podrán incrementar la distancia que los separa, sólo acortarla. ¿Por qué es eso así?. Según esta teoría, que me acabo de inventar, eso sería así porque para que un cuerpo con masa se mueva necesita que en su trayectoria haya otra masa que actúe como nodo destino. Una masa sólo se podría mover hacia otra masa. En dicho universo, con sólo dos cuerpos másicos, no existiría espacio más allá del intervalo de linea recta que une sus dos centros de masas.

Según esta Teoría Impertérrita de la Gravitación Universal, si en un universo existen sólo tres cuerpos másicos, los grados de libertad serían más que los de sólo dos cuerpos. Así, la masa m1 podría moverse hacia m2 o también hacia la m3, ya que el espacio existente estaría definido por las rectas que unen todos los centros. Cabe pues, preguntarse cuánto espacio generan dos masas. Y la respuesta es la siguiente:

\displaystyle s = {2 G (m_1+m_2) \over c^2} (1)

donde:

space-grid-2

Una única masa no tendría capacidad para generar espacio (universo de una única masa) por la sencilla razón de que, en esta teoría, se necesitaría al menos otra masa más que actuara como nodo destino. Es decir, en esta teoría no existiría autogravedad.

También podemos estudiar cómo sería el movimiento de acercamiento de dos masas. Se trata de ver a qué velocidad se acercarían. Y la respuesta es simple. A medida que se van acercando, cada vez hay menos espacio entre esas dos masas, por lo que el movimiento sólo podrá ser acelerado si la cantidad de espacio que se sustrae cada vez, en cada diferencial de tiempo, es una cantidad constante. Veremos esto más tarde con más detalle.

Albert Einstein nos habló de cómo la materia y la energía curvan el espaciotiempo y cómo, una vez curvado, la materia y la energía se ven forzadas a seguir inexorablemente unas determinadas trayectorias llamadas líneas geodésicas. En esta Teoría Impertérrita de la Gravitación Universal no es necesario hablar de curvatura, ni de espaciotiempo. Nos bastará con la existencia en principio de sólo el tiempo, un tiempo absoluto. El espacio y sus atributos será generado y definidos respectivamente por la propia materia y la energía.

De la misma forma que no existen fotones libre, tampoco existen partículas con masa libres. ¿Qué quiere eso decir?. Eso quiere decir que cuando una partícula con masa se mueve, siempre lo hace hacia otra partícula con masa. Su destino siempre será llegar hasta un centro de masas. ¿Por qué?. Muy sencillo. Un universo vacío de partículas no tiene sentido. Y una partícula alejándose de otra hacia ninguna parte, hacia el vacío, sin que haya otras partículas como destino, tampoco tiene sentido. De igual forma, un fotón puede ser emitido por la sencilla razón de que será absorbido. Un fotón nunca sería emitido si previamente no existiera una transacción por la cual la naturaleza se asegura de que ese fotón será absorbido por otro sistema material con una probabilidad del 100%. Si un fotón nunca es absorbido por un sistema material entonces ese fotón nunca se emitió. Esto, que parece absurdo a simple vista, tiene muchas e importantes implicaciones, pues conecta eventos pasados con eventos futuros. Es como si la naturaleza viera en cierta forma lo que va a ocurrir en un futuro y, mediante un sistema burocrático de transacciones, negociara con el sistema que recibirá el fotón en qué condiciones se producirá. De igual forma partículas con masa, como por ejemplo leptones y hadrones, sólo pueden alejarse de otras si y sólo si se acercan a unas terceras. Esto nos indica claramente que son las partículas con masa las que crean espacio entre ellas, espacio que antes no existía.

Esta Teoría impertérrita contradice a la teoría del Big Bang (la Gran Explosión) que supuestamente dio origen a todo el universo en un único punto de espaciotiempo, con un evento singular inicial. ¿por qué la contradice?. Muy sencillo, si las partículas con masa estaban todas en el mismo punto singular, entonces no puede ocurrir el evento de una explosión o expansión, ya que no existirían masa destino hacia las que expandirse. Si un universo se expande uniformemente (siempre desde esta Teoría Impertérrita) sería porque existirían masas distribuidas en capas esféricas y concéntricas alrededor de ese universo. Pero, esas masas hacia las que supuestamente se expande el universo pertenecerían al propio universo, con lo cual, si es cierto que nuestro universo se expande, es sencillamente porque no es todo el universo, sino sólo una parte muy pequeña, más allá de la cual sigue habiendo partículas con masa que no podemos observar.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Cómo evitar caer en un agujero negro cuando haces footing

Posted by Albert Zotkin en septiembre 25, 2015

Cuando sales a hacer footing una mañana cualquiera, es muy fácil evitar caer en un agujero negro si te encuentras alguno en tu camino. Lo único que tienes que hacer es saltar sobre él. De esa forma, como si de un charco de agua se tratara, evitarás caer en el y ser ‘espaguetizado’.
athletisme-50
¿Tienes algunas dudas sobre como podrías saltar sobre ese agujero negro y no caer en él?. Veamos matemáticamente cómo.

El tamaño de ese agujero negro viene dado por su masa. Podemos decir que su horizonte de sucesos es su borde natural. Sería algo así como una esfera tridimensional (tres dimensiones, no cuatro, ya que por el principio holográfico toda la información cuántica estaría en la superficie exterior de su 4-esfera espacio-temporal). El radio de esa 3-esfera sería el radio de Schwarzschild, rs:

\displaystyle  r_s = {2 G M \over c^2}   (1)
Es decir, tendrías que saltar una longitud de al menos 2rs. Pero, para saltar sobre una 3-esfera necesitas algo que aún no sabes qué es. Ese algo se llama “salto cuántico” o “túnel cuántico” (un ‘salto cuántico’ es como suprimir instantáneamente el espacio existente entre dos puntos, de modo que ambos puntos, que antes estaban separados, llegan a ser el mismo punto espacio-temporal, pero sólo ocurre exclusivamente para el objeto que realiza el salto, y después del salto, los puntos restauran su distancia original). Para calcular cómo realizar ese “salto cuántico” hemos de calcular la longitud de onda de tu onda de materia. Para ese cálculo necesitaremos saber qué onda de De Broglie has de desarrollar en el borde de ese agujero negro. La longitud de tu onda de materia es

\displaystyle  \lambda = \cfrac{\hbar}{mv}  (2)
donde m es tu masa corporal y v es tu velocidad haciendo footing. ¿Cuándo conseguirás saltar sobre ese agujero sin caer dentro de él?. Evidentemente cuando saltes al menos una longitud igual a 2rs. Para ello igualamos ambas ecuaciones, (1) y (2), la primera multiplicada por 2:

\displaystyle  2r_s = \lambda  \\ \\   {\cfrac{4 G M}{c^2} = \cfrac{\hbar}{mv} }  \\ \\ \\  v = \cfrac{\hbar c^2}{4 G M m}
Calculas numéricamete ese valor, y te aseguro que, si eres capaz de desarrollar esa velocidad o una inferior, no caerás dentro de ese agujero negro que te encontraste en tu feliz camino al hacer footing. A esa velocidad v tu salto cuántico sería exactamente de dos radios de Schwarzschild. Cuanto menor es la velocidad más larga es la longitud de tu onda de materia, y por lo tanto más probabilidad tendrás de saltar cuánticamente ese diámetro. De hecho, la probabilidad de caer en un agujero negro es tan grande como la probabilidad de encontrarte uno.

Esta idea nos sirve para indicar que la velocidad mínima no nula, c0, de un cuerpo de masa m, sería tal que la longitud de onda de su onda de materia sería igual a un radio de Hubble:

\displaystyle  R_\text{H} = \cfrac{\hbar}{mc_0}
Por otro lado sabemos que una velocidad mínima tal vendría dada por la expresión:

\displaystyle    c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}
Esto significa que la masa m, en función de esa c0, debería ser:

\displaystyle    m =\sqrt{\frac{\hbar c_0}{G}}
Lo cual nos sugiere que las masas de las partículas fundamentales surgiría por que una partícula más fundamental aún se movería o vibraría a velocidades muy cercanas al reposo.
Paradójicamente“, cuanto mayor sea el radio de Schwarzschild del agujero negro sobre el que deseas saltar cuánticamente, menor ha de ser tu velocidad hacia él, según queda explícito en la ecuación (2). Y esto demuestra que para saltar cuánticamente una distancia infinita sólo necesitas alcanzar el reposo exacto matemático si tu masa corporal es finita. Ese salto infinito te dejaría exactamente en el mismo punto donde empezó el salto, con lo que un universo infinito sería además un universo transfinito, como apunté en un reciente post mio titulado Un universo eterno y transfinito: una foliación conforme del espaciotiempo.
Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El universo según Einstein, ¿quien inventó el cero y para qué?

Posted by Albert Zotkin en septiembre 18, 2015

Muchos errores matemáticos se cometen por culpa de una mala aplicación de los métodos aritméticos y algebraicos en los que entra en juego el uso del número cero. Por ejemplo, está bien documentado que el mismo Einstein cometió, en muchas y cruciales ocasiones, el error infantil de dividir los dos lados de una misma ecuación por cero. Al dividir por cero se obtiene una indeterminación, y los resultados numéricos o algebraicos que se obtienen de eso son imprevisibles y disparatados, además de incorrectos, como es obvio. Robert Jastrow nos contó, hace ya algún tiempo, que el matemático ruso Alexander Friedman le escribió una carta a Einstein haciéndole saber que había cometido el error de dividir por cero (ese error resulta ser fatal para la consistencia interna de cualquier teoría que use las matemáticas para ser definida). Sin embargo, Einstein decidió no dar la razón a Friedman sobre su error, y escribió una carta de respuesta, no a Friedman directamente, sino a la revista científica que publicó dicha carta, en la que incluía cálculos que supuestamente demostraba que Friedman estaba equivocado respecto a su error. Friedman respondió pronto haciéndole ver a Einstein que había cometido un segundo error al intentar demostrar que su primer error no era un error, y añadió la apostilla “le agradecería que cuando usted crea que mis cálculos son correctos quizás entonces quiera escribir una corrección”. Al final Einstein tuvo que admitir que había divido por cero (error infantil donde los haya). De esa manera tan rocambolesca Alexander Friedman demostró que la teoría de Einstein sobre un universo estático era incorrecta por que contenía inconsistencias matemáticas internas fruto de dividir repetidamente por cero en las ecuaciones.

Pero no sólo la división por cero da lugar a inconsistencia. Veamos el siguiente ejemplo que propugna que existe error en algunos métodos de adición linear:

Un método de adición que sea linear y estable no puede dar una suma finita para la serie 1 + 2 + 3 + … . Que sea estable significa que sumando un término al principio de la serie incrementa la suma en la misma cantidad. Esto se muestra como sigue: Si

1 + 2 + 3 + … = x

entonces sumando 0 a ambos lados tenemos

0 + 1 + 2 + … = 0 + x = x por estabilidad.

Por linearidad, podemos restar la segunda ecuación a la primera para obtener

1 + 1 + 1 + … = x – x = 0

sumando 0 a ambos lados da

0 + 1 + 1 + 1 + … = 0,

y restando estas dos ultimas series tenemos:

1 + 0 + 0 + … = 0
1 = 0

lo cual contradice la propiedad de estabilidad.

¿Dónde está el error en todo ese proceso de manipulación aritmética?. El error está en que la x del lado derecho de la ecuación es tratada como si fuera un número finito, cuando en realidad es ∞ En cambio, la serie del lado izquierdo es tratada como si tuviera un número infinito de sumandos. Esto significa que x – x ≠ 0, sino un valor indeterminado, por lo que todos los demás resultados intermedios y la conclusión final son incorrectos.

La conclusión de todo esto es que hay que tener mucho cuidado a la hora de formular teorías científicas donde las matemáticas juegan un papel central, porque cualquier inconsistencia matemática puede echar por tierra toda una teoría que se las prometía muy felices.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas | Etiquetado: , , , , , , , | 2 Comments »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin en septiembre 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle  T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}}  (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle  a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}}  (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle  a_n = \sqrt[3]{a_{n-1}^3}  (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin en agosto 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

La curvatura del espacio-tiempo contradice el Principio de Fermat

Posted by Albert Zotkin en julio 24, 2014

El Principio de Fermat establece que la luz sigue la trayectoria de tiempo mínimo entre la fuente emisora y el observador. La Teoría General de la Relatividad de Einstein predice la existencia del efecto de lente gravitacional, afirmando que ese efecto es causado por la curvatura del espacio-tiempo ante la presencia de materia y/o energía en las inmediaciones. Realmente, esos dos efectos son el mismo. Lo único que tenemos que hacer es repensar lo que entendemos por vacio y cómo es posible que un fotón pueda viajar en el vacio.
refraccion
Si la velocidad de la luz es diferente en diferentes medios, ¿significa eso que hay un cuerpo masivo en la zona limítrofe de ambos medios que hace que el espacio-tiempo se curve ahí? La respuesta debe ser obviamente no. La respuesta correcta es que los átomos y moléculas en un medio deben de retransmitir la señal: si un medio es ópticamente más denso, la velocidad de la luz sería más pequeña. Por lo tanto, el concepto de curvatura del espacio-tiempo es sólo un pseudo-concepto que se refiere implícitamente a la variación de la velocidad de la luz. No se puede afirmar por un lado que el espacio-tiempo se curva y por otro lado que existe una velocidad de la luz localmente variable. Se debe elegir entre una afirmación o la otra, pero no ambas. El problema que nos produce la Relatividad General es que en ella coexisten ambas afirmaciones sin contradicción alguna. y eso es un absurdo.

lente

Está claro que si existe un cuerpo masivo intermedio entre la fuente de luz y el observador, el vacio (medio) se hace gradualmente denso e inhomogéneo, ofreciendo diferentes índices de refracción, no sólo en el sitio de la fuente y en el del observador, sino por todo el espacio. Por lo tanto, surge otra pregunta. ¿Cómo curvaría la antimateria la trayectoria de la luz?. Si la materia ordinaria curva dicha trayectoria hacia el centro del cuerpo masivo intermedio, la antimateria debería curvar la trayectoria de la luz en la dirección opuesta. La antimateria es por lo tanto un alias para referirnos a un medio que posee indices inversos de refracción graduada. Es decir, si un cuerpo masivo de materia ordinaria produce un indice de refracción graduada con la distancia r, n = N(r), entonces un cuerpo masivo de antimateria de la misma clase produciría , n’ = N’(r), de tal forma que el producto escalar de ambos debe dar la unidad, n n’ = 1. Si la función N(r) para el primero es

\displaystyle                 N(r) = \exp \left ( -\frac{2V_r}{c^2} \right ),  (1)

donde Vr es el potencial gravitatorio a la distancia r.

Entonces la función N’(r) para el segundo medio (antimateria) sería

\displaystyle        N'(r) = \exp \left ( \frac{2V_r}{c^2} \right ),  (2)

y vemos que efectivamente N(r) N'(r) = 1

Ahora surge otra interesante pregunta. Si un medio homogeneo, donde la velocidad local de la luz que se mide como c, se está haciendo más denso hacia el centro de masas, ¿significa eso que se está creando un vacío rarificado en la zona de su límite exterior, que se comporta como materia oscura?. La respuesta a esa pregunta debe ser SÍ. Ese fenómeno se puede observar en la formación de galaxias. La región exterior de cualquier galaxia está llena de “materia oscura “. Las regiones exteriores de cúmulos de galaxias están también llenas de “materia oscura“. Incluso nuestro Sistema Solar tiene también una pequeña cantidad de “materia oscura” en sus regiones exteriores. Materia oscura es por lo tanto un alias para una región donde la velocidad local de la luz es más grande que la estandar c.

mo

El proceso de emergencia de materia oscura en la formación de una galaxia es muy parecido a cómo construimos un castillo de arena en una playa totalmente lisa en principio. Elegimos el punto donde construir nuestro castillo de arena, mediante una pala escabamos en la arena húmeda y la amontonamos. El resultado de amontonar la arena produce un foso alrededor del montón. Es decir, el foso es un valle que está por debajo del nivel medio de la superficie llana de la playa. La superficie llana de la playa es considerada como el vacío, y el montón central es considerado como materia ordinaria. Por lo tanto el foso alrededor del montón es considerado como materia oscura. Las ondas electromagnéticas que atraviesan ese foso de materia oscura, en las zonas exteriores de las galaxias, se propagan a una velocidad mayor que la estándar c.

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , | 10 Comments »

Método de auto-similaridad para detectar teorias falsas de la relatividad

Posted by Albert Zotkin en octubre 24, 2013

En mi anterior post, un amable lector me reprochó en un comentario suyo que yo no había tenido en cuenta la ley de composición de velocidades de Einstein cuando afirmé que la relatividad especial carecía de consistencia interna porque su ecuación del efecto Doppler para ondas electromagnéticas no era auto-similar. Efectivamente esa ecuación no es auto-similar si aplicamos una suma canónica de velocidades (v = v1 + v2), pero si aplicamos la ley de composición de velocidades de Einstein conseguimos que dicha ecuación sea auto-similar. ¿Por qué se consigue tal proeza?. En realidad no es ninguna proeza, sino que cualquier teoría de relatividad que posea una ecuación para el efecto Doppler de ondas electromagnéticas puede ser declarada como auto-similar si se define cómo ha de ser la composición de velocidades en dicha teoría. Toda teoría de relatividad posee la siguiente ecuación genérica para el Doppler:

\displaystyle  f = f_0 \exp \left (\mathrm{S}(\beta)\right )  (1)

donde obviamente \beta=\frac{v}{c} y \mathrm{S}(\beta) es una función de \beta. Puesto que la relatividad especial posee la siguiente ecuación para el Doppler

\displaystyle  f = f_0 \sqrt{\cfrac{1+\beta}{1-\beta}}  (2)

eso significa que la función \mathrm{S}(\beta) para la relatividad especial debe ser

\displaystyle   \exp \left (\mathrm{S}(\beta)\right )= \sqrt{\cfrac{1+ \beta}{1-\beta}} \\ \\ \\   \mathrm{S}(\beta)=\ln \sqrt{\cfrac{1+ \beta}{1-\beta}} \\ \\ \\   \mathrm{S}(\beta)= \frac{1}{2} \ln \cfrac{1+ \beta}{1-\beta}  \\ \\ \\
\displaystyle  \mathrm{S}(\beta)=\mathrm{artanh}\ (\beta)  (3)
Vemos claramente que al aplicar el Doppler genérico al caso de la relatividad especial obtenemos automáticamente una ley de composición de velocidades para ella tal que la hace auto-similar. Es decir, supongamos que queremos componer dos betas distintas \beta_1 y \beta_2, entonces tendríamos

\displaystyle   \exp \left (\mathrm{S}(\beta_1)\right )\exp \left (\mathrm{S}(\beta_2)\right ) = \exp \left (\mathrm{S}(\beta)\right )\\ \\ \\  \exp \left (\mathrm{S}(\beta_1)+ \mathrm{S}(\beta_2) \right )=\exp \left (\mathrm{S}(\beta)\right ) \\ \\ \\
\displaystyle  \mathrm{artanh}\ (\beta_1) +\mathrm{artanh}\ (\beta_2) = \mathrm{artanh}\ (\beta)  (4)

es decir, tenemos cláramente que

\displaystyle  \beta =\cfrac{\beta_1 +\beta_2}{1+ \beta_1\beta_2}  (5)

es la suma de velocidades según la ley de composición de Einstein.

Anteriormente vimos que la ecuación para el Doppler de la mecanica clásica la cual es

\displaystyle  f = f_0  \left (1+\beta \right )  (6)
no es auto-similar si aplicamos la suma canónica de velocidades. Pero curiosamente la podemos hacer auto-similar, igual que hicimos con la relatividad especial, si hallamos una ley de composición no canónica de velocidades para ella. Veamos cuál sería:

\displaystyle   \left (1+\beta \right ) = \exp \left ( \mathrm{S}(\beta) \right ) \\ \\ \\
\displaystyle  \mathrm{S}(\beta) =\ln \left (1+\beta \right )   (7)

con lo cual la suma de betas quedaria asi:

\displaystyle  \mathrm{S}(\beta_1) +\mathrm{S}(\beta_2)=\mathrm{S}(\beta) \\ \\ \\  \ln \left (1+\beta_1 \right ) +\ln \left (1+\beta_2 \right ) = \ln \left (1+\beta \right )  \\ \\ \\  \left (1+\beta \right )=\left (1+\beta_1 \right )\left (1+\beta_2 \right ) \\ \\ \\  \beta =\left (1+\beta_1 \right )\left (1+\beta_2 \right )-1
\displaystyle  \beta =\beta_1 +\beta_2 +  \beta_1 \beta_2  (8)
Esa sería la ley de composición de velocidades en mecánica clásica si la queremos hacer auto-similar, es decir no sería una suma canónica (\beta=\beta_1+\beta_2). Lógicamente, si dotamos a la mecánica clásica de esa ley de composición, ya sería otra teoría distinta, y habría que llamarla de otra forma. En cualquier caso, ahora es fácil demostrar que la única teoría de la relatividad auto-similar que admite una suma canónica de velocidades es la que posee el Doppler

\displaystyle  f=f_0 \exp \left (\beta \right )  (9)
Y para su deducción me remito a mi anterior post.

Saludos

Posted in Relatividad | Etiquetado: , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: