TARDÍGRADOS

Ciencia en español

Archive for the ‘Relatividad’ Category

Espejismo Gravitacional: Las ondas gravitacionales detectadas por LIGO son sólo ruido mediático

Posted by Albert Zotkin en junio 20, 2017

Ola amigos de Tardígrados. Si, ola sin “h”. No, no es ninguna falta de ortografía. Esa palabra la he escrito intencionadamente así sin “h” para indicar que el asunto de las ondas gravitacionales se parece más a una ola mediática, o a una ola espuría. Los altos dirigente del “observatorio/experimento” LIGO estaban todos calladitos para ver si el mundo entero les “hacía la ola” hacia el Premio Nobel, que era su último y primer (y único) objetivo. Hacer la ola significa aqui que todo el mundo (sobre todo los medios de comunicación de masas) colabore como lobby de presión sobre el Comité de los Premios Nobel. Parece ser que los españoles somos de los primeros siempre en ser timados. Sí, les hemos concedido el Premio Princesa de Asturias a los ricachones del LIGO por su sensacional descubrimiento fraudulento. ¿Qué ocurrirá cuando antes de que les den el Premio Nobel se descubra todo el pastel y la detección de las ondas gravitaciones quede toda en aguas de borrajas?. O después. Imagina por un momento que los tres timadores generales de LIGO se presentan a recoger el suculento cheque del Premio Princesa de Asturias, y al día siguiente se demuestra que todo eso fue en el mejor de los casos, un simple error sistemático al calcular las frecuencias transformadas de Fourier, por no decir la fea palabra timo. ¿En qué lugar queda la Princesa de Asturias. ¿En qué lugar queda Asturias?. ¿En qué lugar queda España?. Bueno, no pasa nada. Los españoles estamos ya muy acostumbrados a que nos la “metan doblada” por todos los lados. Yo diría que hasta nos gusta. Que vengan aquí los ingleses de turismo y nos timen, nos gusta. Se tiran casi un mes de orgías en Benidorm, todo a cuerpo de rey, y después cuando vuelven a su país denuncian (falsa denuncia) al hotel. Dicen que se intoxicaron con la comida o la bebida que estaba supuestamente en mal estado. El resultado es que son indemnizados por el hotel, saliéndoles las vacaciones más que gratis. Ese timo, y otros igual de injustos o más, nos produce a los españoles, cuando nos lo hacen a nosotros, casi un orgasmo cósmico. Pero los miembros del Comité de los Premios Nobel no son tan idiotas, ellos saben que para premiar un descubrimiento de Fundamentos de la Física, hay que ser muy paciente y riguroso, no hay que precipitarse. Si el descubrimiento fue real, está claro que podrá ser observado muchas veces en el futuro. No hay que dar el premio a la primera vez que se observa. Hay que esperar a que otros observatorios independientes lo observen también muchas veces, hasta llegar al aburrimiento. De momento, que sepamos, las ondas gravitacionales han sido supuestamente observadas tres veces, pero por el mismo “observatorio”, y no han sido constatadas por ningún observatorio independiente. Dar un Premio Nobel a un descubrimiento que sólo presenta tres eventos sin constatación independiente es demasiado arriesgado y prematuro. El prestigio de los Premios Nobel volaría por los aires si se viera después que todo eso de LIGO, fue en el mejor de los casos, sólo un espejismo.

Los cientificos son seres humanos, pero los seres humanos tenemos virtudes y defectos. Uno de los defectos más perniciosos del ser humano, cuando se dedica a hacer ciencia, es el llamado sesgo de conocimiento . En cualquier experimento científico, el sesgo de conocimiento (ó prejuicio cognitivo) influye catastróficamente sobre los resultados del mismo, y de la peor forma posible. El experimentador poda irracional e inconscientemente de los resultados muchos de los datos que no contribuirán a confirmar la hipótesis científica que en el experimento se está poniendo a test. Esa poda irracional de datos es debida a su prejuicio cognitivo, pero eso no es todo. Aquellos datos que él piensa que sí contribuyen a confirmar la hipótesis son favorecidos. Al final, el resultado del experimento se parece más a la decisión injusta y prevaricadora de un juez o un jurado altamente manipulable.

Veamos las ultimas noticias sobre LIGO: Hace unos días se presentó un análisis independiente sobre los eventos GW que publicó LIGO. Los eventos son GW150914, GW151226 y GW170104, cada uno muy bien documentado. Ese análisis fue realizado por cinco científicos, James Creswell, Sebastian von Hausegger, Andrew D. Jackson, Hao Liu, Pavel Naselsky, todos del Instituto Niels Bohr. El análisis lo puedes ver en este preprint arXiv:1706.04191. Y la conclusión de ese análisis en resumen, y en pocas palabras, es que todo lo que afirman los de LIGO que se había detectado resulta ahora que sólo es ruido, y por lo tanto no hay señales de ondas gravitacionales ahí. Ahora viene el juego de los prejuicios cognitivos. Los que crean que las ondas gravitacionales no existen tenderán a creer a más a estos cinco científicos daneses que a los de LIGO. Los que crean más en LIGO tienden a pensar que estos científicos daneses están equivocados, y muchos hasta escribirán ( si no lo han hecho ya) precipitadas respuestas para demostrar que “estos cinco oportunistas tienen que estar equivocados”. Pero, como dijo una vez Abraham Lincoln:

Puedes engañar a todo el mundo algún tiempo. Puedes engañar a algunos todo el tiempo. Pero no puedes engañar a todo el mundo todo el tiempo.

.

Los del sesgo cognitivo inclinado hacia LIGO se precipitan a escribir contra los “cinco oportunistas daneses”. La bloquera y científica Sabine Hossenfelder nos lo cuenta rápidamente en su artículo, de la revista Forbes, Was It All Just Noise? Independent Analysis Casts Doubt On LIGO’s Detections. Y al final viene a decirnos ” es muy probable que esos daneses hayan cometido algún error”. He ahí el sesgo cognitivo de Sabine. ¿Por qué, según ella, es tan probable que hayan cometido un error?. Pues simplemente porque tiene la creencia de que LIGO si ha detectado realmente ondas gravitacionales. Como en su mente ese supuesto descubrimiento es una verdad incuestionable, todo lo que contribuya a derrumbar esa “verdad” debe ser un error. Sabine da la noticia, pero es escéptica con las conclusiones de ese análisis independiente. Lo mismo le ocurre al prolífico bloguero y cientifico Luboš Motl, que en su artículo de su blog califica el análisis de esos daneses directamente como bazofia. Una respuesta algo mas elaborada, pero igual de precipitada, de los creyentes de LIGO, es la del científico Ian Harry perteneciente al equipo de LIGO, que fue publicada en el blog de Sean Carroll. Este especialista viene a decirnos, en resumen, que esos daneses están equivocados porque no saben hacer análisis de datos con transformadas de Fourier. O sea, un error que no comete ni un principiante de Fisicas de primer año sí lo cometen estos cientificos daneses. ¡Vamos!, ¡eso no se lo cree ni “el que asó la manteca“, colega!. De hecho, ya están tardando en responderle a Ian harry, o quizás es el propio Sean Carroll el que esté censurando en su blog (the preposterous Universe) aquellas respuestas que puedan desmantelar todo ese tinglado de LIGO, y sólo filtra las que son benévolas o las que lo favorecen descaradamente.

¿Qué es lo que pienso yo al respecto?. Puesto que yo poseo la profunda convicción de que las ondas gravitacionales, si es que existen realmente, no pueden ser detectadas por interferómetros como el de LIGO, poseo un sesgo cognitivo anti-LIGO, y por lo tanto, todo lo que escribo y pienso tiende a favorecer mi hipótesis. Puesto que yo conozco mis limites, y sé analizar cómo pueden mis razonamientos estar contaminados de ese prejuicio, estoy en las mejores condiciones de ser algo más objetivo que una defensa ciega a favor o en contra. Mis conclusiones sobre LIGO por lo tanto son estas:

Los científicos daneses, en su análisis On the time lags of the LIGO signals, han descubierto algo muy profundo que ni ellos mismo siquiera sospechan. Ellos afirman algo sorprendente, que el ruido está correlacionado, y también la supuesta señal. Es decir, en los dos observatorios de LIGO, el de Livingston y el de Hanford, al analizar los datos han observado que los dos ruidos de fondo están correlacionados, y por lo tanto no hay forma de destacar una señal sobre el ruido. Pero, eso no puede ocurrir en la realidad, el ruido es ruido, no puedes observar secuencias aleatorias repetidas que sean muy largas en más de un sitio a la vez. La correlación de ruido indica error sistemático. Por lo tanto, lo que estos científicos han descubierto, y no saben aún que lo han descubierto, es un método para detectar inyecciones ciegas de señales que fueron usabas para suplantar a supuestas señales reales. Hasta ahora se venía diciendo que una inyección ciega de señal en LIGO no podía diferenciarse de una señal real, y eso era aprovechado para adiestrar a los científicos (engañarles) en su búsqueda de señales reales. Lo que estos cinco científicos han descubierto sin saberlo, y pronto será el notición mundial, es que a partir de ahora ya existe un método objetivo para descubrir qué señales en LIGO son reales y cuales son simuladas. Y que estas tres señales, que LIGO afirma que son reales, se ha descubierto que son simuladas (alguien las inyectó deliberadamente), porque los ruidos están correlacionados.

Saludos correlacionados a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

De la paradoja de los mentecatos que construyen interferómetros para detectar ondas gravitacionales y de sus correspondientes lameculos blogueros mindundis que repiten ciegamente sus estulticias

Posted by Albert Zotkin en mayo 12, 2017

Cuando, desde el día en que anunciaron los del LIGO la supuesta primera evidencia directa de la existencia de ondas gravitacionales, y te has dedicado a perder el tiempo leyendo muchos de sus comentarios, entrevistas y demás panfletos propagandísticos, llegas a la conclusión de que todo es un gigantesco montaje para conseguir Premios Nobel, y muchos más fondos públicos y privados con el único y mismo fin que el del tío Don Gilito, es decir, hacer caja, y seguir chupando del bote, porque el fin siempre justifica los medios. Las tonterías matemáticas, a expensas de la Relatividad Especial, que he podido leer estos últimos 23 días, desde el 11 de Febrero, son tan brutalmente hilarantes que merecen ser enmarcadas como el mejor ejemplo de esforzado sinsentido por defender algo que no se puede defender ni parando la Tierra. Pero antes de entrar de lleno en los garabatos relativísticos con los que los estultos argumentan y justifican sus hallazgos ficticios, primero voy a exponer seis razones, quejas, irregularidades y demás incidencias que invalidan el supuesto feliz evento de las ondas gravitacionales anunciado por LIGO el 11 de Febrero de este mismo año:

  1. El supuesto feliz hallazgo se produjo en una fase preparatoria de los instrumentos de LIGO, no era la fase operativa completa observacional, la cual estaba prevista para el día 18 de Septiembre de 2015, no para el día 14. Es como si los atletas se están preparando en sus cajetines de salida en una prueba de 100 metros lisos, y cuando el juez dice “preparados, listos, …”, uno de los atletas sale corriendo en el “listos”, sin esperar a la orden de “ya”. La prueba debe ser nula. Es como si uno de los jueces de la prueba atlética pusiera su cronómetro en marcha para medir el tiempo que hace ese atleta que se adelantó en la salida cuando aún no estaba todo preparado para la competición, y dijera ” ¡fijaos en esto, ha batido el récord del mundo!”. Los demás jueces se acercan y comprueban que efectivamente ese atleta que salió a la orden de “listos” batió (lo habría batido si fuera válido) el récord del mundo de los 100 metros lisos dejando el cronómetro en 9 segundos con 7 milésimas. Se monta un pollo mundial y pretenden que ese récord sea homologado, validado y aceptado por todo el mundo. Pues va a ser que no. Eso es precisamente lo que ocurrió con aquel supuesto evento de LIGO del 14 de Septiembre de 2015. En la fase de pruebas, los ingenieros hacen eso, pruebas, encienden y apagan instrumentos, calibran y ajustan mecanismos, está todo en perfecto desorden, cables sueltos, enchufes medio apretados, personal entrando y saliendo. Ruido por aquí, ruido por allá.

  2. Existe en el proyecto llamado LIGO algo muy peculiar, que no existe en níngún otro experimento científico serio que se precie. Ese algo tan peculiar lo llaman “inyecciones ciegas”. ¿Qué es una “inyección ciega”. Pues es una señal que envían deliberadamente a los detectores haciéndola pasar como si fuera una señal real, y la llaman “ciega” porque los encargados de vigilar la llegada de señales a los detectores no tienen forma alguna de saber si están ante la presencia de una señal real o simulada por software y/o hardware. Siempre sería a posteriori cuando se supiera, es decir, después de que los científicos hayan escrito sus documentos y se preparen para hacerlos públicos. Entonces, si ha habido inyección ciega, llegará alguien con un sobre lacrado, lo abrirá y dirá “este evento es de una inyección ciega, no es real”. ¿Por qué LIGO posee este protocolo tan peculiar llamado “de inyecciones ciegas”. Ellos dicen que eso es necesario para poder calibrar los instrumentos y adiestrar a los científicos para que sean capaces de ver ondas gravitacionales. Todo eso está muy bien, pero cuando se pone en juego algo tan manipularon como una inyección ciega, cuyo diseño está intencionadamente hecho para engañar al observador, deberían existir otros protocolos de seguridad para impedir que se cuelen señales simuladas intrusas, e impedir que sean consideradas definitivamente como reales. La mera existencia de inyecciones ciegas en un experimento debe automáticamente invalidar cualquier supuesto hallazgo de señal no nula, aunque estén operativos todos los protocolos de seguridad de datos. Supongamos que se hace una inyección ciega y el responsable (o responsables) de custodiar el sobre lacrado (que no se hizo ante notario ni nada) decide comérselo o tirarlo a una trituradora de papel. ¿Alguien sabe de qué marca son las trituradoras de papel que LIGO tiene en Livingston site, Louisiana?. Si los responsables de LIGO de hacer inyecciones ciegas callan y borran todas las pruebas del delito, entonces a la ciencia se le habrá dado gato por liebre. ¿Qué clase de experimento científico es aquel que para ser fiable hay que creer a ciertas personas independientemente de su honestidad o no?. Alguien pensó lo siguiente: “me como un sobre lacrado este año y el año que viene me dan el Nobel”. Comerse un sobre lacrado no es difícil, basta con no meter nada en ningún sobre lacrado y jugar a decir que no se inyectó nada. El principal software con el que hacen inyecciones simuladas en LIGO posee librerías como la “simulateSkyMapTimeDomain.m” y dentro de ella las rutinas de “sbaniso.c“. Con ese software hacen simulaciones de señales procedentes de la fusión de dos agujeros negros. Simulan incluso la distancia y la dirección del cielo de la que proceden esas señales, pues inyectan la señal en diferentes detectores teniendo muy en cuenta el desfase de tiempos, pero siempre asumiendo que las supuestas ondas se propagarán a la velocidad de la luz.

  3. El 14 de Septiembre de 2015 por la mañana, cuando se detectaron las supuestas señales de ondas gravitacionales en los observatoirios de Livingston site, en Luisina, y en el de Hanford site, en el estado de Washington, habían estado trabajando dos especialistas de las inyecciones simuladas. Concrétamente esa mañana estaban trabajando esos dos científicos inyectando señales de ruidos ambientales en el LIGO de Livingston. No hay nada que objetar a eso, está muy bien que trabajaran. Pero sí hay que objetar que abandonaran las instalaciones, dejándolas totalmente vacías de personal, y con los detectores y todos los instrumentos auxiliares encendidos, 45 minutos antes de que llegara la supuesta señal extraterrestre. ¿Por qué dejaron todo aquello encendido y se fueron a sus respectivos hoteles sin ningún alma físicamente allí mirando los monitores y otros controles?. Esas dos personas, estuvieron inyectando señales simuladas 45 minutos antes de que la supuesta señal extraterrestre llegara, y sonara una estrepitosa alarma en toda la sala de control. Pero nadie estaba allí físicamente para oir ninguna alarma y para ver nada en ningún monitor. ¿Cómo a dos personas, científicos para más señas, se les ocurrió dejar funcionando todo el sistema LIGO en USA e irse a sus respectivos hoteles aquella mañana de marras, dejándolo todo sin nadie atendiéndolo físicamente?. Sabemos los nombres de esas dos personas en Livingston Site, pero era preciso que en el observatorio LIGO de Hanford Site ocurriera exactamente lo mismo. Era necesario que también estuviera encendido todo el sistema LIGO de Hanford a esa misma hora por la mañana y sin nadie físicamente allí para ver ni oír nada en la sala de control. Atención pregunta: ¿Esas dos personas de Livingston Site, cuyos nombres sabemos, abandonaron las instalaciones por su cuenta y riesgo dejándolo todo abandonado y encendido, o recibieron la orden expresa de hacerlo así?. Atención, otra pregunta: ¿ocurrió algo parecido en Handford Site con otras posibles personas abandonando la sala a esa hora de la mañana de ese mismo día y dejándolo todo encendido y operativo?. ¿Recibieron alguna orden expresa en ese sentido?. ¿Era preciso que no hubiera testigos físicamente en las salas de control?. ¿Quién (o quienes) ordenó dejar limpias de personal ambas salas de control y con todos los sistemas encendidos?.

  4. El evento observado en Livingston Site fue ligeramente anterior al observado en Hanford Site. Exactamente 6.9 milésimas de segundo antes. Los maravillosos científicos, que calculan con su potente software las infinitamente complejas ecuaciones que produce (para provecho de toda la humanidad) la Relatividad General, calcularon de qué parte del cielo procedían esas señales extraterrestres. Hicieron el siguiente cálculo. Suponen que las ondas gravitacionales detectadas viajaban a la velocidad de la luz en el vacío, incidiendo con cierto ángulo sobre ambos observatorios, que están separados una distancia de 3002 km. A esa velocidad, si la propagación estuviera alineada en la misma recta con ambos observatorios, las ondas incidirían primero en el detector de Livingston, y al cabo de 0.0100136 segundos lo harían en el de Hanford. Pero, como se observó un retraso de 6.9 milésimas de segundo, el ángulo de incidencia de esas supuestas ondas debe ser de 46.444 grados. ¿Cuál es el problema con todo ese cálculo?. El problema es que la Tierra no es plana, es un esferoide. Nuestro planeta Tierra tiene un radio medio de 6371 km, y eso significa que la distancia entre los observatorios de Livingston y Hanford no es de 3002 km sino una distancia en linea recta por el interior de la corteza terrestre de 2974 km. Pero, la Tierra está achatada por los polos, por lo tanto el radio de la Tierra cerca de esas localizaciones de LIGO debe ser incluso menor que esos 6371 km. Se estima que la distancia real en linea recta entre esos dos sitios es de unos 2500 km. He aquí la trigonometría simple de ese sencillo cálculo:

    distance

    \displaystyle  \theta= \frac{s}{r} \\ \\  x = r \cos \theta \text{;} \;  y = r \sin \theta \\ \\  d = r\sqrt{\sin^2 \theta +(1-\cos \theta)^2} \\ \\   d = r\sqrt{2- 2\cos \theta}
    pero alguien podría preguntar “bueno, ¿y qué?“. Pues que según los cálculos de los científicos de LIGO la señal procede de una región del cielo del hemisferio sur, precisamente en una dirección que pasa por la Nube de Magallanes, aunque la fuente de esas ondas la sitúan mucho más lejos, a unos 1300 millones de años-luz. El problema es que, con el nuevo cálculo que acabo de mostrar, la dirección del cielo ya no coincide con la Nube de Magallanes, sino que es una región celeste bastante más alejada de esa. Me parece bastante chapucero que hayan calculado la dirección celeste sin tener en cuenta la curvatura de la superficie terrestre. Parece increíble que unos supuestos científicos tan riguroso hayan podido cometer un error tan infantil, pero así es. Algún programador de software estará intentando meter la cabeza debajo la tierra (¡tierra trágame!)

  5. La siguiente alegación tiene que ver con asumir que las ondas gravitacionales viajan a la velocidad de la luz. Esa es una predicción de la Relatividad general, pero la existencia de dichas ondas también es una predicción de dicha teoría. Tu no puedes matar dos pájaros de un tiro, consiguiendo evidencias directas de la existencia de dichas ondas y al mismo tiempo afirmar que viajaban a la velocidad de la luz. Eso sólo existe en los libros de texto. Todo en ese supuesto hallazgo, llamado GW150914 es demasiado irregular y falto de rigor. ¿Cómo pueden afirmar con tanta rotundidad que han detectado ondas gravitacionales cuando sólo lo han visto dos observatorios americanos, ningún otro del mundo pudo corroborar ese evento. Y esos dos detectores LIGO americanos estaban conectados por la red da la LSC, es decir, sus sistemas estaban sincronizados para, si alguien quisiera, engañar a todo el mundo para siempre (borrando definitivamente rastros y pistas) haciendo pasar por real una señal simulada. Con esa metodología “científica” tu puedes demostrar la existencia de cualquier cosa, sin que nadie tenga acceso a las pruebas reales de la supuesta evidencia. ¿Podemos llamar a eso ciencia?, ¿Podemos llamar a eso progreso científico?. En LIGO hay demasiado poco rigor con el método científico.

  6. Existe otra circunstancia que merece la pena ser apuntada. El proyecto LIGO sigue siendo un proyecto económicamente inviable. Se han fundido los millones de dólares y ahora buscan subvenciones, patrocinadores y demás calderilla que sumar para poder continuar. Atención pregunta: ¿Por qué está ahora todo LIGO parado después del supuesto hallazgo espectacular de las evidencias directas de ondas gravitacionales?. La respuesta es obvia, están esperando que les hagan la ola para conseguir unos cuantos cientos de millones de dólares con los que seguir ese proyecto cuyos objetivos son absolutamente improductivos. El silencio cómplice de todos los jefes de LIGO nos indica que efectivamente están esperando que les hagan la ola para obtener el premio gordo (Nobel). Otra preguntita sin importancia es la siguiente: Supongamos que se aceleran las acciones de los lobbies (hacer la ola) para que les den el Nobel de Física a los científicos más destacados de LIGO, y que el año que viene ya tenemos discurso en la academia sueca. ¿Qué ocurrirá si nunca más se vuelven a observar ondas gravitacionales?. Por que claro, si observaron el evento GW150914 nada más encender LIGO ese mismo año y ni siquiera estaba en modo observacional sino en la fase de pruebas, y resulta que en un futuro a corto y medio plazo no se observan rutinariamente esa clase de ondas extraterrestres, habrá que pensar que ese evento que observaron es tan raro como que te toque el gordo de la Lotería de Navidad 40 años seguidos.
Y ahora vamos a ver cómo los estultos relativistas nos “demuestran” que las supuestas ondas gravitacionales pueden ser observadas usando interferómetros como el de Michelson, pero mejorados con láseres (tecnologia actual), etc. Una de esas demostraciones estultas es la siguiente (se ve en muchos blogs de invidentes y dogmáticos relativistas acérrimos, quizás porque hacen copia-pega, sin entender lo que ponen):

Si los dos brazos del interferómetro están en las direcciones x e y, y la onda incidente en la dirección z, entonces la métrica debida a dicha onda se puede escribir así:

\displaystyle    ds^2 = -c^2 dt^2 +(1+h) dx^2 + (1-h)dy^2 + dz^2 \,

donde h es la tensión de la onda gravitacional. Pero, para la luz (láser en este caso) la Relatividad Especial dice que ha de ser ds = 0. Con lo cual, para el brazo alineado con el eje x tenemos:

\displaystyle     0 = -c^2 dt_x^2 +(1+h) dx^2  \\ \\   dt_x = \cfrac{\sqrt{1+ h}}{c} \ dx

y esa raíz cuadrada puede ser aproximada a un primer orden, y después de integrar esa ecuación diferencial y duplicar para obtener el tiempo de ida y vuelta de la luz láser a lo largo de ese brazo de longitud L, tendremos:

\displaystyle  \sqrt{1+ h} \approx 1 + \frac{h}{2} \\ \\   dt_x = \cfrac{(1 + \frac{h}{2})}{c}\ dx \\ \\    t_x = \int_0^L \cfrac{(1 + \frac{h}{2})}{c} \ dx \\ \\    2 t_x = \cfrac{2 L}{c} +\frac{L h}{c} \\ \\  2 t_x - 2 t =  \left (\cfrac{2 L}{c} +\frac{L h}{c}\right ) - \cfrac{2 L}{c}  \\ \\ \\   2 t_x - 2 t = \frac{L h}{c}

Es decir, el rayo láser que va y vuelve por ese brazo, alineado con el eje x, tarda un poco más que antes de la incidencia de la onda gravitacional, debido a la expansión del espacio-tiempo. Y para el rayo de luz láser que viaja por el otro brazo, alienado con el eje y, existiría una contracción del espacio-tiempo

\displaystyle     0 = -c^2 dt_y^2 +(1-h) dy^2  \\ \\   dt_y = \cfrac{\sqrt{1- h}}{c}\ dy

por lo tanto, para este brazo, en lugar de haber un retraso de la luz habrá un adelanto del tiempo debido a la contracción del espacio-tiempo.

\displaystyle  2 t_y - 2 t = -\frac{L h}{c}

Y esto significa que la diferencia de tiempos entre los dos brazos será de:

\displaystyle  \Delta t = (2 t_x - 2 t)- (2 t_y - 2 t) = \frac{L h}{c} - (-\frac{L h}{c}) \\ \\    \Delta t = \frac{2 L h}{c}

y eso implicaría una diferencia de fase de la luz láser, que puede ser medida en el detector, de:

\displaystyle  \Delta\phi = \frac{2\pi c \Delta t}{\lambda} \\ \\   \Delta\phi =  \frac{4 \pi  L h}{\lambda}

donde λ es la longitud de onda de esa luz láser.

Esa es la “demostración” de esta gente para convencernos de que un interferómetro de esa clase es capaz de detectar ondas gravitacionales, y para “demostrarnos” que de hecho ya se ha conseguido detectar esas ondas, hecho plasmado ya para los anales de la ciencia con el evento GW150914. Pero, veamos detenidamente dónde están los errores de toda esa demostración matemática basada en la Relatividad Especial.

Lo primero que debe llamarnos la atención es que no se habla para nada de la expansión o contracción del tiempo. Si una onda gravitacional expande en su media onda el espacio-tiempo y lo contrae en su otra media onda en igual medida, entonces no sólo debemos hablar del tiempo que tarda la luz láser en recorrer los brazos sino que también debemos hablar de qué le ocurre a su longitud de onda. Efectivamente, una onda gravitacional alargaría la longitud de onda de la luz cuando expande el espacio por el que se propaga, y simétricamente acortaría dicha longitud de onda cuando el espacio se contrae. En la “demostración” anterior no se tiene en cuenta esa circunstancia. En el brazo donde la tensión h es positiva (expansión espacial) la luz láser, cuya longitud de onda es λ se vería alargada en igual medida. Por lo tanto para ambos brazos tendremos que λ variaría así:

\displaystyle  h = \cfrac{\lambda_x -  \lambda}{ \lambda} \\ \\   \lambda_x = (h+1)\lambda \\ \\ \\ \\  -h = \cfrac{\lambda_y -  \lambda}{ \lambda} \\ \\   \lambda_y = (1-h)\lambda

Esto significa, ni más ni menos, que la velocidad de la luz debe aumentar cuando la onda gravitacional expande la longitud de un brazo del interferómetro, y, simétricamente, dicha velocidad de la luz debe disminuir cuando la longitud del brazo se contrae. ¿Por qué debe variar la velocidad de la luz en el vacío cuando hay variación del espacio-tiempo?. Eso debe ser así para que el número de ondas que entra por un brazo permanezca invariante respecto al número de ondas que entra por el otro. Para ver eso de forma más clara, supongamos que existe una expansión permanente del espacio para uno de dichos brazos y una contracción permanente en igual medida del otro brazo. Si el láser emite n ondas por segundo desde su cañón antes de llegar al splitter, entonces ese número n por segundo debe ser el mismo en el detector, porque las ondas electromagnéticas no deben ni perderse por el camino ni duplicarse. Y la única forma que existe de que el número de ondas sea invariante es que la velocidad de fase de las ondas electromagnéticas varíe en consonancia. Por unidad de tiempo el número de ondas que entra en un brazo debe ser igual al número de ondas por unidad de tiempo que salen de él. En la demostración que hacen los científicos relativistas, para convencernos de que es posible detectar ondas gravitacionales con un interferómetro tipo LIGO, se concluye que existe un tiempo extra en el viaje de ida y vuelta de la luz láser a lo largo del brazo expandido, pero no nos cuentan (callan) que como la velocidad de la luz en ese brazo de longitud expandida debe ser mayor a c, tendremos que

\displaystyle  2 t_x = \cfrac{2 L}{c_x} +\frac{L h}{c_x} = \cfrac{2 L}{c} \\ \\  c_x= (1+h)c

Y para el brazo que se contrae a lo largo del eje y, tendremos la siguiente velocidad de la luz en el vacío:

\displaystyle  c_y= (1-h)c

Con lo cual vemos, efectivamente que la longitud de onda del láser es mayor en el brazo alineado con el eje x, y menor en el alineado con el eje y:

\displaystyle  \lambda_x = \frac{c_x}{c}\lambda = (1+h) \lambda  \\ \\   \lambda_y = \frac{c_y}{c}\lambda = (1-h) \lambda

Esto significa que un interferómetro LIGO es incapaz de detectar esas supuestas ondas gravitacionales porque no habrá perturbación de interferencia en el detector.

Cuando estos relativistas con la razón perturbada, incapaces de ver que el número de ondas debe permanecer invariante por muchas ondas gravitacionales que incidan sobre un interferómetro, nunca admitirán que para que existan las ondas gravitacionales es necesario que exista una velocidad de la luz en el vacío que sea variable. Para ellos, la velocidad de la luz en el vacío siempre será una constante universal y nada ni nadie conseguirá apearles del burro. Es más, cualquiera que se atreva a poner en duda su dogma relativista será tachado de magufo, de crackpot, etc. Y lo peor de todo es que si ese alguien (negacionista y hereje de la relatividad, que pretende ser la verdad absoluta) poseía algún prestigio social y/o laboral, ellos, los defensores de la “verdad” y el dogma, harán todo lo posible para desprestigiar y marginar a esa persona.

A veces se necesita hacer un esfuerzo intelectual infinito para intentar comprender a los idiotas que defienden la relatividad Einsteiniana, pero ni con esas.

Saludos relativescos a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

Negacionismo del Big Bang, ¿qué es el tiempo?, elongación espacio temporal o mengua matérica universal

Posted by Albert Zotkin en octubre 6, 2016

Dicen que nuestro universo se expande. Peor aún, dicen que se expande aceleradamente, y nos muestran las evidencias. A menudo, en física y otras disciplinas, no sólo científicas, las evidencias son sólo interpretaciones o medias verdades. ¿Hacia dónde se expande nuestro universo?. Como la respuesta a eso es simplemente “hacia ningún sitio”, y como pretenden mantener como cierta la afirmación de que el universo se expande aceleradamente, sólo les queda argumentar que lo que se expande realmente es el espacio-tiempo, por lo que la materia que se encuentra enclavada en él formando cúmulos está en proceso de recesión relativa. Por lo tanto, la elongación espacio-temporal parece ser un hecho irrefutable, pero no, no es irrefutable. Ese supuesto hecho se basa en el desplazamiento hacia el rojo de las rayas espectrales de la luz de galaxias y cúmulos de galaxias que nos está llegando. Ese desplazamiento al rojo se interpreta como si fuera un efecto Doppler, y por lo tanto, se interpreta que existe una velocidad de recesión de cada galaxia que es aproximada y directamente proporcional a la distancia. Pero a mi me surgen muchas dudas sobre todas esas afirmaciones. La primera es si es cierto que el espacio-tiempo se expande y de forma acelerada ¿por qué han de separarse unas de otras las partículas materiales?. O dicho de otra forma. ¿Dónde y qué clase de ancla tiene cada partícula material clavada en ese espacio-tiempo para que sea arrastrada con su expansión?. Alguien puede argumentar con el ejemplo de un gas dentro de un recipiente. Si el recipiente se expande el gas se expande con él, enfriándose y disminuyendo su presión. Pero yo puedo argumentar también que ese gas se expande acompañando al recipiente porque las partículas de ese gas impactan y rebotan continuamente en las paredes del recipiente. Las partículas del gas intercambian calor continuamente con las paredes del recipiente. Pero, ¿dónde están las paredes de nuestro universo?, o peor aún, ¿alguien ha visto alguna vez que las galaxias reboten contra unas supuestas paredes universales?. Nuestro universo no posee bordes materiales, fronteras, barreras sobre las que impactar, colisionar. Parece ser un universo infinito espacial y temporalmente, por lo tanto, cualquier supuesta expansión del espacio-tiempo no arrastraría materia, no puede haber anclaje de la materia en el espacio-tiempo. Cuando matemáticamente sumas a infinito cualquier número real, sigue dando infinito.

big-bang-camelo

Esta reflexión nos lleva inexorablemente a la pregunta: ¿qué es el tiempo?. El tiempo es simplemente el método que utiliza nuestro cerebro para ordenar nuestras experiencias en la memoria. El tiempo es la acción de un librero numerando las páginas del libro de nuestra vida. Objetivamente, el tiempo no existe. En la naturaleza sólo hay presente, y no hay ni futuro ni pasado. Por esa razón los viajes en el tiempo (como los de las pelis de ciencia-ficción) son realmente imposibles. No se puede viajar a un tiempo futuro por la sencilla razón de que no se puede viajar hacia algo que aún no existe. Igualmente, no se puede viajar a un tiempo pasado por la sencilla razón de que ese tiempo pasado no existe. Evidentemente si pudieras viajar a un tiempo pasado te encontrarías con una duplicación de materia, salida de la nada. Pero no hay atajos ni caminos por los que pueda transcurrir la materia hacia tiempos pasados o futuros. Cuando los físicos teóricos actuales entiendan mejor qué es el tiempo y por qué el tiempo no es sólo esa cosa que miden los relojes, estarán en mejores condiciones de elaborar teorías más certeras sobre la naturaleza. Otra característica que define al tiempo es su inexorabilidad: dime cualquier fecha en el pasado y siempre es imaginable saber que esa fecha ocurrió realmente. Dime cualquier fecha en el futuro y te puedo asegurar que esa fecha llegará. Es como el juego de escribir un número real, siempre podemos escribir otro número real mayor o menor que ese. O al escribir dos números reales, siempre podemos encontrar otro distinto entre ambos. Por lo tanto, el tiempo es cuantificable, y para ello usamos los relojes.

Respecto a la pregunta ¿qué es el espacio?, cabe responder de una forma muy análoga a como lo hemos hecho con el tiempo. Pero el espacio no se nos presenta como el tiempo. Nuestros cerebros no ven al espacio como algo que transcurre, sino literalmenete como un recipiente donde están las cosas que percibimos. El tiempo pasa (siempre hay tiempo pasando, nunca se acaba), el espacio permanece. Percibimos el tiempo como algo dinámico y al espacio como algo estático. Pero ambas cosas son productos imprescindibles para ordenar nuestra experiencia.

¿Por qué percibimos el espacio como poseyendo tres dimensiones?. Cuando algunos físicos teóricos nos hablan de otras dimensiones espaciales extra, además de las tres clásicas (ancho, alto y profundo), para esconder su falta de evidencia científica, nos cuentan que esas dimensiones están como enrolladas sobre sí mismas, plegadas microscópicamente y por eso no podemos verlas. Todos sabíamos desde el principio, porque lo aprendimos bien, que lo que caracteriza a un sistema espacial de referencia es la ortogonalidad de sus ejes. Si una dimensión está plegada, retorcida microscópicamente, creo yo que no es una buena opción para un sistema espacial de referencia, porque ese “enrollamiento” no es precisamente la mejor definición de ortogonalidad. Evidentemente, nuestro espacio puede ser descrito matemáticamente mediante muchos ejes (no sólo tres) que no sean ortogonales, pero todos pueden ser reducidos a tres ejes ortogonales desde los que nuestras ecuaciones se simplifican drásticamente para describir lo mismo con igual éxito. El espacio que percibimos posee infinitas direcciones desde las que nos puede llegar el peligro o la salvación. Son infinitas direcciones por las que podemos huir del peligro, o estar alerta, por las que nos puede llegar el depredador a cazarnos. Nuestras tres dimensiones espaciales tienen mucho más que ver con las características de nuestro cerebro (de nuestra mente), que de algo externo. Nuestros antecesores, simios arborícolas, vivían casi todo el día encaramados a sus ramas, y el alimento lo conseguían desplazándose de rama en rama, al mismo tiempo que miraban en todas direcciones para estar alerta de los acechadores. Nuestro sentido de la vista es capaz de percibir con tres colores básicos de los que se derivan todos los demás. Eso es así por evolución natural. Nuestros parientes ancestrales necesitaban distinguir qué fruta estaba madura por su color, qué alimento era aparentemente comestible por su color y cual no. Del mismo modo que nuestro cerebro y nuestros órganos sensoriales han evolucionado para percibir todos los colores de las cosas que pueden ser expresados mediante esos tres colores básicos, una evolución similar se ha producido para percibir lo que llamamos el espacio. Al igual que los tres colores básicos desde los que podemos percibir cualquier otro color, nuestro cerebro percibe el espacio desde tres direcciones básicas, y cualquier otra dirección puede ser expresada mediante ellas. Así pues, cuando nos preguntamos por qué tres dimensiones espaciales, hay que preguntarse por qué tres colores básicos, y la respuesta es más de fisiología humana que de física universal.

El llamado espacio-tiempo, es pues un constructo, algo más teórico que real. Nuestro cerebro casa muy mal el espacio y el tiempo como un espacio de cuadro dimensiones. Nuestro cerebro no admite como muy natural que el tiempo sea un eje más como los otros tres ejes espaciales. Notamos muy bien qué es intuitivamente el tiempo, y por qué no puede ser una dimensión espacial más. La flecha del tiempo es algo muy subjetivo. El futuro es algo que aún no existe y por lo tanto no puede ser apuntado por ninguna fecha con certeza. El pasado es algo que ya no existe, y por lo tanto ninguna flecha pudo apuntar con certeza hacia nuestro presente.

Y por ultimo. ¿Qué hacemos con el Big Bang?. Puesto que toda la evidencia nos viene de supuestos desplazamientos al rojo de lineas espectrales, y que los santones del paradigma cosmológico actual se han encargado de darnos de comer ese fenómeno como si fuera un efecto Doppler cosmológico, lo que tenemos es un universo en creciente estampida. Pero si pensamos un poquito vemos, que ese efecto Doppler, que también se da en las diferencias de potencial gravitatorio, es simplemente algo relativo, de perspectiva, de horizonte, más que ningún supuesto Big Bang. La distancia a escala cosmológica produce sencillamente una diferencia de potencial gravitatorio, pero esa diferencia de potencial no significa ninguna expansión ni ningún alejamiento de las galaxias. Toda la materia permanecería esencialmente estática en nuestro universo, y lo único que cabría explicar es ¿por qué la distancia cosmológica produce diferencias relativas de potencial gravitatorio?. Cuando dibujamos la gráfica de un potencial gravitatorio producido por una masa puntal, lo solemos hacer como una curva en forma de campana invertida cuyos bordes se aproximan infinitamente hacia un eje horizontal, el cual marca un potencial nulo (potencial cero). Es decir, ese potencial es una curva gaussiana invertida, que posee valores negativos, y que se hacen menos negativos a medida que se aproximan al eje horizontal de potencial cero. Pero a escala cosmológica, esa linea de potencial cero podría ser más un arco de circunferencia que una recta real, por lo que además de las diferencias locales de potencial debido a la presencia cercana de materia, existirían diferencias relativas de potencial gravitatorio debido a la distancia.

Supongamos que un Radio de Hubble, es la mayor distancia cosmológica de la que nos puede llegar luz. Existe pues un horizonte cósmico, que podemos cuantificar de la siguiente forma: Supongamos que el potencial cosmológico es la superficie lisa de una esfera, y que los potenciales gravitatorios locales son pequeños montículos que destacan sobre esa superficie. Cuando nos situamos en un montículo se crea un horizonte desde el cual podemos percibir luz procedente de puntos de otros montículos. Si nos situamos en un punto de la superficie el radio de nuestro horizonte se reduce, y solo podremos ver luz procedente de montículos muy promimentes y cercanos. Pero, si nos situamos en una montaña de potencial local muy grande, nuestro horizonte para ver luz será muy grande. Esto resuelve la Paradoja de Olbers. En otras palabras, vemos el número de estrellas y galaxias que vemos por nuestra posición peculiar dentro de nuestra galaxia. Si estuvíéramos en una región remota, muy alejada de cúmulos grandes de materia, como son las galaxias, es decir, en una región muy cercana al potencial cero, veríamos muy pocas estrellas y galaxias en el cielo, menos de las que somos capaces de ver, porque nuestro horizonte observacional sería mas reducido.

Esto significaría que cuanto más cercanos estamos de una gran masa nuestro horizonte cósmico (observacional) será mas grande. Así, nuestra distancia al nuestro horizonte será:

\displaystyle  d={\sqrt {(R+h)^{2}-R^{2}}} \\ \\  s=R\arccos {R \over R+h} (1)
donde R el radio de Hubble, h nuestra altura local de potencial gravitatorio, s la distancia real al punto H, d la distancia tangencial que recorre la luz.

Figura 1

Figura 1

Esto significa que, según esta teoría del potencial cosmológico, que me estoy inventando, no sólo existe por la misma linea de vision el punto H del horizonte, sino otros más remotos, H1, H2, etc, si están situados sobre potenciales gravitatorios de cierta altura.

Luego en una esfera universal, sin defectos topológicos (como los campos gravitatorios locales), el potencial de deriva cósmica vendrá expresado por la ecuación:

\displaystyle  \phi (r) = c^2  \left (1-\sqrt {1- \frac{r^2}{R^2}}\right ) \\ \\   (2)

cuya gráfica es la siguiente:
hemi-circle

Obviamente, si r es muy pequeña respecto a R, ese potencial de deriva cósmica se reduce a cero. Y cuando r tiende a R, el potencial φ tiende a c². En un campo de potencial gravitatorio local, los valores son escalares negativos que crecen con la distancia hacia cero. Pero, en el campo de potencial de deriva cósmica los valores escalares son positivos y tienden con la distancia r hacia el cuadrado de la velocidad de la luz en el vacío.

Desde esa expresión explicita de potencial de deriva cósmica es fácil descubrir que el desplazamiento al rojo de las rayas espectrales de la luz de galaxias remotas es el siguiente:

\displaystyle  z=\frac{\Delta\lambda}{\lambda} = \exp\left( \frac{\phi (r)}{c^2}\right) -1 (3)
donde λ es la longitud de onda original (emitida), y Δλ es la diferencia entre la longitud de onda observada y la emitida. Y si queremos expresar la distancia r en función del desplazamiento al rojo z y del radio de Hubble, tendremos:

\displaystyle  z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\  \ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle  r = R\sqrt{2\ln (z+1)-\ln^2 (z+1) } (4)
Esto cambia drásticamente las distancias estándar calculadas hasta ahora para las galaxias y cúmulos remotos. Por ejemplo, se ha observado que los desplazamientos al rojo más grandes corresponden a unos extraños objetos remotos que se llaman cuásares. Estos extraños objetos nos ofrecen desplazamientos al rojo que van de z = 0.16 hasta z = 3.53. Lo cual, según mi hipótesis, implica distancias entre r = 0.524R y r = 0.875R.

Mi hipótesis tiene una serie de ventajas frente a las teorías del Modelo Cosmológico Estándar. En mi hipótesis:

  1. No existe recesión de galaxias y demás objetos remotos, sino que permanecen esencialmente en reposo. Ese desplazamiento al rojo se debe casi en su mayoría a la diferencia de potencial de la deriva cósmica. Después hay que sumar o restar otros efectos Doppler, debidos a potenciales gravitatorios locales, y/o a velocidades cinemáticas.
  2. La localización de la fuente emisora y la del observador en sus respectivos potenciales gravitatorios locales contribuyen al efecto de desplazamiento al rojo, ya que hay que calcular sobre la diferencia neta de potencial (sumando y/o restando potenciales locales y cinemáticos al potencial cosmológico).
  3. La Radiación de fondo de Microondas sería según mi hipótesis vulgares fotones emitidos mayoritariamente por átomos de hidrógeno procedentes de galaxias y cúmulos en el horizonte H, incluso más allá de él, en una franja cercana. Es decir de puntos H1, H2, etc, tal como los he dibujado en la figura 1.
  4. Los cuásares serían, ni más ni menos que galaxias y cúmulos con alta acumulación de materia y muy cercanos al horizonte cósmico H, pero dentro (no fuera) de la esfera de Hubble.
Por lo tanto, según mi hipótesis cosmológica, nuestro universo observable sería tan sólo un hemisferio de la gran esfera cósmica, esfera universal (no confundir con la esfera de Hubble), que tendría cuatro dimensiones espaciales. El otro hemisferio quedaría inaccesible, en su mayor parte, a nuestra observación de ondas electromagnéticas. Esa cuarta dimensión espacial es sobre la que se curva la linea de potencial cero. Es decir, nuestro universo (el observable y el no observable) sería simplemente la superficie de una hiperesfera de cuatro dimensiones espaciales.

figura 2 (Esfera universal)

Figura 2 (Esfera universal)

Si queremos traducir los potenciales a velocidades de recesión o viceversa debemos establecer la siguiente equivalencia, la cual es posible porque se usan coordenadas cosmológicas:

\displaystyle   \exp\left( \frac{v}{c}\right) =z+1= \exp\left( 1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\   \frac{v}{c}=\ln (z+1)=  1-\sqrt {1- \frac{r^2}{R^2}} \\ \\ \\
\displaystyle   v =c \ln (z+1) =  c \left(1-\sqrt {1- \frac{r^2}{R^2}}\right) \\ \\ \\ (5)
Por ejemplo. Se observó que la galaxia 8C1435+635 posee un corrrimento al rojo de z = 4.25, que es el más grande que se ha conseguido ver hasta ahora. Así desde el Modelo Estándar, ese desplazamiento correspondería a una velocidad de recesión de v = 0.93c. Pero, si usamos las coordenadas cosmológicas tenemos una velocidad de recesión de:

\displaystyle   v = c \ln (z+1) = = c \ln (5.25) = 1.70475 c (6)
es decir, una velocidad superlumínica. Y en terminos de diferencia de potencial cosmológico tendriamos:

\displaystyle  \Delta\phi = c^2\ln(z+1) = 1.70475 c^2 (7)
Por lo que esta lejana galaxía estaría algo más allá de nuestro horizonte cósmico. Pero nuestros telescopios la pueden ver porque es una gran acumulación de materia, ya que su altura de potencial gravitatorio sobresaldría un poco por encima de nuestro horizonte cósmico. Toda galaxia o cúmulo más allá de nuestro horizonte que no posea suficiente altura de potencial para destacar, sino que estuviera a ras de él. solo puede ser vista como formando parte de la Radiacíón Cósmica de Fondo. Esto significa que cuando una fuente emisora de luz cercana al horizonte posee poca altura de potencial, no sólo su luz nos llegaría con desplazamiento al rojo, sino con poca intensidad (pocos fotones), y cuanto más grande sea su potencial gravitatorio local más intensa veremos su luz y bien diferenciada del ruido de fondo cósmico.

Saludos

Posted in Astrofísica, Cosmología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Armun, el exoplaneta de las auroras gigantes

Posted by Albert Zotkin en agosto 26, 2016

El alienígena Philip K. Dick nos regaló hace 63 años su relato corto titulado “The Variable Man” (el hombre variable, la variable hombre, el hombre del pasado, la guerra con Centauro, o como quieras traducirlo en español).
illo1-small

Según nos relató el alienígena Philip K. Dick, Terra está en guerra contra el imperio de Centauro, cuyo cuartel general está en el planeta Armun en Proxima Centauri, a tan sólo 4,2 años-luz del sistema Solar.

Hace tan sólo dos días, astrofísicos del Observatorio Europeo Austral (ESO), dirigidos por el genio español Guillem Anglada-Escudé, nos informaron del descubrimiento de Próxima B, el exoplaneta tipo Terra en zona habitable más cercano a nosotros. La zona habitable de Proxima centauri, está cerca de ella, porque es una estrella enana roja. Por esa razón, Armun (Próxima B) posee una órbita casi circular (<0.35 de excentricidad), con radio de unos 7,4 millones de kilómetros de su centro. Armun posee una masa de casi cuatro tercios la masa de la Tierra, y podría ser un planeta rocoso con densa atmósfera. En condiciones normales, la posible agua existente en su superficie podría estar en estado líquido en su mayor parte. Se ha calculado que posee un periodo orbital de 11,186 días. Pero, dada su proximidad a su estrella, y debido a las fuerzas de marea, es muy probable que el periodo de rotación y el orbital estén acoplados y sean aproximadamente el mismo. Es lo que se llama acoplamiento de marea. Es lo mismo que se pasa a la Luna orbitando alrededor de la Tierra. La Luna siempre nos presenta la misma cara. En el caso de Armun, es muy probable que al presentar la misma cara siempre hacia su estrella, esa zona estaría muy caliente, y la cara oculta relativamente fría y más oscura. Aunque si poseyera una densa atmósfera, el efecto invernadero contribuiría bastante suavizar las temperaturas extremas por toda la superficie del planeta.
La proximidad de Armun a su estrella, una enana roja muy activa, hace que lleguen a él intensas tormentas de rayos X, y radiación ultravioleta, por lo que las condiciones para la vida, tal como la conocemos, no serían muy idóneas con tan peligrosa radiación. Si Armún además, posee una densa atmósfera y una gran magnetosfera, se puede conjeturar que sus auroras boreales y australes serían inmensas, de gran intensidad y bastantes persistentes. Por lo que no sería raro que en la cara oscura de Armun, su zona de noche perpetua, estuviera iluminada en todo momento por la luz fluorescente de sus brillantes auroras gigantes.

Además, siendo Armun un planeta rocoso tipo Terra, y con densa atmósfera, es muy probable que sea un infierno muy semejante a Venus. Un planeta, que aunque está en zona de habitabilidad, sería inhabitable, por sus condiciones más venusianas que terrestres.
1447349597013

Evidentemente, si el genio Guillem Anglada-Escudé y su equipo científico, hubieran sabido de la existencia del alienígena Philip K. Dick y de su relato bélico interestelar “The Variable Man“, habrían llamado Armun a Proxima B, sin apenas dudarlo. En su descubrimiento usaron el método de la velocidad radial, también conocido como espectroscopia Doppler.

Veamos brevemente en qué consiste este método de espectroscopía Doppler: Mediante un espectógrafo, como por ejemplo el HARPS, instalado en el telescopio de 3.6 m de ESO, se obtiene el espectro de la estrella. Por ejemplo este:

1c6d27a73443b05b3de40bc49186d18b

donde se señalan algunas lineas espectrales de absorción de algunos elementos químicos, y hace un seguimiento espectral a lo largo de un periodo determinado de tiempo, para ver si existen variaciónes ( corrimientos) en esas mismas lineas espectrales. Así pues cuando la estrella se aleja de nosotros a cierta velocidad, las lineas espectrales se verán corridas ligeramente hacia el rojo, y cuando se esté acerca, observaremos cómo esas mismas lineas aparecen ligeramente corridas hacia el azul. Puesto que sabemos la longitud de onda de cada línea cuando la estrella esta en reposo, al aplicar nuestra fórmula del efecto Doppler podremos calcular fácilmente cual es su velocidad radial.

El genio Guillem Anglada-Escudé y su equipo pudieron calcular que la estrella se acerca y se aleja de nosotros con velocidades medias de aproximadamente 5 km/h, debido a que existe ese planeta llamado Armun, orbitando ambos alrededor de un baricentro común.
sin

Una vez que se ha medido el periodo orbital de la estrella, observando los desplazamientos cíclicos de las lineas espectrales, entonces se aplican las leyes de Kepler del movimiento orbital y las de Newton, para deducir la distancia r al baricentro, la velocidad radial VPL, y la masa MPL del planeta, puesto que estamos ante el simple problema gravitatorio de los dos cuerpos,

\displaystyle r^{3}={\frac {GM_{\mathrm {star} }}{4\pi ^{2}}}P_{\mathrm {star} }^{2}

\displaystyle  V_{\mathrm {PL} }={\sqrt {\frac{GM_{\mathrm {star} }}{r}}}

\displaystyle  M_{\mathrm {PL} }={\frac {M_{\mathrm {star} }V_{\mathrm {star} }}{V_{\mathrm {PL} }}}

donde Mstar es la masa de la estrella, que debe ser conocida por otros métodos astrofísicos. Y el parámetro VPL es la velocidad radial de la estrella, que se deduce de las mediciones del efecto Doppler sobre las variaciones de su espectro:

\displaystyle  K=V_{\mathrm {star} }\sin(i)

donde k es la velocidad, e i es la inclinación del plano orbital respecto a nuestro linea de visión. Esto constituye el mayor inconveniente del método de espectroscopía Doppler: que la determinación de la velocidad radial dependa de saber previamente el ángulo de inclinación del plano orbital de la estrella respecto al observador (que somos nosotros). Si aplicamos una fórmula Doppler clásica, y asumiendo una inclinación orbital de cero grados, tendremos, para cualquier longitud de onda λ0 de linea espectral que se observe con un valor distinto λ

\displaystyle \lambda = \lambda_0 \left(1-\frac{K}{c}\right) \\ \\ \\  K = c \left(1-\frac{\lambda }{ \lambda_0}\right) \\ \\ \\  V_{\mathrm {star}} = K

En resumen: posiblemente Armun sea un infierno, con temperaturas medias de más de 500 grados Kelvin, con días y noches eternas iluminadas con brillantes luces fluorescentes procedentes de gigantes auroras. Sólo un potente campo magnético podría actuar como escudo protector de los rayos x y demás radiación peligrosa para la vida y su diversidad en Armun.

Saludos armunianos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , | 7 Comments »

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m₁ y m₂, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r₁ y r₂, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0).
2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m₁, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a₁₂ y en a₂₁. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

NO ESTAMOS SOLOS EN EL UNIVERSO

Posted by Albert Zotkin en junio 16, 2016

Existen muchas civilizaciones alienígenas más avanzadas tecnológicamente que la nuestra, saben que estamos aquí, pero no nos visitan porque no somos nada interesantes para ellos.
1. Búsqueda de Inteligencia Extraterrestre: Existen varios programas SETI de búsqueda de vida inteligente extraterrestre. Dicha búsqueda se hace de forma activa, enviando mensajes al espacio exterior, y de forma pasiva escuchando las señales que nos llegan y analizándolas para saber si tiene origen natural o artificial.
Pero, una civilización extraterrestre muy avanzada tecnológicamente, podría ser potencialmente un peligro inmenso para nuestra propia civilización si nos visitaran. Eso fue lo que nos dijo el prestigioso astrofísico y matemático inglés,Stephen Hawking. El cree firmemente en la existencia no sólo de vida extraterrestre, sino en la existencia de civilizaciones alienigenas muy avanzadas tecnológicamente. Piensa que no sólo la vida en la Tierra estaría en peligro, sino la misma Tierra como planeta, ante una potencial invasión de ingentes enjambres de naves alienígenas formados por cientos de miles de naves nodrizas interestelares, conteniendo cada una miles de drones equipados con armas letales de destrucción masiva. En concreto, el profesor Hawking confesó que: “Quizás esas civilizaciones alienígenas, que viven en colonias nómadas interestelares, estén en constante movimiento por toda la galaxia en busca de recursos materiales y energéticos para construir y mantener sus naves y todos sus sistemas de pervivencia. Una eventual visita a la Tierra de una de esas colonias nómadas resultaría en un cataclismo de proporciones bíblicas …
2. La ecuación de Drake: Según una primera estimación de la ecuación de Drake, existen en nuestra galaxia al menos diez civilizaciones alienígenas más avanzadas tecnológicamente que nosotros. La ecuación de Drake es la siguiente:

\displaystyle N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L

drake

y una primera estimación es la siguiente:

R^* =  10/año (10 estrellas se forman cada año)
f_p =  0.5 (la mitad de esas estrellas cuentan con planetas)
n_e =  2 (cada una de esas estrellas contiene dos planetas)
f_l =  1 (el 100 % de esos planetas podría desarrollar vida)
f_i =  0.01 (solo el 1 % albergaría vida inteligente)
f_c =  0.01 (solo el 1 % de tal vida inteligente se puede comunicar)
L =  10 000 años (Cada civilización duraría 10 000 años trasmitiendo señales)

N =10 \times 0.5 \times 2 \times 1 \times 0.01 \times 0.01 \times 10,000
N =  10 posibles civilizaciones detectables.

3. La paradoja de Fermi: La Paradoja de Fermi nos dirá que si hay al menos 10 civilizaciones alienígenas en nuestra galaxia, ¿dónde están?, no nos han visitado, no dan señales de vida. Esta supuesta paradoja se resuelve muy fácilmente: No nos han visitado porque el planeta Tierra, y en particular la vida en él y nuestra civilización humana, no les motiva especialmente. Es como si nosotros visitamos un desierto donde no hay prácticamente nada de interés. ¿por qué tenemos que aventurarnos hacia lugares remotos si sabemos a ciencia cierta que no tienen nada nuevo allí que no sepamos?. La respuesta a la paradoja de Fermi implica que existe al menos una civilización alienígena cercana muy avanzada, una civilización muy antigua, que quizás ya esté extinguida, que alcanzó su cúspide de avances tecnológicos y científicos hace aproximadamente unos ocho mil millones de años, cuando el sistema solar aún estaba en su más temprana etapa de formación. Quizás, fue esa civilización alienígena la que “sembró” el planeta Tierra de vida, convirtiéndolo en un santuario.
fermi-paradox-660x330
4. No son como nosotros: ¿Te imaginas a un ser alienígena super inteligente poseyendo el cuerpo de un gusano pestilente del tamaño de una anaconda arrastrándose por el fango?. El contacto con esos seres no sería muy agradable para nosotros, sería algo vomitivo, y lo mismo sentirían ellos de nosotros. Nuestros cuerpos, nuestros hábitats, nuestras costumbres gastronómicas, serían para esos seres algo repulsivo. ¿Te imaginas a un inteligente y avanzado alien con un cuerpo muy semejante al de una cucaracha y del tamaño de un elefante, desprendiendo un insoportable y extraño hedor?. Como poder, sí se puede imaginar, pero no sería algo muy agradable de sentir cerca de nosotros, y ese ser alienígena sentiría algo muy parecido al vernos a nosotros.
alien-2
Saludos cucarachescos a todos 😛

Posted in Astrofísica, Cosmología, curiosidades y analogías, Exobiología, Física de partículas, Gravedad Cuántica, Inteligencia artificial, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Un atajo en nuestro viaje interestelar a Alfa Centari

Posted by Albert Zotkin en junio 6, 2016

Hola amigos incondicionales de Tardígrados. Aviso, como siempre, que lo que sigue no debe ser tomado como astrofísica oficial, que puedas encontrar en un libro de texto o en algún ensayo científico del mainstream. Lo que sigue son sólo elucubraciones mias, (elucubración según la tercera acepción de la RAE, que dice: “trabajar velando y con aplicación e intensidad en obras de ingenio.“) 😛

alfa-centauri

Estos días he estado pensando sobre las distancias que hay ahi afuera, hacia los objetos del espacio profundo, como estrellas, galaxias, nebulosas, cuásares, etc. Me he estado preguntado si tales distancias, que la astrofísica actual nos dice que son inmensas, son realmente tan largas o si por alguna otra explicación, distinta a la oficial, podrían ser significativamente más cortas. La conclusión a la que llegué es que sí. Por ejemplo, la astrofísica oficial nos informa de que la distancia al sistema estelar más próximo a nosotros, que es Alfa Centauri (Rigil Kentaurus), es de 4,37 años-luz, es decir, 41,3 billones de kilómetros. Y para que nos hagamos una idea de lo inmensa que es esa distancia, una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años. Pero, esa distancia podría ser significativamente menor si descubrimos de qué forma la luz nos engaña. En este pequeño artículo que estoy escribiendo razonaré que nuestra distancia a Alfa Centauri no sería de 4,37 años-luz, sino de tan sólo 32 días-luz. Eso significaría que si podemos disponer de un cohete que acelerase en linea recta con una aceleración de 1 g (que son 9,8 m/s²) durante 1 año, alcanzaría ese sistema estelar con una velocidad final cercana a la de la luz y en poco menos de 2 años. Pero, alguien dirá que la distancia a Alfa centauri está más que comprobada por diferentes métodos, el principal de ellos es el del paralaje estelar. Ya he dicho que la luz puede que nos esté engañando y el efecto llamado paralaje podría ser uno más de sus engaños cuando consideramos distancias interestelares.
Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero, existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él podrían poseer órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas allí.
Pero, vayamos al grano. Voy a definir el espacio por donde se mueve la materia, en contraposición al espacio por donde se propagan las ondas electromagnéticas, de la siguiente forma:
Sea φ el potencial gravitatorio del sistema solar (o de cualquier otro sistema material). Sabemos que el potencial gravitatorio posee dimensiones de una velocidad al cuadrado. Por lo tanto si dividimos ese potencial por una aceleración constante a0, obtenemos una distancia. Es decir, hemos expresado el potencial gravitatorio como si fuera una distancia:

\displaystyle p(r) = \cfrac{\phi(r)}{a_0}

donde la variable r es una distancia estándar en el espacio electromagnético, y p(r) es la nueva distancia en el espacio de las ondas de materia, como función de la anterior.

Pero, lo que queremos es calcular una longitud, un intervalo de esa curva de potencial. Así, aplicamos una integral definida en el intervalo (x1, x2) que deseemos:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left ( p'( r ) \right )^2 } \, dr = \\ \\ \\ =\int_{x_1}^{x_2} \sqrt{1 + \left ( \cfrac{\phi'( r )}{a_0} \right ) ^2} \, dr

donde φ‘(r) es la derivada del potencial respecto a r. Pero esa derivada es precisamente la intensidad gravitatoria del campo, que posee dimensiones de una aceleración, a:

\displaystyle a = \phi'( r )

Por lo que, lo que hay dentro de nuestra raíz cuadrada es adimensional:

\displaystyle s(r) = \int_{x_1}^{x_2} \sqrt{1 + \left (\cfrac{a}{a_0} \right )^2} \, dr

Ahora hablemos un poco de la constante a0. Esta constante aparece en la Teoría MOND y fue hallada por su autor, Mordehai Milgrom en 1983. El valor numérico es :

\displaystyle a_0 =\frac{c^2}{R_h}= 1.2 \times 10^{-10} \ \text{m s}^{-2}

Donde c es la velocidad de la luz en el vacío, y Rh, es el radio de Hubble, es decir, el radio de nuestro universo observable.

estand

Esta teoría MOND usa una función de interpolación, la cual es una función de la aceleración a y de la constante a0. Esa función de interpolación se llama μ, y una de sus formas estándar es la siguiente:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{1}{\sqrt{1+\left(\frac{a_0}{a}\right)^2}}

Esta función μ se usa para los casos limite en que la aceleración a es mucho mayor que a0, o cuando es mucho menor que ella. Es decir, la interpolación es que, para todo valor real positivo de x, μ (x) → x, cuando x << 1, y μ (x) → 1, cuando x >> 1. Además, es fácil ver que esa función de interpolación estándar de arriba, se puede expresar también así:

\displaystyle \mu \left(\frac{a}{a_0}\right)=\cfrac{\frac{a}{a_0}}{\sqrt{1+\left(\frac{a}{a_0}\right)^2}}

Con lo cual nuestra integral definida puede ser expresada de la siguiente forma

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\mu \left(\frac{a}{a_0}\right)}  \, dr

Esta última expresión nos da la clave para entender nuestro cálculo. Así, para un régimen MOND donde la aceleración a es mucho menor que la constante a0, tendremos que la función de interpolación sería μ (x) = x, y nuestra integral definida se simplificaría y se resolvería así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{\frac{a}{a_0}} {\frac{a}{a_0}}  \, dr = \\ \\ \\ s(r) = \int_{x_1}^{x_2}  \, dr = x_2-x_1

lo cual quiere decir que en ese régimen extremo de MOND, con a << a0, nuestra distancia electromagnética coincidiría con nuestra distancia matérica. Resulta interesante destacar que precisamente en esas regiones donde las distancias de ambos espacios coinciden, la física actual presupone en ellas la existencia de materia oscura. Básicamente, esas regiones se sitúan en los halos de las galaxias y en los bordes de los cúmulos galácticos. Pero, ¿qué ocurriría en un régimen MOND donde a >> a0, con la función de interpolación simplificandose a μ (x) = 1?. Pues que nuestra integral definida quedaría así:

\displaystyle s(r) = \int_{x_1}^{x_2} \cfrac{a}{a_0}   \, dr

Pero, la integral de la aceleración gravitatoria es precisamente nuestro potencial gravitatorio inicial. Por lo que la solución a esta última integral definida sería precisamente la siguiente diferencia de potencial:

\displaystyle s(r) = p(x_2)- p(x_1)= \\ \\ \\  = \frac{1}{a_0}\left (\phi(x_2)-\phi(x_1)\right)

Ahora podemos hacer fácilmente nuestro cálculo de la distancia matérica entre el sistema solar y Alfa Centauri, si usamos el potencial gravitacional Newtoniano como la mejor aproximación. El intervalo de distancia matérica a calcular será el siguiente:

\displaystyle s=2(s_2 - s_1) = \cfrac{2 G M_s}{a_0} \left(\cfrac{1}{x_1}-\cfrac{1}{x_2}\right)

Hemos multiplicado por 2, ya que se asume que la masa del sistema Alfa Centauri es aproximadamente la misma que la del sistema solar

\displaystyle M_s = 2 \times 10^{30}  Kg, masa del Sol,
\displaystyle G = 6.67428 \times 10^{-11}  m3 Kg-1 s-2, constante gravitacional,
\displaystyle a_0 = 1.2 \times 10^{-10}  m s2, constante de aceleración MOND
\displaystyle x_2 = 2.067173 \times 10^{16}  m, distancia estándar de 2.185 años-luz
\displaystyle x_1 = 1.49 \times 10^{9}  m, distancia estándar de 1 UA

Con estos dato, nuestro cálculo daría:

\displaystyle s = 2.05005 \times 10^{18} \; \text{m}\;= 216,7 \; \text{a\~nos-luz}

es decir, obtenemos una distancia mucho mayor que la distancia estándar de 4.37 años-luz. Exactamente la ratio es de:

\displaystyle \rho = \frac{s_2-s_1}{x_2-x_1}= \frac{216,7}{4.37}=49.5857

Eso se debería al hecho de que 1 metro en nuestra región local cerca del Sol no sería igual que 1 metro en una región más externa. La ratio anterior nos dice que, 1 metro de una región externa equivale efectivamente a casi 50 metros de nuestra región local cercana al Sol. Por lo tanto, un viaje a Alfa Centauri, que la ciencia actual calcula que tardaría unos 115 mil años a una velocidad de 40960 km/h, según la hipótesis que aquí contemplo, duraría tan sólo unos 2300 años. Igualmente, la velocidad de la luz en esa región externa sería unas 50 veces mayor que la que se supone es una constante universal.

Saludos interestelares a todos 😛

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El proyecto Starshot a las estrellas

Posted by Albert Zotkin en abril 29, 2016

El Proyecto Breakbrough Starshot financiado por el multimillonario ruso Yuri Milner, el cual pondrá los 100 millones de dólares iniciales, consiste en enviar micronaves espaciales, de pocos gramos de peso cada una, hacia el sistema estelar Alfa Centauri, que se encuentra a 4,37 años-luz de la Tierra. La intención de enviar esas micronaves es explorar ese sistema estelar, hacer fotografias de alta resolución de posibles planetas y enviarlas a la Tierra. Y todo eso quieren hacerlo en una generación, es decir 20 años de viaje y 5 años para enviar las fotos.

Pero, existen pequeños detalles que podrían poner en peligro el éxito de esa misión. En primer lugar, una nave espacial como las que usualmente exploran nuestro sistema solar o como las que están actualmente escapando de él (Voyager, Pioneer) tardaría unos 80 mil años en llegar a las inmediaciones de Alfa Centauri, sin embargo, en el proyecto Starshot se pretende que lo hagan en 20 años, es decir que viajen a una velocidad del 20% de la velocidad de la luz. Para conseguir esa velocidad de 0.2c, una micronave, que dispondrá y desplegará unas velas solares, sería acelerada mediante un potente rayo láser de unos 100 gigavatios durante unos 30 minutos. Pero, el pequeño detalle es que aunque fuera posible acelerar hasta 0.2c la microsonda espacial, no habría forma de desacelerarla cuando llegase a las inmediaciones del destino. Luego, si su objetivo es fotografiar posibles exoplanetas de ese sistema estelar, la pregunta es cómo se consigue fotografiar con nitidez un objeto si la velocidad relativa entre él y la cámara es de 0.2c.

starshot-starchip-alpha-centauri-160412b-02

La idea Starshot es fascinante. Yo incluso propondría un láser de 1 teravatio (1000 gigavatios) para que esos chips estelares llegaran a Alfa Centauri no ya en 20 años sino en 5. Pero, el problema está en que ese proyecto es casi inviable por muchas razones, no solo los retos tecnológicos apuntados arriba. La principal razón es que se necesitarían más de 20 años de investigaciones y de patentes antes de siquiera construir un prototipo. Es decir, descontando los 20 años de singladura interestelar, habría que sumar al menos 50 años de investigaciones y avances tecnológicos para dispositivos y sistemas pertinentes con el proyecto. Podríamos sumar un siglo entero. ¿Quién es capaz de financiar un proyecto de un siglo de duración aportando 100 millones de dolares cada diez años, por ejemplo?. Lo que era un proyecto ilusionante por conseguir enviar una sonda a la estrella más cercana que haga fotos y nos las envíe a la Tierra en menos de 25 años, se convierte en un proyecto decepcionante porque no se conseguirían avances significativos en menos de un siglo. Los recursos financieros aportados del proyecto serían un auténticos desperdicio, y ni el multimillonario más multimillonario del mundo estaría dispuesto a gastarse más de 60 mil millones de dólares en un proyecto que en poco o en nada aportaría al progreso de la ciencia y de la humanidad, y lo peor, sería a fondo perdido. Además, puesto que Starshot es simplemente un disparo desde la Tierra hacia Alfa Centauri, la más mínima perturbación inicial implicaría un desvío significativo respecto del objetivo. Su trayecto caótico impediría alcanzar un objetivo tan remoto a largo plazo. Además, supongamos que hay fortuna y los científicos apuntan correctamente hacia el objetivo, entonces entraría en juego otro factor llamado posición aparente. Disparar a un objeto distante 4,37 años-luz que no está estático tiene el pequeño inconveniente de que si apuntas hacia su posición aparente (la posición que indica la luz que estás recibiendo de él en ese momento) entonces cuando la bala llegue a sus inmediaciones podría ocurrir con mucha probabilidad que el objeto no está donde se suponía que debía estar, y la bala pasaría muy alejada de la diana real.

Alfa Centauri es básicamente un sistema binario de una estrella enana amarilla (Alfa Centauri A) y una enana naranja (Alfa Centauri B). Pero existe otra estrella que orbita alrededor de ese sistema binario, aunque muy alejada. Es una enana roja llamada Próxima Centauri. Es decir, ese sistema estelar está formado en realidad por tres estrellas enanas. Al ser un sistema de tres cuerpos, los posibles exoplanetas que orbiten en él poseerían órbitas poco estables. Eso nos hace pensar que posiblemente haya pocos exoplanetas.

Este sistema estelar se encuentra a tan sólo 41,3 billones de kilómetros (4,37 años-luz). Una sonda espacial como la Pioneer 11, la cual está escapando del sistema solar a una velocidad de 40.960 km/h, si su dirección fuera hacia Alfa Centauri (que no lo es), llegaría en unos 115 mil años.

En un párrafo anterior digo que la idea Starshot es fascinante. No sé si se me ha entendido bien la ironía, pero es evidente que a mi ese proyecto no me ilusiona, por dos motivos. El primero es que existen demasiadas barreras tecnológicas y presupuestarias, y el segundo es que el resultado del proyecto suponiendo que tuviera el éxito deseado sería únicamente la obtención de unas cuantas fotografías más o menos borrosas de algún exoplaneta o asteroide. La forma más ilusionante de explorar el espacio profundo de nuestra galaxia es el proyecto COINN (Colonias Interestelares de Naves Nómadas).

Posted in Astrofísica, Cosmología, Exobiología, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments »

 
A %d blogueros les gusta esto: