TARDÍGRADOS

Ciencia en español

Archive for 14 agosto 2015

¿Es posible superar la velocidad de la luz en el vacío? Diferencias entre electrón, muón y tau leptón

Posted by Albert Zotkin en agosto 14, 2015

limite maximo

Hola amigos de Tardígrados. Hoy vamos a intentar viajar a una velocidad superior a la de la luz en el vacío. Es decir, subiremos a nuestro cohete a reacción e intentaremos acelerar hasta una velocidad superior a c = 299.792.458 km/s. ¿Lo conseguiremos?. Sí. Pero las consecuencias no serán tan bonitas como pensamos.

Según la Teoría de la Relatividad Especial, para acelerar un cohete hasta la velocidad de la luz en el vacío haría falta una cantidad infinita de energía, es decir, sería imposible, porque en el universo no hay disponible para nosotros una cantidad infinita de energía. Pero claro, eso es lo que predice esa teoría. Yo podría proponer otra teoría más “bonita” desde la cual sí sería posible superar ese límite máximo, aunque con algo que sería inesperado y decepcionante para los amantes de los viajes interestelares.

La teoría que propongo dice que al superar la velocidad de la luz en el vacío se produce una conjugación de la paridad, es decir, la partícula superlumínica sería vista viajando en dirección opuesta con una velocidad sublumínica. Así nuestro cohete al igualar la velocidad de la luz sería visto como estacionario (parado) en cierto punto, y al superar dicha velocidad sería visto viajando en dirección opuesta. Sería algo muy parecido a su imagen especular. De esta forma tan rocambolesca, podemos superar la velocidad de la luz cuantas veces queramos, porque dicha velocidad no sería algo absoluto sino algo cíclico. Estas consideraciones ya las apunté en un antiguo post titulado ¿Es cierto que la velocidad de la luz en el vacío es la máxima velocidad que una partícula puede alcanzar?. Efectivamente, todo esto tiene que ver con el fenómeno de la interferencia de ondas. Y parafraseando un conocido eslogan de una famosa franquicia de pizzas, podemos afirmar que “el secreto está en la masa“.

Así un electron y un muón, ambos vistos en reposo, poseen distintas masas. ¿Qué ocurre?. Pues muy fácil, un muón es un electrón que ha superado un ciclo de la velocidad de la luz. ¿Y un tau leptón?. Un tau leptón sería un electrón que ha superado dos ciclos, es decir, que se mueve inercialmente a dos ciclos de la velocidad de la luz.

Todo esto lo podemos expresar matemáticamente de la siguiente forma. Veremos cómo, cuando el número de ciclos es impar, la dirección del movimiento inercial es inversa a la inicial. Usemos una ecuación de movimiento armónico simple

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{2\pi w}{c}\right)\,
la β = w/c indicará el número de ciclos, y w puede ser un valor mayor que c. En cambio, v sólo puede estar en el intervalo [-c, c].

sin

Si aplicamos la fórmula de Euler

\displaystyle   e^{ix}=\cos x+i\sin x

vemos que podemos expresar:

\displaystyle   x=  \frac{2\pi w}{c}\\  \\  \\  \cos x = \mathrm{Re}\{e^{ix}\} =\cfrac{e^{ix} + e^{-ix}}{2} \\  \\  \\   \sin x = \mathrm{Im}\{e^{ix}\} =-\cfrac{e^{ix} - e^{-ix}}{2i}
Estas ecuaciones nos sugieren que la energía total de una partícula de masa m que se desplaza a una velocidad w debe ser:

\displaystyle  E = mc^2 \cosh\left(\frac{2\pi w}{c}\right)

y su momento lineal:

\displaystyle  p = mc \sinh\left(\frac{2\pi w}{c}\right)

y si afirmamos que un muón en reposo equivale a un electrón con una velocidad igual a c, tendremos que la energía en reposo del muón debe coincidir con la energía total del electrón que se mueve a esa c:

\displaystyle   m_ec^2 \cosh\left(\frac{2\pi c}{c}\right) = m_{\mu}c^2 \\ \\ \\   \cfrac{m_{\mu}}{m_e} =\cosh 2\pi \approx 267,7

es decir, la masa del muón sería casi 268 veces la masa del electrón

Todo esto es muy bonito, pero volvamos al concepto de “conjugación de la paridad”. Es evidente que si la partícula es vista viajando en dirección opuesta cuando ha superado la velocidad de la luz, entonces algo no cuadra. Lo correcto sería ver cómo a medida que la partícula acelera, la velocidad aparente debe pasar por un máximo y llegar hasta un mínimo. Y esto implica que c debe ser ese máximo. Es decir, en w = 2c la partícula sería vista estacionaria, en w = 3c sería vista viajando en dirección contraria a la máxima velocidad c, y en w = 4c volvería a estar estacionaria completando un ciclo. Por lo que la ecuación armónica debería ser esta:

\displaystyle   \cfrac{v}{c} = \sin \left (\frac{\pi w}{2c}\right)\,
Y esto significa que si hemos empleado un campo eléctrico para acelerar la partícula (la cual está cargada eléctricamente) entonces, además de una conjugación de la paridad, observaríamos una conjugación de carga. Efectivamente, cuando con el mismo campo eléctrico vemos que la partícula, en lugar de avanzar, retrocede (dirección contraria), entonces estamos ante una conjugación de carga eléctrica (la partícula se comportaría como si hubiera invertido su carga eléctrica). Según esta extraña teoría que estoy perfilando, una partícula poseería una carga eléctrica oscilante, y el signo de esa carga (positiva, negativa o neutra) dependería de cuantos ciclos-luz contiene su masa y de su actual energía cinética.

Así, puesto que la ratio entre la masa de un muón y la de un electrón es:

\displaystyle   \cfrac{m_{\mu}}{m_e}  \approx 206.768

el número de ciclos-luz de un muón sería de:

\displaystyle  \cosh \left(2 \pi x \right) = 206.768  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(206.768\right) = 0.958867

Igualmente, el número de ciclos-luz para un tau leptón sería:

\displaystyle   \cfrac{m_{\tau}}{m_e}  \approx 3477.15  \\ \\  \\   \cosh \left(2 \pi x \right) = 3477.15  \\ \\   x = \frac{1}{2\pi} \text{arccosh}\left(3477.15\right) = 1.40806

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin en agosto 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Radicales anidados y un problema para Ramanujan: √₁₊₁√₂₊₂√₃₊₃√₄₊⋅⋅⋅

Posted by Albert Zotkin en agosto 4, 2015

Hoy voy a hablar de radicales anidados. No. no me refiero a radicales anidados en ningún partido político, como por ejemplo el Bolivariano trotskista de Podemos. En este caso me estoy refiriendo a un curioso objeto matemático:

Ramanujan propuso el siguiente problema en la revista Journal of Indian Mathematical Society, pero creo que no obtuvo mucho éxito en cuanto a las respuestas de los lectores,

\displaystyle   ?=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+\dots}}}}}}

O sea, nadie supo la respuesta. Veamos cómo Ramanujan ofreció la solución algunos días después del frustrado problemita. Podemos ver que existe una función

\displaystyle    F(x,n)=\sqrt{n^2+x(F(x,n)+n)}

que al resolver tenemos

\displaystyle    F(x,n)^2=n^2+x(F(x,n)+n) \\ \\  F(x,n)= x+n

por lo que la solución es

\displaystyle    F(2,1) = 3

Posted in Matemáticas | Etiquetado: , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: