TARDÍGRADOS

Ciencia en español

Archive for the ‘Matemáticas’ Category

Cómo romper los códigos criptográficos RSA: factorizacion de semiprimos y las raices rectangulares

Posted by Albert Zotkin en noviembre 18, 2016

riemann-estela
En la actualidad, usamos algunas de las propiedades de los números primos para codificar mensajes, de modo que ningún intruso pueda leer fácilmente nuestras comunicaciones. Para ello usamos la propiedad siguiente de los número semiprimos: Elegimos dos números primos suficientemente grandes, y obtenemos el semiprimo multiplicándolos. El número semiprimo será parte de la llave pública para nuestro método de encriptación, y con los dos números primos se construyen las llaves privadas. Dado un semiprimo suficientemente grande, es prácticamente imposible hallar en tiempo razonablemente corto, sus dos factores primos. Eso es incluso casi intratable usando supercomputadores. esta dificultad se llama Problema RSA.
Si estás interesado en desencriptar los códigos que protegen el acceso a tarjetas de crédito bancarias o a páginas web seguras, quizás estés interesado en participar en esta clase de Competición de factorización RSA. Veamos un semiprimo catalogado por la RSA y que tiene un premio de 100.000 dólares para quien halle sus dos factores primos. Este semiprimo es el RSA₁₀₂₄, es decir, posee 1024 cifras binarias (309 cifras decimales):

\displaystyle \text{RSA}_{1024} = \\ 13506641086599522334960321627880596993888147560566702752448514385152651060 \\ 48595338339402871505719094417982072821644715513736804197039641917430464965 \\ 89274256239341020864383202110372958725762358509643110564073501508187510676 \\ 59462920556368552947521350085287941637732853390610975054433499981115005697 \\ 7236890927563
Si queremos factorizar con éxito un número semiprimo de la RSA, lo primero que debemos hacer es estimar lo grande que serán sus dos factores primos. Así, para ese RSA₁₀₂₄, los dos factores primos estarán muy cerca relativamente de su raíz cuadrada, es decir, números primos cercanos a las 154 cifras decimales, o lo que es lo mismo, números primos de entre 100 y 200 cifras decimales. Por ejemplo, si uno de los primos resulta tener 120 cifras decimales, el otro estaría muy próximo a las 188. Pero, veamos, ¿cuántos números primos hay que tengan entre 100 y 200 cifras decimables?. Usemos la función contador de números primos, π(x), aproximémosla a x/log(x), porque según Gauss, esa es una buena aproximación para un x suficientemente grande. Así los números primos que tienen entre 100 y 200 cifras decimales son aproximadamente :

\displaystyle 2.17 \times 10^{197}
Supongamos que disponemos del superordenador más potente del mundo, el reciente Sunway TaihuLight, capaz de operar a máximo rendimiento, que es de 125.43 petaFLOPS. Conseguiría resolver el número RSA₁₀₂₄ 1 petaFlop es 1 opración de coma flotando por cada femtosegundo. 10¹⁵ femtosegundos son 1 segundo. En total tardaríamos un maximo de :

\displaystyle 2.17 \times 10^{197} \times 10^{-15} = 2.17 \times 10^{182} \; \text{segundos,}
un tiempo demasiado largo como para tener alguna esperanza de llegar en vida hasta el final del cálculo y verlo con nuestros propios ojos 😛

Veamos ahora qué es una raíz rectangular. Cuando calculamos una raíz cuadrada en realidad estamos calculando dos números, pero como ambos son iguales, no nos damos cuenta que en realidad es un par de números. Por ejemplo, la raices cuadradas de 64 son el par (8, 8):

\displaystyle \sqrt{64}=(8,8)
Podemos calcular para 64 su raices rectangulares, ya que si nos fijamos 64 puede escribirse como 2 elevado a diferentes exponentes, es decir:

\displaystyle 64 = 2^6 = 2^3 \times 2^3 =  2^2 \times 2^4 = 2^1 \times 2^5
Es decir, el número 64 posee dos pares de raíces rectangulares y un par de raíces cuadradas:

\displaystyle 64 = (8,8) = (4,16) = (2,32)
Así, para entendernos, pondremos el par de exponentes de las raices rectangulares entre corchetes, de modo que siempre tendremos la equivalencia:

\displaystyle 1 = \left[\frac{3}{6}, \frac{3}{6}\right] = \left[\frac{2}{6}, \frac{4}{6}\right] = \left[\frac{1}{6}, \frac{5}{6}\right]
Con esto, lo único que estamos haciendo es dividir la unidad en dos partes, de modo que su suma sea esa misma unidad. ¿Por qué el número 64 posee esas raices rectangulare y no otras?. En realidad posee muchas más, pero las que he escrito arriba son las que dan raices enteras. Veamos estos casos:

\displaystyle 64 = 64^{\tfrac{1}{4}}\times 64^{\tfrac{3}{4}}= (2\sqrt{2}) (16\sqrt{2}) \\  64 = 64^{\tfrac{1}{5}}\times 64^{\tfrac{4}{5}}= (2\sqrt[5]{2}) (16\sqrt[5]{2^4}) \\
en general, para cualquier par de número enteros m y n, que sean coprimos,tendremos las raices rectangulares de un número N:

\displaystyle N= N^{\tfrac{m}{n}}\times N^{1-\tfrac{m}{n}}
Veamos ahora cómo aplicamos esto a la factorizaación de números RSA: sean los números primos p = 486023 y q = 598727, por lo que su producto es N = 290995092721. Empezaremos nuestros cálculos con su raíz cuadrada:

\displaystyle \sqrt{N}=539439.60989252541168458987732327730802813682656081\ldots
Igualmente sabemos que ha de ser:

\displaystyle p= N^{\tfrac{m}{n}} \\  q= N^{1-\tfrac{m}{n}}

y puesto que sabemos los valores de p y q, es fácil resolver m y n:

\displaystyle \frac{m}{n}=\frac{\log p}{\log(pq)} \\ \\ \\  1-\frac{m}{n}=1-\frac{\log p}{\log(pq)}=\frac{\log q}{\log(N)}
Por otro lado, si pensamos un poquito, nos daremos cuenta de que factorizar un número RSA no es muy difícil en principio, la dificultad reside en que los números primos, p y q, que forman el semiprimo N, sean muy grandes. Así, es incluso posible presentar una ecuación matemática con la que podemos resolver cualquier número RSA, y es esta:

\displaystyle \mathrm{mcd} (N, \lfloor\sqrt{N}\rfloor !)=\min (p,q) (1)
Aquí N es producto de los dos primos p y q, mcd es el máximo común divisor de dos números, \lfloor\ r\rfloor ! es el factorial de la parte entera del número real r. Podemos incluso optimizar un poco esa ecuación (1) si usamos el primorial en lugar del factorial,

\displaystyle \mathrm{mcd} (N, \lfloor\sqrt{N}\rfloor \#)=\min (p,q) (2)
Si N ya es en principio un número muy grande (más de 1024 digitos binarios), el factorial (o el primorial) de la parte entera de su raíz cuadrada será incluso más grande aún, prácticamente intratable. De ahí que las fórmulas (1) y (2) aunque sean correctas, no son muy útiles para el cálculo. En realidad, para calcular un mcd de dos números primero hay que factorizar esos dos números. Es evidente que factorizar N es más fácil que factorizar el primorial de la parte entera de su raíz cuadrada.

Posted in informática, Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Expansiones naturales completas de los productos de Euler

Posted by Albert Zotkin en septiembre 11, 2016

Hola amigos de Tardígrados. Siguiendo esta secuencia matemática, hoy vamos a ver cómo expresar un Producto de Euler, de tal forma que el índice del producto corra no únicamente sobre todos los números primos, sino sobre los sucesivos números naturales.

El primer caso que vamos a ver es el Producto de Euler asociado a función Zeta de Riemann. Este producto es:

\displaystyle  \prod _{p}(1-p^{-s})^{-1}=\prod _{p}{\Big (}\sum _{n=0}^{\infty }p^{-ns}{\Big )}=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\zeta (s)  (1)
donde el índice del producto corre sobre los sucesivos números primos. Ahora, aprovechando la función característica de los números primos que os presenté en el artículo anterior, vamos a ver cómo es posible hacer que el índice de ese producto infinito (porque sabemos que hay infinitos números primos) corra ahora sobre los sucesivos números naturales. Y la respuesta es simplemente esta:

\displaystyle  \prod_{p}(1-p^{-s})^{-1}=\prod_{n=1}^{\infty}(1-\chi _{{{\mathbb  {P}}}}(n)n^{-s})^{-1}=\zeta (s)  (2)
donde obviamente χP es la función característica de los números primos. Una forma inédita de expresar la función zeta de Riemann, parece, y descubierta por mi :P.Vemos también, que puesto que sabemos usar la función característica de los números compuestos (los números no primos), es posible definir una nueva función zeta relacionada con ellos, así:

\displaystyle  \zeta_{NP} (s)=\prod_{n=2}^{\infty}(1-\chi _{{{\mathbb  {NP}}}}(n)n^{-s})^{-1}  (3)
donde es más que obvio que la función caracteristica χNP es la de los números no primos. Y llegamos a la conclusión de que la función zeta de Riemann y esta ζNP están relacionadas por medio de algún tipo propiedad de complementariedad, que todavía no vislumbro. Esta peculiar función zeta χNP posee un polo en n = 1, por eso el índice del producto empieza a correr desde n = 2. Y lo primero que advertimos en la evaluación de dicha función es el notable y absolutamente increible resultado siguiente:

\displaystyle  \zeta_{NP} (2)= \frac{2}{\zeta(2)}= \frac{12}{\pi^2}  (4)

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , | Leave a Comment »

Conexión entre la Conjetura de Kepler y los números primos através de la Constante tridimensional de Hermite

Posted by Albert Zotkin en septiembre 10, 2016

Hola amigos de Tardígrados. Hoy os voy a presentar un espectacular hallazgo matemático hecho por mí hoy mismo. Os lo presento sin dilación ya mismo:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\pi(i)-\pi(i-1)}}{i^2}= \frac{\pi}{3\sqrt{2}} (1)
donde π(x) es la función contador de números primos, no confundir con el número irracional trascendente π, el cual aparece en el lado derecho de la fórmula. Es decir, esa función contador nos dice cuántos número primos hay desde 0 hasta el número real x. La identidad que he hallado es simplemente la Constante de Hermite en tres dimensiones, o al menos se le aproxima mucho, pues esa fórmula la he comprobado hasta el término i = 1000000. Parece converger rápidamente hacia ese limite.

Respecto a la función contador de números primos expresada como diferencia:

\displaystyle \chi _{{{\mathbb  {P}}}}(n)=\pi(n)-\pi(n-1)

nos define exactamente una función característica χP(n) de números primos, es decir, una función tal que si n es primo entonces esa función es χP(n) = 1, y en caso contrario es χP(n) = 0.
En cuanto al número

\displaystyle  \frac{\pi}{3\sqrt{2}} = 0.740480489693061041169313495\dots

que es la llamada Constante de Hermite en tres dimensiones, es simplemente, la máxima densidad que se puede alcanzar empaquetando esferas tridimensionales, tal como se explica en la Conjetura de Kepler.

De igual forma que hemos definido una función característica de los número primos, también podemos definir una para los números no primos, es decir, para los números compuestos, así:

\displaystyle \chi _{{{\mathbb  {NP}}}}(n)=1-\pi(n)-\pi(n-1)

La función caracteristica χP(n) define una sucesión de ceros y unos, por lo que podemos considerar que representa a un número real expresado en sistema de numeración de base 2. Si la coma de ese número decimal la ponemos entre el primer digito a la izquierda y el siguiente tendremos en dicha base 2 el número:

\displaystyle \rho' =0.011010100010100010100010000\ldots _{2}

el cual, en base 10, se expresaría así:

\displaystyle \rho' =0.414682509851111660248109622\ldots

A este número real, el cual es fácil demostrar que es un número irracional, se le llama Constante Prima, y puede ser definida asi:

\displaystyle \rho' =\sum _{{p}}{\frac  {1}{2^{p}}}=\sum _{{n=1}}^{\infty }{\frac  {\chi _{{{\mathbb  {P}}}}(n)}{2^{n}}}

Podemos hacer lo mismo con los números compuestos y obtener la constante de los números compuestos asi:

\displaystyle \rho =\sum _{{n=1}}^{\infty }{\frac  {\chi _{{{\mathbb  {NP}}}}(n)}{2^{n}}} =0.085317490148888339751890377845692291634\ldots

Es fácil ver que \rho +\rho'=1/2. Pero, toda esta presentación de estas dos funciones características complementarias viene porque, al igual que hice al principio presentando la identidad (1), ahora también puedo hacer lo mismo, pero con la función caracteristica de los no primos, y obtenemos:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {NP}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{(-1)^{1-\pi(i)-\pi(i-1)}}{i^2}=-\frac{\pi}{3\sqrt{2}} (2)
Intentemos ahora simplificar un poco las identidades (1) y (2). Fijémonos que podemos expresar

\displaystyle (-1)^{\chi _{{{\mathbb  {P}}}}(i)}= 1- 2 \chi _{{{\mathbb  {P}}}}(i) (3)
por lo que (1) puede ser escrita así:

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {P}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{1- 2 \chi _{{{\mathbb  {P}}}}(i)}{i^2}=
\displaystyle =\sum_{i=1}^\infty \cfrac{1}{i^2}- 2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} \\ \\ \\  \sum_{i=1}^\infty \cfrac{1}{i^2} =\zeta(2)=\frac{\pi^2}{6} \\ \\ \\  2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} = 2 \sum_{i=1}^\infty \cfrac{i\chi _{{{\mathbb  {P}}}}(i)}{i^3}=2 \sum_p \cfrac {p}{\pi(p)^3}
Por lo que, si la conjetura es cierta, tendremos que el siguiente sumatorio, que corre a lo largo de los infinitos números primos, está bastante relacionado con el número π:

\displaystyle \sum_p \cfrac {p}{\pi(p)^3} = \frac{\pi ^2-\pi \sqrt{2}}{12} (4)
donde, obviamente, π(p) es la función contador del número primo p, es decir, el orden que ocupa ese número primo en la sucesión de números primos.

Desafortunadamente la conjetura es falsa, ya que como demuestro en esta pregunta en math.stackexchange,

\displaystyle \sum_{i=1}^\infty \cfrac{(-1)^{\chi _{{{\mathbb  {P}}}}(i)}}{i^2}= \sum_{i=1}^\infty \cfrac{1- 2 \chi _{{{\mathbb  {P}}}}(i)}{i^2} = \sum_{i=1}^\infty \cfrac{1}{i^2}- 2 \sum_{i=1}^\infty \cfrac{\chi _{{{\mathbb  {P}}}}(i)}{i^2} = \\ \\ =\zeta(2)-2 \sum_p \cfrac{1}{p^2} = \zeta(2)-2 P(2)= \\ \\ \\ = 0.7404392267660954394593\ldots
donde P(2) es la función zeta prima de 2. Porque,

\displaystyle \frac{\pi}{3\sqrt{2}}\neq \zeta(2)-2 P(2)

y efectivamente,

\displaystyle \frac{\pi ^2 -\pi \sqrt{2}}{12}<P(2)

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , | Leave a Comment »

El sueño del sofomoro: Las Series Mirabili de Johann Bernoulli

Posted by Albert Zotkin en agosto 20, 2016

EL matemático Johann Bernoulli fue un genio, autor de fascinantes descubrimientos matemáticos. Cuando en 1697 empezaba a trabajar sobre algunas integrales, halló lo que después él mismo llamó las “Series Mirabili“:

\displaystyle \int_0^1 x^x \, dx = 1-\frac{1}{2^2}+\frac{1}{3^3}-\frac{1}{4^4}+\frac{1}{5^5}-\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{(k+1)^{k+1}} \\ \\  \int_0^1 x^{-x} \, dx = 1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+\frac{1}{5^5}+\dots = \sum _{k=0}^{\infty } \frac{1}{(k+1)^{k+1}}\\ \\  \int_0^1 x^{x^2} \, dx = 1-\frac{1}{3^2}+\frac{1}{5^3}-\frac{1}{7^4}+\frac{1}{9^5}+\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{(2k+1)^{k+1}} \\ \\  \int_0^1 x^{\sqrt{x}} \, dx = 1-\left(\frac{2}{3}\right)^2+\left(\frac{2}{4}\right)^3-\left(\frac{2}{5}\right)^4+\left(\frac{2}{6}\right)^5-\dots = \sum _{k=0}^{\infty } \frac{(-1)^k}{\left(\frac{k}{2}+1\right)^{k+1}}

Es fácil ver (aunque no sé si demostrar también) que estas series Mirabili son casos particulares de esta otra, vislumbrada por mí 😛

\displaystyle  \int_0^1 x^{(sx)^r} \, dx = 1-\frac{s}{(r+1)^2}+\frac{s^2}{(2r+1)^3}-\dots = \sum _{k=0}^{\infty } \frac{(-s)^k}{(rk+1)^{k+1}}

para todo número real r, y para todo número real s. Igual que en el sueño del sofomoro, se puede demostrar, en general, esta última identidad. Sólo basta expresar

\displaystyle x^{(sx)^r} = \exp(s x^r \log x )

Saludos

REFERENCIAS:
Paul J. Nahin, Inside Interesting Integrals, Springer 2014, ISBN 978-1493912766.
A253300, A253299, A073009, A083648
William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, page 46-51.
Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988) page 146.

Posted in Matemáticas | Etiquetado: , , , , | Leave a Comment »

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m₁ y m₂, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r₁ y r₂, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0).
2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m₁, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a₁₂ y en a₂₁. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Neutrinos superlumínicos: desintegración de un pión

Posted by Albert Zotkin en junio 12, 2016

Hola amigos de Tardígrados. Hoy vamos a ver cómo se desintegra un pión (pi mesón). En concreto veremos el modo principal en que decae un pión con carga eléctrica positiva. Los pi mesones con carga tienen una masa de 139.6 MeV/c², y una vida media de 2.6 × 10⁻⁸ s. Se desintegran debido a la interacción débil. El modo de desintegración más común es una desintegración leptónica hacia un muón y un muón neutrino, la cual ocurre el 99% de las veces:

91676

\displaystyle  \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \\  \pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}  (1)
Un pión π⁺ está constituido por un par de quarks, en concreto, un quark up y un quark anti-down, y el modo de desintegración principal es como muestra el siguiente diagrama:

pion

Este pi mesón decae en reposo, por lo tanto, las leyes de conservación serán estas:

\displaystyle  E_\pi = E_\mu + E_{\nu_\mu} \\ \\  0 = p_\mu + p_{\nu_\mu}
Pero, en el capítulo anterior vimos cómo los neutrinos no pueden estar en reposo auque sean producto de la desintegración de partículas que estaban en reposo. Para este cálculo teórico usaré la relación de dispersión neutrínica descubierta por mi en el capítulo anterior: Así, tendremos:

\displaystyle  E_\pi = m_\pi c^2 \;\;\,  \\ \\  p_\pi = 0\;\;\, \small \text{porque} \;\pi^+\; \text{est\'a en reposo} \\ \\  E_\mu^2 = p_\mu^2c^2+ m_\mu^2 c^4 \\ \\  p_\mu = m_\mu c \sinh (\tfrac{v_\mu}{c}) \\ \\  E_{\nu_\mu}^2 = p_{\nu_\mu}^2c^2- m_{\nu_\mu}^2 c^4 \\ \\  p_{\nu_\mu} = m_{\nu_\mu} c \cosh(\tfrac{v}{c})
Observamos también que si el momento del neutrino no es cero, entonces tampoco debe ser cero el momento del muón. En concreto, ese momento debe ser exactamente opuesto e igual en magnitud al del neutrino. Escalarmente serían:

\displaystyle p_\mu = p_{\nu_\mu} \\ \\  m_\mu c \sinh (\tfrac{v_\mu}{c}) = m_{\nu_\mu} c \cosh(\tfrac{v}{c}) \\ \\  \frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}} = \cosh(\tfrac{v}{c})  \\ \\  \frac{v}{c} = \rm{arcosh}\left(\frac{m_\mu \sinh (\tfrac{v_\mu}{c})}{m_{\nu_\mu}}\right)

camara-burbujas

Si suponemos que el muón se mueve con una velocidad sublumínica, por ejemplo, con una β = 1/20, obtendremos una β para el neutrino muónico de:

\displaystyle  m_\mu = 105.6583715 \; \rm{Me/c^2}  \\ \\  m_{\nu_\mu}= 0.17   \; \rm{Me/c^2}  \\ \\   \beta=\frac{v}{c} = \rm{arcosh}\left(\frac{105.6583715 \sinh (\tfrac{1}{20})}{0.17}\right)   \\ \\  \beta= 4.12974
Es decir, ese neutrino muónico superaría en 4 veces la velocidad de la luz en el vacío. Para un rango de velocidades muónicas que van desde β = 0 hasta β = 1, tendríamos la siguiente gráfica del intervalo de velocidades para el neutrino:

hyperbolas

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué el cuadrado de la masa de un neutrino es un valor negativo?

Posted by Albert Zotkin en junio 10, 2016

Desde hace muchos años se sabe que el cuadrado de las masas (medidas) de los neutrinos es siempre un valor negativos, lo que resulta extraño, ya que matemáticamente tendríamos una masa imaginaria. Para reconciliar este aparente sinsentido con la razón, se propuso ya desde hace tiempo que los neutrinos debían ser fermiones que se mueven a velocidades superluminicas.

lepto-quarks

El cuadrado de la masa de un neutrino se midió sistemáticamente en experimentos donde tenia lugar la desintegración del Tritio, que produce emisiones beta de baja energía. Esas mediciones de la masa de los neutrinos se realizaba ajustando la forma del espectro de emisión las partículas beta cerca de sus puntos extremos. En muchos de esos experimentos se encontró que los cuadrados de esas masas daban significativos e inequívocos valores negativos. La mayoría de esos datos están registrados en ”Review of Particle Physics, 2000” (Review of Particles Physics, Euro. Phys. Jour. C15, 350-353 (2000).). Dos de esos experimentos en 1999 dieron en sus medias ponderadas el siguiente valor:

\displaystyle    m^2(\nu_e) = -2.5 \pm 3.3 \; eV^2   (1)
Sin embargo, otras nueve medidas de experimentos realizados entre 1991-1995 no se usan como medias. Por ejemplo, el valor de:

\displaystyle    m^2(\nu_e) = -130 \pm 20 \; eV^2   (2)
con un 95% de nivel de confianza se midió en el LLNL en 1995. El valor negativo del cuadrado de las masas de los neutrinos significa que la relación de dispersión de la energía total y el momento es simplemente:

\displaystyle    E^2 - p^2 c^2 = m^2(\nu_e)c^4 \; \textless\; 0     (3)
Desde la teoría de la Relatividad Especial todo esto conduce a pensar que las velocidades de esos neutrinos es superior a c. Por ejemplo, la energía total es desde el punto de vista de esa teoría:

\displaystyle    E = mc^2 \gamma = \cfrac{mc^2}{\sqrt{1-\tfrac{v^2}{c^2}}}     (4)
implicaría que esa energía es un número complejo puro. Y lo mismo ocurriría con su momento lineal:

\displaystyle    p = \cfrac{mv}{\sqrt{1-\tfrac{v^2}{c^2}}}     (5)
y eso implicar, a su vez, que ha de ser:

\displaystyle    E^2 \;\textless\; p^2 c^2      (6)
Todo este sinsentido ocurre cuando usamos los formalismos de la Relatividad Especial para describir la energía y el momento lineal de los neutrinos. Veamos ahora, qué ocurre cuando usamos los formalismos de la Relatividad Galileana Completa:

\displaystyle  E = mc^2 \cosh \tfrac{v}{c}   (7)
\displaystyle  p = mc \sinh \tfrac{v}{c}   (8)
Observamos, con agrado, que con estos formalismos matemáticos de la Relatividad Galileana Completa, no obtenemos absurdos como energías y momentos que sean magnitudes imaginarias, sino que son números reales, y con la única condición de que la inecuación (6) se cumple para los neutrinos. Por lo tanto los neutrinos podrían ser taquiones, una clase de partículas, que viajarían a velocidades superluminicas. La relación de dispersión entre energía y momento para los fermiones (tardiones) y para los taquiones, se puede representar gráficamente de forma paramétrica así:

e-p

Vemos que son hipérbolas, donde, obviamente, el parámetro es la β = v/c, y las lineas discontinuas, son las asíntotas, que representa la velocidad de la luz, c (es decir para β = 1) . La ecuación de una hipérbola es:

\displaystyle  \frac{x^2}{a}-\frac{y^2}{b}=1   (9)
y en forma paramétrica con coseno y seno hiperbólicos es:

\displaystyle  \cosh^2 u -\sinh^2 u =1   (10)
Esto significa que, para los fermiones, la relación de dispersión entre energía y momento es:

\displaystyle  \cosh^2 \left(\frac{v}{c}\right) -\sinh^2 \left(\frac{v}{c}\right) =1 \\ \\ \\   \cfrac{E}{mc^2}= \cosh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \sinh \left(\frac{v}{c}\right)   (11)
Para partículas que sean taquiones, como supuestamente son los neutrinos, la relación de dispersión entre su energía y momento obedece a una transformación de inversión como la siguiente:

\displaystyle  \cfrac{E}{mc^2}= \sinh \left(\frac{v}{c}\right) \\ \\ \\   \cfrac{p}{mc}= \cosh \left(\frac{v}{c}\right)   (12)
Es decir, la gráfica es una hipérbola orientaba norte-sur, como la representada en la figura anterior. Por lo tanto, para los neutrinos tenemos la relación:

\displaystyle  E^2- p^2 c^2 = - m^2 c^4   (13)
La conclusión de todo esto es clara: si aplicamos a los neutrinos las mismas leyes y relaciones entre energía y momento que aplicamos a los fermiones, obtenemos masas imaginarias o velocidades superluminicas. Es decir, los formalismos fermiónicos aplicados a neutrinos nos ofrecen valores negativos para los cuadrados de sus masas. Pero si aplicamos una relación de dispersión energía-momento distinta, no obtenemos esos valores imaginarios sino valores reales. Los neutrinos, no tienen por que viajar a velocidades superluminicas, simplemente obedecen la relación E²- p²c² = – m²c⁴. Por el contrario, los leptones, que tampoco tienen por que viajar a velocidades superlumínicas, poseen esta otra relación de dispersión: E²- p²c² = m²c⁴.
Analicemos brevemente una desintegracion de Michel para un muón:
michel-decay
En dicha desintegración, el muón decae hacia un electrón, más un antineutrino electrónico y un muón neutrino. Si desglosamos la dispersión leptónica, obtenemos:

\displaystyle  E_\mu^2- p_\mu^2 c^2 =  m_\mu^2 c^4 \\ \\  E_e^2- p_e^2 c^2 =  m_e^2 c^4 \\ \\   p_{\bar{\nu_e}}^2 c^2 - E_{\bar{\nu_e}}^2  =  m_{\bar{\nu_e}}^2 c^4 \\ \\   p_{\nu_\mu}^2 c^2 - E_{\nu_\mu}^2  =  m_{\nu_\mu}^2 c^4
esas relaciones ya no nos ofrecen ni velocidades superlumínicas, ni masas imaginarias, ni valores negativos de cuadrados de masas, porque las relaciones de dispersión para los neutrinos que usamos aquí son distintas a las que propone la Relatividad Especial. Si suponemos que esa desintegración del muón se realizó en reposo, entonces las leyes de conservación son:

\displaystyle  E_\mu = E_e+E_{\bar{\nu_e}}+E_{\nu_\mu} \\ \\   0 = p_e+p_{\bar{\nu_e}}+p_{\nu_\mu}     (14)

Donde Eμ = mμc², y pμ = 0, porque el muón se supone en reposo.

Si observamos detenidamente la relación de dispersión entre energía y momento para los neutrinos aquí propuesta, nos daremos cuenta de que si suponemos que un neutrino está en reposo entonces su momento lineal no sería cero, sino:

\displaystyle  p = mc\cosh \left(\frac{v}{c}\right) \\ \\   = mc\cosh 0 = mc   (15)
Esto implica ni más ni menos que un neutrino en reposo es simplemente una partícula que viaja a la velocidad de la luz, c. ¿Contradicción?. ¿Cómo es posible que una partícula esté moviéndose a una velocidad c si hemos dicho que está en reposo?. En realidad, le pasa lo mismo que a los fotones, lo que ocurre es que los neutrinos sí poseen masa y aún así se mueven a velocidad c. Este fenómeno no puede ser descrito con los formalismos de la Relatividad Especial.

Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Es posible comprimir 4 terabytes de datos en tan sólo 16 bytes?

Posted by Albert Zotkin en mayo 12, 2016

La respuesta a la pregunta del título es sí. Hola amigos de Tardígrados. Hoy voy a hablar de un método poco estándar de comprimir información binaria sin perdida. Este método es simplemente una curiosidad que se me ocurrió el otro día. Lo llamaré Compresión Estocástica de Datos Binarios, CEDaBit.

Supongamos que tenemos el siguiente archivo jpg de la Mona Lisa:

Mona_Lisa

que es una imagen de 560 pixels de ancho por 864 de alto. Es decir, sin comprimir, en total tenemos 483.840 pixels, y si cada pixel se puede describir por 3 bytes, tendremos en total una imagen de 1.451.520 bytes, y como cada byte consiste en 8 bits, tendremos una imagen de 11.612.160 bits. Pero esa imagen está codificada y comprimida en un archivo JPG, por lo tanto no son raw data (datos primarios), el tamaño es mucho menor. En dicho archivo existen también datos de cabecera y cola en los que se almacena más información. Si queremos “comprimir” en un CEDaBit todo el archivo JPG, debemos “comprimir” una cadena de 46.474 bytes. ¿Cömo lo haremos?.

Supongamos que queremos comprimir a un CEDaBit de 16 bytes. Para ello, lo primero que tenemos que hacer es calcular un hash de esos datos. Yo usaré un hash muy conocido llamado MD5, y para calcular dicho hash usaré una página online que posea una herramienta de cálculo, por ejemplo esta: Online MD5.

Subo el archivo a dicha página, y me calcula el siguiente hash para dicho archivo: 9E00544CEE3B677CA2E826980D9CF02A. Es decir, me da una cadena de 16 bytes, que es su MD5, es como la huella característica de ese archivo en concreto. Cada archivo de datos binarios posee un hash que casi es único, digo casi porque en realidad conjuntos de datos muy distintos pueden poseer el mismo hash, y a eso se le llama colisión. Pero, es muy probable que para ese archivo de ese tamaño que he usado no existan muchas colisiones de su hash MD5. Existen miles de páginas en internet y aplicaciones que calculan todo tipo de hashes para cadenas de bytes, pero no encontrarás ninguna que haga la tarea inversa. Es decir, calcular una cadena de bytes desde su hash no es trivial. De hecho, existen infinitas cadenas que resultarían de un mismo hash. ¿Cómo podemos saber cual es nuestro archivo al expandir un hash en una determinada cadena de bytes?. Tenemos que saber por otros medios cual es el tamaño del archivo que queremos recuperar. Por ejemplo el archivo jpg de la Mona Lisa de arriba sabemos que posee 46.474 bytes, ni uno más ni uno menos. Por lo tanto, tenemos 371792 bits, es decir, tenemos un número binario de 371792 bits. Así pues para recuperar nuestra Mona Lisa desde su Hash 9E00544CEE3B677CA2E826980D9CF02A, sólo tenemos que ir variando los ceros y los unos de esa cadena de 371792 bits y a cada paso calcular un hash y ver si coincide con el del archivo. ¿Cuántas variaciones de ceros y unos posee una cadena de 371792 bits?. Pues, precisa y exactamente posee tantas variaciones como representa ese mismo número binario. Por ejemplo, el número binario 111, que son 3 bits, representa al número 8, que es 23, y posee exactamente 8 variaciones de ceros y unos, es decir, 000, 001, 010, 011, 100, 101, 110, 111. Por lo tanto, nuestra Mona Lisa posee exactamente 2371792 variaciones de ceros y unos. Un número muy superior al de partículas subatómicas en nuestro universo observable. Supongamos que tenemos un superordenador capaz de calcular un trillón de esas variaciones binarias por segundos y de decidir a cada paso si ha encontrado una solución (coincidencia de hash). Incluso a esa velocidad de cálculo, tendríamos que esperar miles de trillones de veces la edad de nuestro universo (13 mil millones de años) para ver completadas todas las variaciones binarias, y poder afirmar con seguridad que hemos recuperado nuestra Mona Lisa desde su hash. El número 2371792 posee 111.921 dígitos en el sistema decimal, y por muy rápido y potente que sea nuestro super ordenador, la tarea de expandir ese hash en la cadena original de bytes es una tarea imposible. Pero, si nuestro ordenador es un ordenador cuántico de más de 371792 qubits, ese cálculo se podría hacer en unos pocos minutos, con lo cual, posiblemente, mediante esa computación cuántica, obtendríamos una carpeta de colisiones, con una serie de archivos de igual tamaño y todos con el mismo hash.

Posted in curiosidades y analogías, informática, Matemáticas, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , , | Leave a Comment »

Los laberintos entéricos de los números grandes

Posted by Albert Zotkin en marzo 17, 2016

Todos sabemos, o deberíamos saber, que la factorización de un número entero es simplemente expresar dicho número mediante el producto de todos los números primos que sean sus divisores, y cada primo elevado a su correspondiente exponente si lo tuviere. Esa tarea de factorización no resulta fácil. Por ejemplo, usando supercomputadoras, es posible factorizar un entero de 200 dígitos decimales en aproximadamente 1 año y medio. Esa inmensa dificultad es la base de muchos algoritmos criptográficos, como el RSA. El mejor algoritmo para factorizar es la Criba General del Cuerpo de Números, pero no reduce la dificultad. Sólo mediante una computadora cuántica sería posible reducir drásticamente los tiempos de cálculos.

Hoy vamos a ver cómo cada uno de los números enteros puede ser por sí mismo un intrincado laberinto de pasillos por los que podríamos perdernos fácilmente si no conocemos las reglas con las que están hechos. Fijémonos en el plano de la siguiente galería de pasillos:
corridor1

¿Qué representa?: pues representa a un número entero muy grande. Tal número posee nada menos que 3700544 dígitos en el sistema de numeración decimal, y lo podemos escribir mediante factores primos así:

\displaystyle 2^2 \times 5^{3^2 \times 5 \times 7^{2\times 3}} \times 11^{2\times 5^2}

Existe pues una secuencia principal de números primos que representamos como el pasillo principal de esa galería. Para este caso, esa secuencia principal es 2 ×5×11. Después, cada vez que uno de esos números primeros está elevado a un número entero, se genera una nueva secuencia de números primos, y eso se evidencia por la generación de un pasillo secundario, siempre en el lado derecho según el sentido creciente de la secuencia de primos de la que es exponente. Para mayor claridad, veamos el plano anterior con las secuencias de números primos principal y secundarias:

corridor2

Si aparecemos en el interior de un laberinto entérico de esta clase, y buscamos la salida (que también es la única entrada), lo primero que debemos hacer es avanzar hacia el final del pasillo dejando a la izquierda los pasillos secundarios que encontremos. Y cuando llegamos al final de ese pasillo debemos girar la izquierda para entrar en el pasillo que deberá ser uno inmediato inferior al que estábamos. Siempre procederemos avanzando según ese criterio, hasta llegar a la entrada del laberinto.

Consideremos ahora sólo una clase de números enteros, aquellos que son el producto de números primos sin repetición, es decir, que no posean exponentes. Por ejemplo.

\displaystyle 29\times 23\times 19\times 17\times 13\times 11 = 30808063

El laberinto entérico para esa clase de números es sencillo, ya que sólo existiría el pasillo principal. Es fácil, para esta clase de números expresarlos mediante codificación binaria. Veamos, si la secuencia principal está compactada totalmente con todos los números primos, la codificación binaria sería una sucesión infinita de 1’s. Así, el número del ejemplo anterior podrá ser codificado binariamente asi:

\displaystyle C(29\times 23\times 19\times 17\times 13\times 11) = 1111110000

Si al número anterior le substraemos, por ejemplo el divisor 17, tendremos como resultado este otro número

\displaystyle 29\times 23\times 19\times  13\times 11 = 1812239

y su codificación binaria sería:

\displaystyle C(29\times 23\times 19\times  13\times 11) = 1110110000

Es decir, los unos y los ceros de esa codificación binaria son los exponentes del producto de primos, en la secuencia principal:

\displaystyle 29^1\times 23^1\times 19^1\times 17^0 \times 13^1\times 11^1 \times 7^0  \times 5^0 \times 3^0 \times 2^0= 1812239

Así, hemos descubierto una función tal que a cada número entero del pasillo principal se le asigna un número binario que codifica a todos sus divisores primos.
Si estudiamos seriamente esta nueva función, que no podrás encontrar en ningún libro de matemáticas, ni en ninguna otra parte, porque es descubrimiento mio, llegamos a misteriosas relaciones que nos dan claves para acelerar los cálculos de los algoritmos de factorización. A esta función la llamaré Función Entérica Principal (FEP). Es decir, la FEP de 1812239 es 1110110000.

\displaystyle \text{FEP}(1812239)=1110110000

Igualmente, si pretendes ampliar el tema de los laberintos entéricos aquí propuestos, he de decir que no podrás encontrar mucho más porque es una invención mía, y por lo tanto lo mucho o lo poco que puedas encontrar es lo que yo haya escrito (o pueda escribir en el futuro) en este blog.

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , | Leave a Comment »

La hipótesis blanda de Riemann

Posted by Albert Zotkin en febrero 3, 2016

Anoche mientras me entretenía con algunas sumas parciales de la función zeta de Riemann, me di cuenta de algo muy curioso, cuyo enunciado voy escribir seguidamente a modo de conjetura (hipótesis): Si para la suma parcial

\displaystyle  \zeta_N= \sum_{n=1}^N \;\frac{1}{n^s}
el número complejo siguiente es una de sus raíces (ceros), z1 = σ + it, entonces este otro número complejo, z2, escrito en función del primero, posee la misma parte real:

\displaystyle  z_2  = - \cfrac{\log(\zeta_{N-1}(z_1))}{\log(N)}
Mi conjetura es que sólo si z1 es un cero de ζN, entonces

\displaystyle      \text{Re}(z_2) =  \text{Re}(z_1)=\sigma
A esta conjetura la llamo la Hipótesis blanda Riemann, y la vamos a ver en acción con dos sencillos ejemplos numéricos: Sea la siguiente ecuación:

\displaystyle      1+2^{-x}+3^{-x}=0

y uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle  z_1 =0.4543970081950240272783427420109442288880- \\       3.5981714939947587422049363529208471165604i

. Por lo tanto el número z2 será:

\displaystyle  z_2 = -\cfrac{\log(-1-2^{z_1})}{\log 3}
\displaystyle  z_2 = 0.4543970081950240272783427420109442288880- \\  2.1210302407654957970993444877464279628993i

Para la siguiente ecuación:

\displaystyle      1+2^{-x}+3^{-x}+4^{-x}=0

sabemos que uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle  z_1 =0.502684148750165679490952980864893319283 -\\  20.7799493688306204126178629816730434295i

. Por lo tanto el número z2 será:

\displaystyle  z_2 = -\cfrac{\log(-1-2^{z_1}-3^{z_1})}{\log 4}
\displaystyle  z_2 = 0.5026841487501656794909529808648933193 + \\  1.8818513403053486355205517469102906214

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: