TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘distribución normal’

STOCHASHES: ¿Qué es un hash estocástico, y para qué sirve?

Posted by Albert Zotkin on June 1, 2020

Hola amigos de Tardígrados. Hoy me voy a inventar un nuevo concepto de hash, que podremos aplicar en el campo de la criptografía, y en el de las criptomonedas. Se trata del concepto de hash estocástico. En el mundo de las criptodivisas, estamos acostumbrados a trabajar como todo tipo de hashes, y demás cadenas y scripts de todo tipo. Pero. creo que lo que voy a definir a continuación no existe, como tal, en el mundo de la criptografía.
Podemos definir un hash estocástico como una función tal que tiene como input una cadena constante de N bytes, y cada vez que la aplicamos, genera una cadena casi-aleatoria de N bits. Decímos, casi-aleatoria, porque en realidad lo que cada byte del input de entrada define es una probabilidad. Al ser N bytes de entrada existirán N bits de salida, y cada uno de esos bits es generado de acuerdo a la probabilidad definida por su correspondiente byte de entrada. Eso significa, que cada vez que aplicamos la función, obtenemos una cadena de N bits distinta (aunque podría darse el improbable caso de que alguna cadena se repitiera), y estadisticamente se podría comprobar cómo para cualquier muestra, se cumple siempre la distribución definida en las probabilidades codificadas en los bytes de entrada. O sea, un hash estocástico de N bytes genera hashes estándar de N bits.

Pongamos un ejemplo: Definamos una función stochash256 que tomará 256 bytes como input, y “escupirá”, 256 bits de salida, cada vez que se ejecute. Para la realización de este proyecto, usaré la librería de node.js llamada bitcore-lib, la cual posee bonitas funciones y utilidades varias. Crearé un script en node.js para que podamos ver la idea, y cómo trabaja esa función, que he llamado stochash256.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
			Stochashes
*/
const bitcore = require('bitcore-lib');
const Random = bitcore.crypto.Random;

var stochash = Random.getRandomBuffer(256);
for(var i=0;i<100;i++){
		var hash = stochash256(stochash);
		console.log(hash.toString('hex'));
}

function stochash256(buffer){
	if(buffer.length !== 256) return null;
	var pt  = 0;
	var hash = []
	while(1){
			var byte = buffer.readUInt8(pt);
	 		var repunit = getRepunit(byte);
	 		var rnd = Random.getRandomBuffer(1).readUInt8(0);
	 		hash.push(repunit[rnd]);
	 pt++;
	 if(pt == buffer.length)break;
	}
	 var result = new bitcore.crypto.BN.fromString(hash.join(''),2);
	 return result.toBuffer();
}
function getRepunit(byte){
	
	const two = new bitcore.crypto.BN(2);
	const one = new bitcore.crypto.BN(1);
	var b = new bitcore.crypto.BN(byte);
	var repunit = two.pow(b);
	repunit = repunit.sub(one);
	return repunit.toString(2,256);
	
	
}
La librería bitcore-lib nos ofrece la función const Random = bitcore.crypto.Random, con la cual podemos generar buffers aleatorios de arbitraria longitud. En nuestro caso generamos uno de 256 bytes, para empezar

var stochash = Random.getRandomBuffer(256);
Una vez que tenemos ese buffer de 256 bytes aleatorios, con cada byte definiendo una probabilidad que será aplicada a su correspondiente bit de salida, generamos una muestra de 100 hashes estándar, aplicando la función stochash256 con el mismo buffer constante stochash. En seguida vemos, que uso una función auxiliar llamada getRepunit. ¿qué hace?. Crea un número repunit en base 2 según el valor del byte con el que estamos trabjando. Es decir, esa función getRepunit nos da un numero en base 2 (ceros y unos), que contiene tantos unos seguidos como especifica el valor del byte. rellenamos con ceros a la izquierda para completar hasta 256. Una vez que tenemos nuestro número repunit, solo hay que escoger al azar uno cualquiera de sus ceros y unos, para obtener así nuestro bit casi-aleatorio (estocástico). la idea de usar números repunit en base 2 como recurso para realizar la probabilidad definida en el valor del byte, se me ocurrió ayer mientras echaba una siestecilla de 2 horas 😛
Apliquemos nuestra función stochash256 para obtener una muestra de 100 hashes estándar de 256 bits cada uno, que expresaremos en base hexadecimal:
1. Primero generamos el buffer aleatorio de 256 bytes de entrada stochash. Y después aplicamos 100 veces stochash256, con ese stochash constante:
{
        "stochash": 
"4f92bc84fd5126a6a65f31bf33b5ad112644e7a55f22e134a4ccba1800323  						 fb1b2ac0d9c31c0b8001cd4edfb9447be44e9cf04987d0f5a26936b9463e1					 96ba76b38aa35068a1e960447d1850a20d8a10d9b723b9ba7178551f19988
3bcd41ec6f9c813135d585b173b1047dc98a23f83a84a3ce8fde269ed9f7d
bb2f5fa6a9f8f9395b8a4cb96961d50a752069800eb5ee75435138210d724						 20b751be5480042997f42c2966ffdfa117e68bc746fd98f27665853aff3cd						 081d9a1c2dd702e74982f50255c9afbfefe7e8a6158d1ed75258afd772e03  						 00cba1c8d3c76d7a969e90f7f3a8b61eb3cd649114e346a923ad32fe4b354
9d8f2e15d47d6ef8fed69570",
        "hashes": [
                "1b343045ce7898ea771ad17dcc1f9d23379190083f560403cdc3ea5d0c274cfd",
                "38d63263c67fdabeae5cda15cc121f21a4acf1289f13060bd5f3381745096bdc",
                "69142ae56c72d1a3d29a326d823d18bfa4b1a02ca35b4e4ac7c0290d0d311cff",
                "29b4ba65d4f9ce9cf242fc2dcc10dfe3a409c10cd766ac684fe3791b65076c7d",
                "78c232c0ce7489fd5609dd3d80bd9debff85c28ceba70c8acfe04989348348dc",
                "6a8682614e7280afc648cc1dc23e992d9ca8899d17413e49dd6a783b1500e0f8",
                "fb0833219e74c0bab2da982dc095dfe786a1f129db316c6ac5ead97f4fad783f",
                "7982e2c2b47b48b39a4acf1ec095996fb4a18c288b1a9e7a5fe9790d4d7954be",
                "f9542e21d07fc32b9beb9b76ce1dfbc78c88f52c975b460adee36d5f758d4cdc",
                "d89222e1f67ad26fd6d09db7cc11cfa7838081199f4b1e6a6fe37869192c509f",
                "ec927641c678506fa70ace2dc82cff83b2a18128db3724cacbcbb91d0d0574da",
                "ebbeb263c65ec068a6888c05c7979ffb848cf8809f22246ac9e269cd1d0de4be",
                "19d6bbc1d67ad828b30a413dc2159f639105b0e83f1a5e4259cafd2d410460be",
                "6d9c7ac5d052dba7d68a989de21ecd23b4a1400cfb72ae0acfe9e8431580745d",
                "fb5e7ae196b390fbf212de14c892cc67b590c0288f1f060aceea28491501689f",
                "e99073609e7ad0dff7628831843abfebb7809129d3610e4ad5e1394954206c9d",
                "6d1422e19672c01a86c8df2dc0559feb96a94088df3b2e08cfe6690d7d1554dd",
                "ecf602e3d272ca2eeb4ac82dc8349bbf90048008571f0e4a57eae95d0f055cde",
                "a99e32819e73d8b8a748d73dcc1e5dc3950890259b707e2a47c2fc5d5c8c443f",
                "edc26280b47bc09f2688fb258535dd8392a9800897274e4a5dc2f0ff49806afe",
                "39127a619e5bdaebb3d0f41d8018ddcfa6af8c08db3a66c3cbe370ed1d2be27e",
                "b8d62022d072cb8bc45ad325c1169fe134b4fc2893af3e4247eb615d150864df",
                "69567a6150628aadb61ad80fca0dfda7d5a5e08877758e0bddeacd5d718a7cfe",
                "edd7baf0c23b92fd8a2cd81dc02d1d25c0a9d98817be6e8a49e2f00d548c62fe",
                "39ac72e1e472c2eb7618de3dc087de6f9ce1c1b8bbc17c4a47e3391dd50d488f",
                "bb943ee4d678d29e2fdad82dd01f1da7e599880d1b081c0b4fca790f5c0154fe",
                "699a3a7144761b3e6e48de8dc6399de5d6acc029931d2e5ac3c2e90b0db56cfe",
                "5a903260d4fac84af740f219c01f1de5b4b5c0016f16dec2c9e6e84f5509ccde",
                "2f823ac38670d1cf0642940dcb591ca5b60d81a8ff5d2e3b4fc2691d0b016c9a",
                "580622e15673d37e339ce4bcc0341d6b8ca1a0091b0f4e62c08a044c2d356cba",
                "399732e31672da9ae748f83dc011dd659581c12893443e2a4feae94916356e5b",
                "7c96fa40d678ca5b63dac7358e1cbda790a0c1089b171e9bc5caed7d1d05629a",
                "2b9678e1f67ad8defec8982988959d4fa9e1b8289b5a5e4a5bca391c678d60de",
                "385e3b66de7ad02f2658c125c0523d239ca5c129db8c1e41dfa2e1cd6c04acbd",
                "ef9738e74077c9ee965a8885c895dda394a08518c3260c7adff3e94d1681d85d",
                "789622a0543adc0cf6cac3b8c29d9d27bca9e4083f6f170b47faf97d45246e1e",
                "28163ac5027bda3e1648dc34d891bd7b9e81a808bb53064acfe6397957847cde",
                "d91e62c1d6d39064b282c96340188d8f848c91285f1e0e0a5de2ecdd25814c9c",
                "29dc76c21676d0583750c016ca2cbda5d388e908936ac65acfe9785d0d21e81e",
                "29b27a60c67e92ff3e52c51ec01d9d87ada1812cf7557e4bdbcb71090f916cde",
                "7e843aa18072d0decb0acb19c28e1dbff68dc23053262e5acbc2f95d1555709e",
                "3e0620831672c0ae8e42de05c2961e83d4819029df7746cac9eaf94b5fc57a9f",
                "3f9432c144b7daeffa48d82542149daf878ca080df5f1e4acfa23949661168ac",
                "2c8422f0d67ec0acdf48d02fc4f29ba3dc8488295f4e2e0ac9c2694317056cde",
                "8f323f61c672c0b6be68c044c4119f27d18dd00c97364c4ad9ee294b4d11629e",
                "58d63aa14e72c0a8ae50f83dca3d1b2fd381a1688f424e1aceea3de74723c499",
                "f9572ee0de7ad0edee62db2dcb141b6f84bda0889b124ecadfe3d8ff07a17c99",
                "7dd67ae1c6b896cfc64a9034c19d9dc79425d108db380e5b41ca797d050cc8df",
                "98fa2241867a0a3e2f4ab635c0144dcb8181810891507e4ac8e25d4d1d4d2cd5",
                "7814b6e5c6509299d7125b0dc02d3d579f899008db37064bc3c76959472652fe",
                "791836e3567eda6a8688dd68c0113de39e80882903121e5a4fe2d9595f27649a",
                "79d023a6ce77d88ce740e20dc817defba089842c9b740e0acdea7d6f3510619e",
                "78da32a2de70d29c265a9a7dca15dde5db88a519d7350f424bc8291c07216c7e",
                "382236e0447bc00cea98f805d4159ee7b08991a0b3d94a1a4ffab90d5d17469f",
                "ac987bc16670d2eca2884a25c33eff8b97240128fb6f0e9b57c21f1d450468dd",
                "f91263014c72c2a38652de3d821c9f6f8089e90147070e1a45cbb90fd50102df",
                "39c61aa0d21281387682d1adc81d7f25e3a581a8c17a4e1acde2694d0d04629a",
                "e9d622e3c67458bdc298d90ce0913de39e85e808df4e0e237be3793d260548ad",
                "6d9262e09673ca492a185919c5989d0df62dc0a94f1bae4b4fe039791f05609c",
                "49866260e47cc028ab51ce0bc2189fa19c8de1b997eb4e4acbc67859450d401b",
                "399e2ee6dc7b9820e742c811d9359da9b49508081f9f2e4a4fe3e967d7217cbc",
                "5db773e5de7b99ea8321dc1cc21fddabe48c942093c72e0a5de3b84d75016cbe",
                "79f2b220d27a407aa6b8da0cc035dd75bca49b085f5a4e8adfebc84914897cde",
                "1d0632679672c04e2c01c83dd91cd90586b0802cd6680e2ac6c0a12b070164fc",
                "7987326544f0d14d9218170dc0101daf920bb1259357c44a4be0195915096d5d",
                "191e7061e4fd90ac7b18da2dc4159ca1a084b0b843579e4ac9c0690d1c03089f",
                "e99232e4c47cd8ecc648ca04cc059d2385a909195717764ad9ea7c5b0b0165ff",
                "bc9c92c1467ad00fea1a8804848c9fe79d29c8281b3aa608dd8b780f6d3c6c9e",
                "7cba70c1d673d08f6e48c13482309be399a5c90d9f0e8e4b4f6b698d1d25609c",
                "6d123aa3d6f9c0ab060ad5a3c69c99e5a4808038533a641bd3ee617904014cde",
                "991e30e18679d00e645afa95d714fbaf960989807b560e4bcbf0795d0715681f",
                "798623c20e72dcb0bf42da1dc89c9fc39ea58019937f0e4b4fe3b81d5d016a9e",
                "9e162a4100f8c82e56089b7dc81e9fefad359689d37f064bcfe9294445017c5e",
                "49c630c2c270d2db6e08d929c65fdfebbda0900c0b5f8e434fc2e81d160061dd",
                "883637e1063fda18ea02d61de019df8f9f8f99a89f04ce025fc1213e0c2d68b8",
                "c9163ac1d67bc2bba75288bdc6139f39900984b95f5aae43dfea294f3d1d7c8d",
                "28dc3ae1d673c0673a5ad83dc0a11f2794a589a87f38cc0adfc261099f03749d",
                "089c6af1867ac85bef009c0fc0019fe39b84c4e9e3324e4b4f4a785d412de09f",
                "19de32e1107fc83512489315ce1ddd879081c0008f135e8a8fda617b5d85e8de",
                "e8902a83c673d00ae6085035828e3ba39e81f008335b444ac7e2b95d922964dd",
                "98bc6ae1527288b8c248d83bc21359cf80098c04975f3e0ac7ffe84e95036edc",
                "2d5216f55672d8fec20adaacc61fbc3185a0a0189b557c0addc27f3b778de29d",
                "588f3660d472c82e7a88d23dc841dd87b68580a83f0b5e4b43a9ed1f441d60df",
                "399032f3de72c8dbe702882dc890ddef99a9a82c97388e0bcb68f95f5d0f69d1",
                "79537ae1467adb9aae9ad4b5c21d1f7f9589c00c93222e4a57e2fb7975cde0de",
                "65de0ae18233c0e1aac9d20dcc151def9480a048d3124e4acfcb295d55c47ebe",
                "5d36ba255e72d08bd658ec0dc01c1dff34a9c108137b2e4a4bea7919040d54fe",
                "48c062a4d6b2c2be8512a00f881f9fe58724a0089b3a0ecacfcbb91f050d3edd",
                "691712c1dcba01ab034c4e3d865cdf859b8991b89f3b2e4ac9e2282f4d0d7cbe",
                "2dd63082c672d186ee40d829c41abf85d921d128bf071ec9c9c968015d217edf",
                "799232e1f47fc05db6c8d63dca149de185e5c1a9475deec05be9b899c505fc9c",
                "0bb036a41e7bd83af60a98bdc094c9a5a72dc02c5b3b0b4a0fe6790b4391681f",
                "7b1402e5c27b88ae7b0ad84cc71b5d9786a48000933a1e624fc8285f5d8776b4",
                "b93612c11276d89f9418583cc4599d27dc818128bb32ee4bcda2211f578178dc",
                "39166a41467cd2aeffe8d93dc00e5fefa9888118935a6614cdc8e04d54a94898",
                "387130e1d67b90e72208de2cc03fbfcf86bdc02c53530e085fe0391b15305e1f",
                "3d1632c154729abf83c8d82d881b1dc78ea5a0091f1e960ac7ec611e151564dd",
                "4f467600c21bc2ce890a5c2dc21d5fafa5a1c1a99b5a66db5bea79df45206cdd",
                "5c963a62c470d8ce4e00d62dc61e0f2e8635082853364e4a5fe2780f4565e4fd",
                "599632e1d67298bf4a1adc1082959d2da6ad802dd75a460a4deadd0c5516409f"
        ]
}

se puede comprobar fácilmente como la muestra de hashes cae toda dentro de una distribución normal, según las probabilidades definidas en cada byte de stochash. Los stochashes nos servirán para optimizar la velocidad de resolución de bloques en minería de bitcoins u otras criptodivisas. Pero, ese es otro capítulo.

Saludos estocásticos a todos.

Posted in Bitcoin, criptografía, Criptomonedas | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué existen sólo tres generaciones de leptones y quarks?

Posted by Albert Zotkin on August 7, 2015

Hola amigos de Tardígrados. Hoy voy a divagar sobre una cuestión aún no resuelta en física de partículas. Los experimentos (observación) nos dicen que sólo existen tres generaciones de quarks y leptones. ¿Por qué sólo tres?. Los quarks de la primera generación son el u (up) y el d (down), y el electrón (e), junto con el neutrino νe (electrón-neutrino) son los leptones de esta primera generación. Los quarks de la segunda generación son el c (charm) y el s (strange), mientras que los leptones de esta generación son el μ y su correspondiente neutrino νμ (muón-neutrino). Y por último, tenemos los quarks de la tercera generación el t (top) y b (bottom), y los leptones τ (tau-leptón) y su correspondiente neutrino ντ. Las masas de las partículas en una generación son siempre mayores que las correspondientes a las de la generación anterior. ¿Por qué ocurre eso?. No se sabe.

Eelementary particles

Esta jerarquía de las masas provoca que las partículas de generaciones más altas decaigan hacia partículas de generaciones más bajas, y esto explica por qué en el mundo ordinario que observamos, la materia esté configurada, en su mayor parte, por partículas de la primera generación. La segunda y tercera generación sólo son observadas excepcionalmente a altas energías (en ambientes con rayos cósmicos, o en colisionadores de partículas). Además, una cuarta generación parece estar descartada definitivamente con una probabilidad del 99.99999% (5.3 sigma). Por lo tanto, el descubrimiento de esa cuarta generación sería un acontecimiento tan fantástico y excepcional que necesitaría muchas y minuciosas comprobaciones teóricas y experimentales antes de darlo definitivamente por sentado. Quizás la naturaleza permita la existencia de quarks y leptones de cuarta o superiores generaciones, pero a tan alta energía y en tan cortos intervalos de tiempo que la tecnología actual nos impide su observación.

Hasta aquí todo lo dicho es información estándar (aunque escasa) de lo que hay sobre el tema. Lo que sigue son divagaciones mias a cerca de cual puede ser la causa de que sólo sea posible observar hasta tres generaciones.

La culpa de todo esto la tiene Don Albertito Einstein Koch, con sus celebérrimas teorías de la relatividad, o más exactamente, para ser algo más justo, la culpa la tienen quienes, a principio del siglo pasado, permitieron que la relatividad Einsteniana se instalara en el corazón de la física teórica, impregnándolo todo de absurdas correcciones relativistas, y fijando para siempre la invarianza de Lorentz como uno de los principios más inamovibles y sólidos de la física. Y es que la relatividad Einsteniana lo reescala todo. Por supuesto, lo primero que re-escala es la energía, por medio de sus formulitas y procedimientos. ¿Por qué re-escala la relatividad especial?. La respuesta es simplemente porque sus postulados son falsos, y para adecuarlo todo a lo observado, a la realidad misma de los fenómenos naturales, necesita usar una serie de ecuaciones y formalismos que lo distorsione todo de tal forma que al final la predicción teórica coincida con gran eficiencia con la realidad observada. Por ejemplo, cuando un postulado dice que la velocidad de la luz es una invariante en todo sistema inercial y que que no puede ser superada por ningún cuerpo con masa, la forma de conciliar esa falsedad con la realidad física es mediante una serie de fórmulas matemáticas que distorsionen el espacio y el tiempo en tal medida que al final obtengamos una predicción teórica indistinguible experimentalmente de la observación. Es decir, para que la relatividad Einsteniana sea verdadera para siempre, la ciencia física necesita crear un dogma, partiendo de unos modelos matemáticos, elevan su esencia de simples modelos para convertirlos en leyes naturales por decreto. Por eso hay mucho científico que cree a pies juntillas que la relatividad Einsteiniana (las dos teorías, la especial y la general) no son modelos inventados por el hombre para describir fenómenos naturales, sino que creen (con una fe religiosa) que son descubrimientos, leyes naturales descubiertas por Don Albertito Einstein Koch. Esa es la razón de que mucha gente se pregunte la absurda pregunta de por qué las leyes naturales están escritas con matemáticas. Cuando niegas que algo sea un invento y lo identificas con un descubrimiento luego pasa lo que pasa, que alucinas creyendo que la naturaleza usa las matemáticas para insuflar en el mundo su evolución conforme a esas ecuaciones “naturales”.

Es más que evidente que las leyes naturales no están escritas con matemáticas, sino que son estas matemáticas el instrumento usado por el científico para crear modelos que se aproximen a las leyes naturales. Cuando alguien cree que una ley natural se expresa mediante unas ecuaciones matemáticas está cometiendo un grave error de apreciación, el cual le puede llevar a callejones sin salida, o, en el peor de los casos, a desastres teoréticos que pongan en peligro el avance científico. ¿Por qué?. Muy sencillo, si alguien cree que una ley natural es matemáticas, entonces analizando exhaustivamente estas fórmulas matemáticas podría descubrir aspectos de esa ley natural que en principio no eran tan evidentes. Es decir, mediante la transformación matemáticas de esas ecuaciones, el científico podría afirmar que existen predicciones que deben de cumplirse si se realizan adecuadamente cierta clase de experimentos. Pero, como digo, una ley natural, nunca es una ecuación matemática, por lo tanto, las predicciones que se puedan extraer de una serie de ecuaciones nunca deben coincidir necesariamente con los efectos que emanan de la ley natural que dichas ecuaciones tratan de modelar. Esto es muy importante tenerlo en cuenta si no quieres ser tontamente engañado por el uso incorrecto del método científico.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravitación universal: Resolución de la paradoja de la región lenticular

Posted by Albert Zotkin on February 14, 2015

En mi último post (Gravitación universal: Viaje insólito al centro de la Tierra) llegué a afirmar que una masa de pruebas en el interior de una esfera sólida de densidad uniforme sí podría sentir el campo gravitatorio creado por la masa de dicha esfera, contradiciendo así Newtom con su famoso teorema de la cáscara esférica (teorema del shell). Sin embargo, un análisis mas minucioso de dicho teorema nos lleva a concluir que Newton estaba en lo cierto. Veamos cómo Sir Isaac Newton demostró el teorema del shell:

Una de las razones por las que Newton inventó el cálculo infinitesimal fue para poder demostrar que la ley de la gravedad que él descubrió ofrece una aceleración gravitatoria nula dentro de una cáscara esférica para cualquier masa de pruebas, y también demostrar que si la masa de pruebas está fuera de esa cáscara esférica, la aceleración gravitatoria sería la misma que la que ofrecería si toda la masa de la cáscara estuviera situada en su centro.

Decir también que este teorema puede ser derivado desde la ley de Gauss para la gravedad. Empecemos:

TEOREMA DE LA CÁSCARA ESFÉRICA:
La Ley de la Gravitación Universal de Newton que para dos masas puntuales m y M separadas una distancia r la fuerza mutua ejercida sobre cada una de ella será:

\displaystyle F = \frac{G m M}{r^2}  (1)
donde la constante universal G posee el valor aproximado de

\displaystyle G \approx 6.67 \times 10^{-11} \mathrm{\ N.m^2/Kg^2}  (2)
A menudo es más útil usar el campo gravitario que genera la masa M,en lugar de la fuerza, así:

\displaystyle E = \frac{G M}{r^2}  (3)
Si en lugar de una masa puntual tenemos toda esa masa repartida homogéneamente sobre una cáscara esférica, el problema será saber que campo gravitatorio existe en un punto cualquiera dentro y fuera de esa la cáscara. Consideremos que el radio de dicha esfera es R, y situemos una masa de pruebas a la distancia r al centro de dicha esfera.

La densidad de esa cáscara esferica de masa M será:

\displaystyle \sigma =\frac{M}{4\pi R^2}  (4)
Si ahora descomponemos la cáscara esférica en pequeños anillos, y decimos que la distancia de uno cualquiera de dichos anillos al punto p donde está nuestra masa de pruebas es s, tendremos la siguiente configuración:

fig-1

La masa total del anillo seria entonces

\displaystyle \begin{aligned} M_a &=\sigma 2\pi R (\sin\phi) R d\phi \\  &=\frac{1}{2}M (\sin\phi)  d\phi   \end{aligned}  (5)
Seguidamente, nos damos cuenta que toda la masa está a la misma distancia s del punto p. Sin embargo, ya que (por simetría) la dirección del campo es hacia el centro de la esfera, la contribución de este pequeño anillo, tenemos que:

\displaystyle dE =\frac{G M \cos\theta \sin \phi d\phi}{2s^2} =-\frac{G M \cos\theta d(\cos \phi)}{2s^2}   (6)
Y usando la ley de los cosenos tenemos

\displaystyle R^2 = s^2+r^2-2rs\cos\theta, \\ s^2= R^2+r^2-2Rr\cos\phi  (7)
por lo que:

\displaystyle \cos\theta = \frac{s^2+r^2-R^2}{2rs} \\ \\ \cos\phi = \frac{R`2+r^2-s^2}{2Rr} \\ \\ s^2= R^2+r^2-2Rr\cos\phi  (8)
con lo cual:

\displaystyle -d(\cos\phi)=\frac{s}{Rr}ds.  (9)
y sustituyendo en (6) se obtiene la contribución del pequeño anillo:

\displaystyle dE =\frac{GM(s^2+r^2-R^2)ds}{4Rr^2s^2}  (10)
Desde esta última ecuación se concluye que el campo gravitacional total inducido por la cáscara esférica sobre la masa de pruebas situada en el punto p es la integral de las contribuciones de todos los anillos:

\displaystyle \begin{aligned} E &= \int_{s=r-R}^{s=r+R}dE = \frac{GM}{4Rr^2} \int_{s=r-R}^{s=r+R}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\  &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{r-R}^{r+R}= \frac{GM}{4Rr^2}\; 4R = \frac{GM}{r^2} \end{aligned}  (11)
y eso probaría la primer aparta del teorema gravitacional de la cáscara esférica de newton. Para probar la segunda parte, es decir que el campo gravitacional dentro de la cáscara esférica es cero, hay que darse cuenta de que la contribución de cada uno de esos anillos es la misma de antes,

fig-2

y lo único que cambia son los límites de integración para s, que ahora son s = Rr y s = R + r. Por lo tanto:

\displaystyle \begin{aligned} E &= \int_{s=R-r}^{s=R+r}dE = \frac{GM}{4Rr^2} \int_{s=R-r}^{s=R+r}\frac{s^2+r^2-R^2}{s^2}ds =\\ \\  &= \frac{GM}{4Rr^2}\left(s+ \frac{R^2-r^2}{s}\right)\biggr\rvert_{R-r}^{R+r}= 0 \end{aligned}  (12)
Finalmente, calculamos el campos gravitacional inducido por una esfera sólida y homogénea de masa total M, en un punto cualquiera externo y después para un punto cualquiera del interior. La densidad de dicha esfera sólida sería:

\displaystyle \mu= \frac{3M}{4\pi R^3}  (13)
Y como antes, sea r la distancia de la masa de pruebas en el punto p al centro de la esfera. Ahora dividamos la esfera en sucesivas cáscaras esféricas concéntricas, cada una con un grosor de dρ y radio ρ, con lo cual la masa de cada una de esas cáscaras sería:

\displaystyle dM = 4\pi \rho^2 \mu d\rho = \frac{3M \rho^2}{R^3}d\rho.  (14)
Desde la primera parte del teorema de la cáscara de Newton, tenemos que la contribución al campo gravitacional de esa cáscara es:

\displaystyle dE = \frac{3GM \rho^2}{r^2R^3}d\rho;  (15)
y el campo total lo obtenemos integran todas las cáscaras concéntricas desde 0 hasta R:

\displaystyle E = \int_0^R dE=\int_0^R\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM\rho^3}{r^2R^3}\biggr\rvert_0^R =\frac{GM}{r^2}  (16)
Y para finalizar estas demostraciones de teoremas, si el punto p de nuestra masa de pruebas está en el interior de la esfera homogénea (r < R), entonces según la segunda parte del teorema de newton arriba demostrado, vemos que la contribución al campo gravitacional por las cáscaras concéntricas de radio ρ está definida por

\displaystyle dE = \begin{cases} \frac{3GM \rho^2}{r^2R^3}d\rho & \quad \text{if } 0\leq\rho\leq r, \\ 0  & \quad \text{if } r\leq\rho\leq R.\\ \end{cases}  \\ \\ \\   (17)
Por lo tanto, la contribución total al campo es la integral:

\displaystyle E = \int_0^r dE=\int_0^r\frac{3GM \rho^2}{r^2R^3}d\rho=\frac{GM r^3}{r^2 R^3}  (18)
con lo que vemos que

\displaystyle M_r = \frac{M r^3}{R^3}
es la masa contenida en el volumen de la esfera de radio r.

Y hasta aquí la demostración del teorema de la cáscara de Newton. He destacado toda la demostración con fondo amarillo, y un párrafo (el que incluye la ecuación #6) lo he destacado especialmente sobre fondo amarillo más intenso para señalar que quizás alguien podría tener dudas de que esa deducción sea correcta. De hecho, si Ma es la masa de uno de eso pequeños anillos, tal y como se expresa en la ecuación (5). Podemos calcular fácilmente que la aceleración de la gravedad, para una masa de pruebas situada sobre el eje central a cierta distancia z del centro del anillo, será:

\displaystyle E_a = = \frac{G M_a z}{\sqrt{(R^2 + z^2)^3}} (19)
pero z = s cos φ, y R2 + z2 = s2, por lo que

\displaystyle E_a =  \frac{G M_a s \cos\phi}{s^3}=  \frac{G M_a \cos\phi}{s^2} \\ \\ \frac{1}{2} \frac{G M (\sin\phi)\cos\theta}{s^2} d\phi=-\frac{G M \cos\theta d(\cos \phi)}{2s^2}  (20)
es la misma ecuación (6).

Para resolver la paradoja de la región lenticular hemos de ver que si esa región es la correspondiente de substraer las masas elementales cuyas fuerzas opuestas en la masa de pruebas se cancelaban totalmente, entonces la masa de la esfera horadada restante, que sigue influyendo gravitacionalmente (sus fuerzas dos a dos no se anulan totalmente), es mayor que la que predice el teorema de la cáscara de newton. La solución a esta aparente anomalía está en ver que la masa de la región lenticular sustraída no es exhaustiva, es decir, es necesaria pero no es suficiente.
Esa región lenticular es sólo la correspondiente a fuerzas que se cancelan totalmente. Pero, aún permanecen en la esfera horadada restante pares de fuerzas que se cancelan sólo parcialmente, y eso implica que las masas elementales respectivas del par no se substraen del volumen totalmente pero deben substraerse parcialmente. Cuando completamos todas esas sustracciones parciales de masa veremos que la masa que permanece corresponde exactamente a la predicha en el teorema de la cáscara de Newton.

Saludos

Posted in Astrofísica, Cosmología, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravitación universal: Viaje insólito al centro de la Tierra

Posted by Albert Zotkin on February 6, 2015

En este pequeño artículo voy a calcular cuánto vale la gravedad en un punto cualquiera del interior de un cuerpo esférico y de densidad constante.

Empecemos. Si el radio de dicho cuerpo esférico es R, y un punto p cualquiera de su interior está a la distancia r de su centro, tendremos que si trazamos segmentos de rectas centrados en dicho punto p, hacia todas las direcciones, podremos ir viendo cómo se van anulando pares de fuerzas. Cuando se anula un par de fuerzas, su influencia sobre una partícula de prueba situada en p es nula, y por lo tanto es como si las masas elementales que generan esas dos fueras opuestas no existieran. Estas anulaciones efectivas, dos a dos, produce una especie de oquedad, a modo de un cráter.

Ese hueco gravitacional en la esfera es en realidad el producto de la intersección de otra esfera de igual radio

Esa intersección es un volumen que tiene forma de lenteja. Si desprendemos ese volumen de masa, que no influye gravitacionalmente sobre nuestra masa de pruebas, tendremos una esfera horadada, que se ve claramente en las siguientes ilustraciones que he dibujado. La lenteja intersección, que he pintado de amarillo, cuyo centro es el punto p donde esta nuestra masa de pruebas, la voy a desprender de la esfera azul que representa nuestro planeta Tierra, quedando pues el hueco de no-gravedad,

Ahora nuestro problema matemático se reduce a calcular el volumen de esa lenteja que hemos desprendido de la esfera principal. Una vez que sabemos el valor de ese volumen lo restaremos del volumen de la esfera, con lo cual sabremos cual es el volumen de la esfera azul horadada, que es la que en definitiva influye gravitacionalmente sobre nuestra masa de pruebas.

Para calcular el volumen de esa lenteja (volumen intersección de dos esferas iguales), bastará calcular la mitad. Esa mitad es lo que se llama casquete esférico

\displaystyle v = \frac {\pi h}{6} (3a^2 + h^2) (1)
O también: \displaystyle v = \frac {\pi h^2}{3} (3R - h) (2)
O en función de R y r: \displaystyle v =\frac{1}{3} \pi  (r-R)^2 (r+2 R) (3)
Con lo cual el volumen total de esa lenteja será:

\displaystyle V = 2v = \frac{2}{3} \pi  (r-R)^2 (r+2 R) (4)

Esto significa que el volumen que permanece en la esfera principal horadada (esfera azul) será pues:

\displaystyle V_E =\frac{4}{3} \pi  R^3 - \frac{2}{3} \pi  (r-R)^2 (r+2 R) \\ \\ \\ \\ V_E = \frac{2}{3} \pi  r \left(3 R^2 - r^2\right) (5)
Pero según la Ley de Gauss para la Gravedad, y según el teorema del Shell, ese volumen VE, debería corresponder al volumen de una esfera de radio r. Es decir,

\displaystyle V_E =\frac{4}{3} \pi  r^3 (6)
¿Dónde está pues el error?.

Obviamente, si nuestra masa de pruebas está localizada en el centro de la Tierra, la lenteja que extraemos (intersección de las dos esferas) tendria un volumen igual al volumen total de la esfera, lo cual implicaría que la gravedad en el centro de la Tierra es nula. Pero, la pregunta está hecha ya. ¿Dónde está pues el error en mis cálculos?. Está claro, que algo debe estar equivocado en mis cálculos y/o consideraciones ya que la probabilidad de que yo no esté equivocado y sí lo esté Gauss al respecto es casi nula, por no decir absolutamente nula.

Actualización (2/8/2015): La ecuación (5) del volumen de masa efectiva (masa que influye efectivamente sobre nuestra masa de pruebas) nos sirve para hallar la masa efectiva. Ya que sabemos que la esfera inicial de radio R y masa total M es homogénea , la densidad constante de dicha esfera inicial es:

\displaystyle \mu =\frac{3M}{4\pi R^3}  (7)
Por lo tanto, si dividimos la masa efectiva ME por el volumen efectivo VE obtendremos esa densidad constante μ:

\displaystyle \frac{M_E}{V_E}=\mu =\frac{3M}{4\pi R^3}  (8)
y por lo tanto la masa efectiva será:

\displaystyle M_E=\frac{2}{3} \pi  r \left(3 R^2 - r^2\right)\frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=\tfrac{1}{2}M\left(\frac{3 r}{R}\text{  }- \frac{r^3}{R^3}\right) (9)
Pero, según el teorema de la cáscara esférica de Newton (el teorema del Shell), el volumen efectivo sería el de la ecuación (6), es decir, toda la masa efectiva estaria dentro de una esfera de radio r, y por lo tanto, la masa efectiva ME (según predice la gravitación universal de Newton, que es la conocida ley del inverso del cuadrado de la distancia) sería:

\displaystyle M_E=\frac{4}{3} \pi  r^3 \frac{3M}{4\pi R^3} \\ \\ \\ \\  M_E=M\frac{r^3}{R^3} (10)
Y según la gravitación universal de Newton, la fuerza efectiva sobre nuestra masa de pruebas sería:

\displaystyle F_E= G M\frac{r^3}{r^2 R^3} \\ \\ \\ \\  F_E= G M\frac{r}{R^3} (11)
O sea, la ley de gravitación universal de newton dice que considerando el radio R y la masa M constantes, la fuerza efectiva de la gravedad en el interior de esa esfera homogénea es directamente proporcional a r (distancia al centro de la esfera).

En conclusión: Según los cálculos que he realizado, el volumen efectivo hallado es independiente de la teoría de gravitación que consideremos ( no empleo la asunción de que la fuerza de la gravedad sea la ley del inverso del cuadrado de la distancia), sino que sólo asumo que a distancias iguales le corresponderán fuerzas iguales. Ahí radica la discrepancia entre el resultado que yo he hallado y el resultado oficial (el de la Ley de gravitación de Newton). Si los cálculos que he realizados son correctos, esto implicaría que la masa efectiva sería siempre mayor o igual que la masa efectiva oficial. Y esto tiene una implicación muy importante en gravitación, ya que explicaría nada más y nada menos que la anomalía que llamamos materia oscura. En la siguiente representación gráfica, para M = 1 y R = 1, comparo ambas predicciones de masa efectiva (la gráfica en azul es la que yo he calculado y la roja es la predicción clásica Newtoniana).

lines1

La región en gris definida entre ambas gráfica en el intervalo [0, R] es, según mis presagios, lo que se viene llamando erróneamente materia oscura. Es decir, la materia oscura sería simple y llanamente una anomalía ficticia producto de un mal entendimiento de la gravedad a lo largo de los siglos.

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

El Motor Inercial Mach-Lorentz nos llevará a las estrellas

Posted by Albert Zotkin on December 30, 2014

Un Motor Inercial Mach-Lorentz es un hipotético artefacto basado en el efecto Woodward que instalado en un vehículo espacial sería capaz de proporcionarle empuje sin necesidad de eyectar gases o cualquier otro material.

La idea del efecto Woodward se basa en la posibilidad de que se pueda inducir un cambio de masa inercial a un cuerpo cuando aceleramos eléctrica y magnéticamente algunos de sus componentes. Ese cambio temporal o cíclico de la masa inercial podría ser aprovechado para generar una fuerza con la que el vehículo aceleraría en el espacio. Es decir, que el vehículo no tendría que eyectar materia para acelerar. ¿Cómo se consigue eso?. La masa inercial es como un ancla en el espacio. Supongamos que dos personas, de igual peso, se suben a dos vagonetas que están sobre unos raíles. Si uno de ellos empuja la otra vagoneta, ambas se moverán en sentido contrario la misma distancia. Pero, si uno de ellos es más pesado que el otro, entonces la vagoneta con menos masa llegará más lejos. Está claro que la vagoneta más pesada está anclada a los raíles. Avanzar por el espacio con este artilugio también sería semejante a remar sobre una barca. Cuando alzamos el remo para llevarlo a una posición mas avanzada la masa del mismo rozando el aire es menor que cuando su pala está dentro del agua. Cuando hacemos fuerza para remar con la pala en el agua, eso es semejante a cuando empujamos a un cuerpo de mayor masa que nosotros. Existe siempre un cambio virtual de masas. Las ruedas de un coche sobre la calzada también experimentan ese cambio cíclico virtual de masas. La parte de la rueda que pisa la calzada es semejante a la vagoneta de mayor masa (queda más anclada que las otras partes del sistema). Cuando una parte queda más anclada, podemos aplicar empuje para aproximar hacia ella las partes más atrasadas. Es evidente que si el aire fuera más denso que el agua no podríamos remar en nuestra barca con eficiencia, ya que al llevar el remo por aire para ponerlo en la posición avanzada, nuestra barca se iría hacia atrás. De hecho, cuando remamos, la barca experimenta un impulso retrógrado (hacia atrás) cuando el remo va por aire hacia la posición avanzada. Lo que ocurre es que esa fuerza es insignificante frente a la fuerza de avance que conseguimos con la pala del remo dentro del agua.

Así, con un motor inercial, tipo Mach-Lorentz, queremos que exista una desproporción cíclica de fuerzas, de modo que siempre obtengamos ventaja con un avance que sea mayor que el retroceso. El problema con esta clase de “motores” que aplican el efecto Woodward es que no está claro si tal efecto existe en realidad, y cómo se realizan los anclajes para poder avanzar. ¿Cómo puede un vehículo espacial acelerar por el espacio como si fuera una oruga?.

En lugar de dos vagonetas imaginemos dos bolas de acero de igual volumen unidas por un muelle, y pongamos dicho sistema a vibrar. Si, de alguna forma, transferimos (mediante bombeo de gas, por ejemplo) masa de una bola hacia la otra mientras el sistema vibra por medio del muelle, es posible conseguir que dicho sistema experimente una fuerza que lo impulse en una determinada dirección espacial.

James F. Woodward afirma que en un motor Mach-Lorentz, el cual se basa en el efecto Woodward, cuando se carga un condensador eléctrico, su dieléctrico experimenta un aumento pasajero de su masa inercial, y cuando el condensador se descarga, el dieléctrico experimenta una disminución de masa. La fórmula que deduce Woodward para ese incremento de masa del dielétrico es:

\displaystyle \delta m_0 = \frac{1}{4\pi G}\left[\frac{1}{\rho_0 c^2}\frac{\partial P}{\partial t} - \left(\frac{1}{\rho_0 c^2}\right)^2 \frac{P^2}{V}\right]

donde m0 es la masa propia, G es la constante de gravitación universal, c es la velocidad de la luz en el vacio, ρ0 es la densidad propia del dieléctrico, V es el volumen del dieléctrico, y P es la poencia eléctrica instantanea enviada al sistema.

El problema con esa fórmula es que nadie sabe si predice un efecto real o es falsa ya que nadie ha sido capaz aún de medir ese supuesto efecto Woodward.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Gravedad cuántica: ¿existe una velocidad mínima no nula para el movimiento de los cuerpos con masa?

Posted by Albert Zotkin on December 22, 2014

Si nos creemos el hecho de que existe una velocidad máxima (insuperable) en nuestro universo, la cual identificamos como la velocidad de la luz en el vacío, c, entonces tambien debe ser razonable pensar que debe existir una velocidad mínima no nula, no sólo para los cuerpos con masa, sino para la misma luz. Este hecho de una cota minima nos lleva a fenómenos como el de la refracción de la luz en medios extremos. Decimos que un medio posee un indice de refraccíon n mayor que la unidad cuando la velocidad de la luz cn en dicho medio es inferior a la que posee en el vacio:

\displaystyle n = \frac{c}{c_n} (1)
Si afirmamos que ha de existir una velocidad mínima no nula para la luz en algún medio (por ahora desconocido), entonces dicho medio poseerá un índice de refracción muy alto, pero no infinito, porque si fuera infinito la velocidad de la luz en dicho medio sería nula. Por otro, lado sabemos que la longitud de Planck lP está definida de esta forma:

\displaystyle \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \approx 1.616\;199 (97) \times 10^{-35} \mbox{ m} (2)
Esto significa que es posible expresar la velocidad de la luz en función de la Longitud de Planck:

\displaystyle c =\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}}  (3)
Y esto quiere decir que para una posible velocidad mínima no nula, c0, de la luz en un medio extremo (aún desconocido) debemos encontrar una longitud “extrema” muy grande, que llamaremos RH, tal que:

\displaystyle c_0 =\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}}  (4)
por lo que el índice de refracción para ese medio en el cual la luz se ralentiza hasta llegar a propagarse a la mínima velocidad no nula posible, será:

\displaystyle n_0 =\cfrac{\sqrt[3]{\frac{\hbar G}{\ell_\text{P}^2}} }{\sqrt[3]{\frac{\hbar G}{R_\text{H}^2}} } =\sqrt[3]{\frac{R_\text{H}^2}{\ell_\text{P}^2}} (5)

Es pues posible hipotetizar que esa longitud RH no puede ser otra que un Radio de Hubble:

\displaystyle R_\text{H} =\cfrac{c}{H_0} (6)

donde H0 es la constante de Hubble, y su valor aproximado es de

\displaystyle R_\text{H} \approx  13.000 \ \text{millones de a\~nos luz} (7)
Luego la velocidad mínima que buscamos será:

\displaystyle c_0 =\sqrt[3]{\frac{\hbar G H_0^2}{c^2}}  (8)
Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: Análisis pormenorizado de la componente entrópica de la gravedad

Posted by Albert Zotkin on December 19, 2014

Hace ya algún tiempo un tal Erik Verlinde publicó un artículo en el que supuestamente deducía la ley de gravitación universal de Newton desde primeros principios, incluso dedujo las ecuaciones de campo de Einstein de la Relatividad General, concluyendo que la gravedad es una fuerza entrópica, es decir una fuerza que no es fundamental y que emerge naturalmente del aumento de entropía de los sistemas materiales. Verlinde usó el principio holográfico y las conocidas leyes de la termodinámica, junto con algunas cosillas más, para deducir dicha fuerza entrópica. Las fuerzas entrópicas emergen desde el microcosmos hacia el macrocosmos debido a que los sistemas materiales tienden a adoptar estados de máxima entropia. Cuando estiras una goma elástica debes de ejercer una fuerza para contrarrestar temporalmente su estado maximizado de entropía. Al estirar la goma estás rebajando su entropia, y por lo tanto la goma se opone a ese cambio ejerciendo una fuerza en sentido contrario que intenta restaurar su estado de máxima entropía.

Pero, como vamos a ver ahora, esa fuerza entrópica deducida por Verlinde desde primeros principios, y que emerge siendo la fuerza de gravitación de Newton, es sólo una componente de la gravedad total. En concreto vamos a ver cómo esa componente entrópica es engullida brutalmente por un tiburón cuántico que habita en las profundidades del microcosmos termodinámico.

Comencemos expresando la Primera Ley de la Termodinámica para sistemas homogeneos cerrados:

\displaystyle dU=TdS-PdV (1)
donde dU es el cambio de energía interna, T es la temperatura, dV es el cambio de volumen, dS es el cambio de entropia, y P es la presión. Sabemos que PdV es el cambio de energía libre del sistema, por lo tanto puede ser expresada como suma de los cambios de energía de cada uno de los microestados

\displaystyle \langle PV\rangle=-\frac{\ln(\mathcal{Z})}{\beta} = -\frac{\epsilon_1\oplus\epsilon_2\oplus\epsilon_3\oplus\dots}{\beta}    2
Donde es representa la energía del microestado s, Z es la función de partición, y β es menos el inverso del producto de la temperatura por la constante de Boltzmann:

\displaystyle   \mathcal{Z} = \sum_{s} e^{\beta \epsilon_s}  \\ \\ \\  \beta = -\frac{1}{k_BT}
La ecuación (1) para un proceso con presión y temperatura constantes queda así:

\displaystyle U=TS-PV (3)
por lo tanto sustituyendo (2) en (3) tenemos:

\displaystyle U=TS + \frac{\ln(\mathcal{Z})}{\beta} \\ \\  U=\frac{\beta}{\beta} \ln \exp(TS) + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\  U=\frac{\ln \exp(\beta TS )}{\beta} + \frac{\ln(\mathcal{Z})}{\beta} \\ \\ \\  U=\frac{\ln \left (\mathcal{Z}\exp(\beta TS ) \right)}{\beta}  \\ \\ \\  (4)

Según el postulado fundamental de la mecánica estadística, la entropía S es directamente proporcional al logaritmo del número Ω de microestados:

\displaystyle S = k_B \ln \Omega

es decir

\displaystyle TS = Tk_B \ln \Omega= -\frac{\ln \Omega}{\beta} (5)

por lo que (4) lo podemos calcular más fácilmente:

\displaystyle U=TS + \frac{\ln \mathcal{Z}}{\beta} \\ \\  U=-\frac{\ln \Omega}{\beta} + \frac{\ln \mathcal{Z}}{\beta} \\ \\ \\
\displaystyle \boxed{U=\cfrac{1}{\beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}  (6)
Esta energía interna U es lo que en gravedad debe identificarse como la energía potencial gravitatoria, la cual si es dividida por la masa m de una partícula de prueba tendremos el potencial gravitatorio (con todas sus componentes) en el punto espacial donde está localizada dicha partícula:

\displaystyle \boxed{V = \cfrac{U}{m}=\cfrac{1}{m \beta}\ln \left(\frac{\mathcal{Z}}{\Omega}\right)}  (7)
Recapitulemos. La componente entrópica debe ser identificada con la gravitación clásica de Newton, y la componente de energía libre (PV) debe ser identificada con lo que se llama gravitomagnetismo. O lo que es lo mismo, la función de partición Z mapea dicho gravitomagnetismo, mientras que el número Ω de microestados mapea la componente estática de gravitación Newtoniana.

Pongamos un pequeño ejemplo. Supongamos que queremos calcular el número Ω de microestados de un sistema gravitatorio binario, con masas M y m. Igualamos el potencial gravitatorio así:

\displaystyle   V =-\frac{\ln \Omega}{m\beta} = -\frac{GM}{r}  \\ \\  \Omega = \exp\left(\frac{GMm\beta}{r}\right)

pero en β está incluida la temperatura T, por lo tanto si igualamos esa temperatura con la temperatura de Unhru: ,

\displaystyle T = \frac{\hbar a}{2\pi c k_\text{B}} \\ \\ \\ \beta= -  \frac{2\pi c}{\hbar a} \\ \\ \\

y la aceleración a la igualamos a la aceleración del campo gravitatorio estático, a = g:

\displaystyle a = \frac{GM}{r^2}\\ \\ \\ \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\

Por lo que el número Ω de microestados para ese sistema gravitatorio será:

\displaystyle a = \frac{GM}{r^2}\\ \\ \\ \beta= -  \frac{2\pi c r^2}{\hbar GM} \\ \\ \\ \Omega = \exp \left(\frac{GMm\beta}{r}\right) = \exp\left(\frac{m c \ 2\pi r}{\hbar}\right)
Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Gravedad cuántica: definición de nuevo centro de masas desde micro-estados mediante infra-sumas de orden -1

Posted by Albert Zotkin on October 28, 2014

Clásicamente, se define el centro de masas de un sistema de n partículas asi:

\displaystyle \mathbf{R} = \frac 1M \sum_{i=1}^n m_i \mathbf{r}_i,
donde mi es la masa de la partícula i, ri es su vector distancia (desplazamiento) al origen de coordenadas, M es la masa total del sistema de partículas y R es el vector distancia (desplazamiento) del centro de masas. Desde esta definición de centro de masas vemos claramente que ese punto que nos señala el vector R debe ser tal que

\displaystyle  \sum_{i=1}^n m_i(\mathbf{r}_i - \mathbf{R}) = 0

se cumpla siempre para dicho sistema de partículas. Podemos hacer esa suma adimensional si la dividimos por el producto de la masa de Planck y la longitud de Planck, mP×lP

\displaystyle  \ell_\text{P} =\sqrt\frac{\hbar G}{c^3} \\ \\ m_\text{P}=\sqrt{\frac{\hbar c}{G}} \\ \\ m_\text{P} \ell_\text{P} =\cfrac{\hbar}{c}

es decir

\displaystyle \sum_{i=1}^n \cfrac{m_ic(\mathbf{r}_i - \mathbf{R})}{\hbar} = 0
Ahora viene la parte interesante de todo esto. Una vez que hemos hecho adimensional dicha suma, nos vamos al ámbito de las infra-sumas, y decir que si usamos el operador ⊕ de orden -1 tendremos un nuevo centro de masas ℜ tal que:

\displaystyle  \cfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar} \oplus \cfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar} \oplus \dots= -\infty

debe ser igual a -∞ por que ese es el elemento neutro de la infra-suma de orden -1. Y según la definición de infra-suma de orden -1, tendremos que

\displaystyle  \log\left(\exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots\right)=-\infty=\log 0 \\ \\   \exp(\tfrac{m_1c(\mathbf{r}_1 - \cal{R})}{\hbar}) + \exp(\tfrac{m_2c(\mathbf{r}_2 - \cal{R})}{\hbar}) + \dots =  0 \\ \\  \sum_{i=1}^n \exp \left(\frac{m_ic(\mathbf{r}_i - \cal{R})}{\hbar}\right) = 0
Es evidente que la magnitud ħ/mic es la longitud de onda de Compton reducida de la partícula i del sistema, una forma muy natural de expresar la masa a escala cuántica. Pero, lo interesante está en el valor de ℜ, y ver a dónde apunta. Espero que alguien serio lea este pequeño artículo de gravedad cuántica y lo tenga en cuenta como una modesta y pequeña contribución para el progreso de la ciencia, y en particular de la gravedad cuántica.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Emergencia virtual de materia oscura en un modelo de potencial gravitatorio tipo sombrero mexicano

Posted by Albert Zotkin on October 26, 2014

En un anterior post mio dije que la acumulación de materia bariónica (materia ordinaria) en la formación de galaxias o cúmulos de galaxias producía en las inmediaciones un vacio rarificado con la emergencia de potenciales gravitatorios positivos (materia oscura virtual). Ese fenómeno seria muy semejante a cuando edificamos un castillo de arena en una playa plana, pues el castillo de arena (montón central) se realiza escavando y creando un foso que está por debajo del nivel medio de potencial de la “playa”. Y a eso lo llamé “emergencia de materia oscura por fosos galácticos”

mo

es más que evidente que esa gráfica de un potencial gravitatorio que genera materia oscura virtual tiene la forma de sombrero mexicano, también llamado onda de Ricker. En una única dimensión espacial ese potencial gravitatorio representa la segunda derivada de una curva normal (Gaussiana). Veamos cómo es eso. Partimos de una distribución normal cuya función de densidad es

\displaystyle f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi} } e^{ -\frac{(x-\mu)^2}{2\sigma^2} } (1)

Ahora si derivamos f respecto a la variable x obtenemos

\displaystyle f'(x, \mu, \sigma) = -\frac{e^{-\frac{(x-\mu )^2}{2 \sigma ^2}} (x-\mu )}{\sigma ^3\sqrt{2 \pi } } (2)
y si realizamos la segunda derivada obtendremos

\displaystyle f''(x, \mu, \sigma) =\frac{e^{-\frac{(x-\mu )^2}{2 \sigma ^2}} \left(x^2-2 x \mu +\mu ^2-\sigma ^2\right)}{\sigma ^5\sqrt{2 \pi } } (3)
Esta segunda derivada es la que nos interesa, pues es la curva de potencial gravitatorio que genera materia oscura virtual. Es decir, hemos partido de una distribución normal de materia bariónica y desde ella hemos deducido la función de potencial que se comporta como si existiera materia oscura, pero evidentemente esa materia oscura es sólo ficticia.

Analicemos un poco más esta última ecuación. Si la variable x, y los parámetros μ y σ son distancias, es evidente que la función f”(x, μ, σ) es el inverso de una distancia al cubo. Por lo tanto, para que represente dimensionalmente de forma correcta a un potencial gravitatorio hemos de reescalarla, multiplicándola por el parámetro gravitatorio GM (donde M es la masa total del cúmulo de materia bariónica, y G es la constante de gravitación universal) y por una distancia invariante al cuadrado, es decir, el potencial sería:

\displaystyle \phi(x, \mu, \sigma) =f''(x, \mu, \sigma) GM r_0^2 (4)
Y este análisis dimensional implica que la función de densidad original de la cual hemos partido, f(x, μ, σ), al multiplicarla por el factor –GMr02 obtenemos una magnitud cuya dimensión es | L4T-2 |, es decir la dimensión de una velocidad al cuadrado multiplicada por una distancia al cuadrado.

Vemos un ejemplo práctico de todo esto. Elijamos la distancia del Sistema Solar al centro de la Via Láctea como unidad de medida (unos 25 mil años-luz), y consideremos que la materia bariónica en la Vía Láctea se distribuye muy aproximadamente como una distribución normal con estos valores (μ = 0, σ = 2). Así la gráfica de f”(x, 0, 2) sería:

Pero esa gráfica en tres dimensiones se tranformaria en esta otra:

Luego, todo exceso de potencial por encima del plano en (0,0,0) correspondería a lo que se viene llamando materia oscura, pero ahora observamos claramente que es sólo materia oscura ficticia.

Saludos

Posted in Cosmología, Física de partículas, Gravedad Cuántica, Matemáticas, Mecánica Cuántica, Relatividad | Tagged: , , , , , , , , , , , , , , | Leave a Comment »

Radiación gravitacional versus Materia Oscura

Posted by Albert Zotkin on April 25, 2013

Hola incondicionales de Tardígrados. Hoy voy seguir hablando de esa idea tan fascinante que trata sobre la hipótesis de que las masas produzcan sombra gravitacional sobre otras masas.

Consideremos, por ejemplo, una distribución normal de partículas de igual masa m, y representemos gráficamente la magnitud de esa masa m mediante el código de color RGB(179,179,179). Ese color vemos que es un gris mas bien claro. Pintemos también el centro de masas (c.m.) mediante un punto verde, así

guassian-0

Introduzcamos ahora una partícula test a una distancia de 1 UA (unidad astronómica) respecto del centro de masas del sistem gravitatorio. Entonces, según la hipotesis de la anomalía del centro de masas, la partícula test “verá” un baricentro distinto (punto rojo) al centro de masas (punto verde), y esa anomalía significa que las partículas de masa m que quedan en la zona de sombra atenuan su brillo (codigo de color), mientras que las partículas que está al frente (aquellas que producen la sombra) aumentan su brillo, pero la masa total del sistema permanece invariante,

gaussian-1

Acerquemos ahora a la mitad de la distancia anterior la partícula test,

gaussian-2

observamos que el baricentro que “vé” la partícula test está ahora más cerca de ella, y que las partículas en zona de sombra están más “apagadas” y las partículas “iluminadas” que producen la sombra aparecen más brillantes. Todo esto se traduce en que la velocidad orbital de la partícula test no sólo no obedece la ley de gravitación clásica (Newton), sino que hay que tener en cuenta cuánta “materia oscura” genera la distribución de materia bariónica, es decir, cuánto se apagan las partículas en la “sombra gravitacional” y cuantó “brillan” de más las partículas que reciben directamente la radiación gravitacional desde la fuente emisora.

Un caso especialmente espeluznante de ese efecto de “sombra gravitacional” es la llamada anomalia del perihelio del planeta Mercurio, que dió pie a que la Teoría General de la Relatividad de Einstein se implantara en el corazón de la fisica, y desde entonces la ciencia continua abducida y alucinando en colores, conformando mentes dogmátivas que insultan a quien se atreva a salirse de los diez mandamientos de la Ley de Dios (Einstein).

Cuando consideramos la hipótesis de la sombra gravitacional podemos explicar esa anomalía del perihelio, entre otras muchas anomalías más. El tema está en dónde reside exactamente el centro de masas sistémico para el cuerpo cuya órbita estamos considerando.

Albert Einstein con su Teoría General de la Relatividad se postuló como el científico más revolucionario y visionario del siglo XX, y parte del XXI, porque desde esa teoría fue capaz de predecir la cantidad exacta de avance en el perihelio del planeta Mercurio que la teoría de Newton no era capaz de predecir. Para ser exactos, la teoría de la gravitación de Newton predice que el perihelio de Mercurio avanza 5557 segundos de arco por siglo, pero lo que se observa son 5600 segundos de arco por siglo, por lo tanto, la predicción se queda corta en 43 segundos de arco por siglo. Einstein demostró que desde la Teoría General de la Relatividad es posible predecir esos 43 segundos de arco que la teoría clásica no era capaz de predecir. Sin embargo, si observamos los dos esquemas gráficos de arriba, donde aparece la partícula test (planeta Mercurio) podemos comprender que esa anomalía del perihelio no es más que el efecto de la “sombra” gravitacional” que produce la radiación gravitacional de Mercurio sobre cada una de las partículas másicas del Sol. Así cuando Mercurio está en su perihelio “ve” un baricentro más próximo a él que cuando está en su afelio, y eso produce un exceso de la precesión de su perihelio en exactamente esos 43 segundos de arco por siglo.

Consideremos ahora el potencial gravitatorio de Gerber. Este potencial es capaz de predecir en la cantidad exacta el exceso de avance del perihelio de Mercurio. Es por lo tanto una modifiiación del potencial gravitatorio clásico Newtoniano. El potencial de Gerber es,

\displaystyle  \phi(r, v) = \cfrac{G M}{r (1-v/c)^2}  (1)
donde M es la masa total del sisstema gravitatotio, r es la distancia al centro de masas, v es la velocidad orbital la partícula test, y c es la velocidad de la luz. A primera vista observamos en ese potencial de Gerber que el factor (1- v/c) está elevado al cuadro, y también que dicho factor es simplemente un factor Doppler de primer orden. Por lo tanto, ese factor Doppler elevado al cuadrado nos está diciendo que existe una reflexión Doppler. Podemos aproximar esa reflexión mediante un Doppler completo así:

\displaystyle  \left (1 - \frac{v}{c}\right )^2 \equiv \exp (-2\frac{v}{c})   (2)

por lo que el potencial de Gerber quedaría sí:

\displaystyle  \phi(r, v) = \cfrac{G M}{r}\exp (2\frac{v}{c})     (3)

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Tagged: , , , , , , , , , | Leave a Comment »