TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘periodo’

La velocidad de la luz no es una verdadera velocidad, es una latencia

Posted by Albert Zotkin en mayo 25, 2018

Hola amigos de Tardígrados. Hoy vamos a estudiar algunos aspectos de uno de los fenómenos más extraños y misteriosos de nuestro universo, la luz. Tambíén llamada fotones, ondas, energía o radiación electromagnética. La luz es, junto con la gravedad, uno de los misterios más grandes de la física. Aunque pudiera parecer que las ondas electromagnéticas ya no poseen ningún misterio para la Física, en realidad si los posee, y profundos. ¿Qué es la luz?, ¿Es una onda o es una partícula?. Depende (como diría un gallego). Depende, del instrumento y el experimento que realicemos, la luz nos aparecerá como partícula o como onda, pero nunca como una mezcla de las dos. En un experimento nos parecerá que es una partícula que llamamos fotón, y en otro bien distinto, como una onda electromagnética de cierta frecuencia y longitud de onda. Eso es ya bien conocido en la Física, y se llama dualidad onda-partícula. Sin embargo, independientemente del experimento que realicemos para saber si la luz es partícula o es onda, lo que sí parece ser invariante es que se nos manifiesta siempre como propagándose a cierta velocidad finita. Según el medio en que se propague, dicha velocidad tendrá un valor u otro, pero siempre el mismo si el medio es el mismo.

El vacío puede también ser considerado un medio. El realidad el vacío sería el único medio por el que puede propagarse la luz, y su velocidad sería la constante c. Sería pues una especie de éter, aunque la palabra éter es una palabra maldita para los maintreamófilos, ya que suplantaría al sacrosanto espacio-tiempo de la relatividad Einsteniana, y eso sería un sacrilegio (Einstein dijo: “no hay éter“, y eso es Verbum Dei). Cualquier otro medio distinto al vacío ya implica la existencia de materia intermedia entre emisor y receptor, con lo cual, la velocidad de propagación, en ese medio distinto al vacío, sería siempre menor a la original c. Pero, un fotón no debe ser nunca visto como una “pelotita” que revolotea por ahí, desde que es lanzada por el emisor hasta que es captada por el receptor. Los fotones, no son partículas libres, sino partículas virtuales. ¿Qué significa que una partícula sea virtual en lugar de libre?. La principal propiedad es que una partícula virtual parece haber sido emitida “hacia atrás en el tiempo” a la vez que “hacia adelante“. Existe una especie de transacción secreta entre el emisor del fotón y el receptor. Y esa transacción (“papeleo burocrático“) empieza a tener lugar mucho antes de que la partícula sea emitida realmente. ¿Por qué es eso así?. Imagina que una fuente emisora de fotones los lanzara al medio (el vacío), sin que existiera un receptor para cada una de esas partículas emitidas. Esos fotones, o algunos de ellos, nunca serían absorbidos. Y si un fotón no es absorbido no existe transferencia de energía, con lo cual, el fotón virtualmente nunca habría sido emitido. Esa es la razón por la cual, cuando un fotón es emitido, será con absoluta seguridad absorbido eventualmente por algún sistema material. ¿Qué ocurriría si una fuente emite realmente un fotón que nunca será absorbido?. Pues sencillamente que esa energía se perdería, y eso significaría, que el universo perdería energía, se enfriaría, sería un sistema termodinámico abierto. Seria un absurdo más. Pensemos por ejemplo, el caso contrario, un sistema material que absorbe un fotón, el cual nunca fue emitido por ninguna fuente. Señoras y señores, estamos ante la presencia de las famosas paradojas que tanto les gustan a los Einsteinianos y demás especímenes, mainstreamófilos. Esa energía, que salió del emisor, no llegaría a ninguna parte, sería como si la energía pudiera destruirse. Puesto que la energía no puede destruirse ni perderse para siempre, cuando un fotón es emitido es porque será absorbido con total seguridad tarde o temprano, y cuando un fotón es absorbido es porque antes fue emitido por una fuente. Ese es el realismo que hay que imponer en la física, el sentido común, nada de paradojas ni viajes en el tiempo.

Enfoquemos nuestra atención un poco más en el punto del que estamos hablando hoy: la velocidad de la luz en el vacío, c. De hecho, esa supuesta velocidad sería una velocidad de fase, c = vp, en contraposición a la velocidad de grupo, vg. Es decir, según el conocimiento de la Física oficial, la mainstreamófila, la del Libro Sagrado, toda onda posee una velocidad de fase y una velocidad de grupo, las cuales no siempre coinciden en un mismo valor. La velocidad de fase está definida como el cociente entre la longitud de onda y el periodo, vp = λ / T, o lo que es lo mismo, el cociente entre la frecuencia angular y el número de ondas, vp = ω / k. En cambio, en el Libro Sagrado de la Física Mainstreamófila, la velocidad de grupo se define como la derivada parcial de esa frecuencia angular respecto del número de ondas, es decir, vg = ∂ω / ∂k. Luego la información y la energía que transporta una onda electromagnética, viajarían por el espacio según la velocidad de grupo. Pero, si nada hay que disperse en el vacío a dicha onda electromagnética, entonces esa velocidad de grupo coincidiría con su velocidad de fase, vp = vg. Y eso siempre ocurre cuando la frecuencia angular, ω, es directamente proporcional al número de ondas, k.

Veamos ahora que significaría que esa velocidad de la luz en el vacío sea una constante c = 299792458 m/s, siempre la misma, independientemente del sistema de referencia desde el cual la midas. Imagina que viajas cómodamente en tu coche por la autopista, y cada cierto tiempo miras el velocímetro, (sobre todo para controlar que no te cace uno de esos radares ocultos y te pongan una multa por exceso de velocidad). Compruebas que tu velocidad es constante v = 90 km/h. Sin embargo, tu velocidad real podría ser otra muy distinta a esa que lees en el velocímetro del tu coche. Matemáticamente hablando, la velocidad que lees en tu velocimétrico es un residuo o resto. Imagina que tu velocímetro es como la esfera de un reloj, pero en lugar de tener 12 divisiones, una por cada hora, posee 299792458, una por cada metro por segundo. Cuando tu velocímetro marca el cero, entonces eso indicaría que tu coche está parado, o también que tu coche viaja a la velocidad de la luz, c. Pero, eso parece imposible, ¿no?. Si algo está parado, no puede estar viajando a la vez a otra velocidad distinta a cero, si se mide en el mismo sistema de referencia, ¿verdad?.

El problema es que el velocímetro de nuestro coche es circular, y sólo posee 299792458 divisiones, una por cada metro por segundo. Por lo tanto, toda velocidad v, superior a c, será matemáticamente truncada a su residuo:

\displaystyle v\equiv 0{\pmod {c}}
Hay una clase de partículas elementales llamadas leptones. Y nos preguntamos: ¿qué ocurriría si un electrón, que es un leptón, supera la velocidad de la luz, c?. Sí, ya sé que eso, en el libro gordo de los maintreamófilos, se dice que es imposible. Pero, ¿qué apariencia tendría en nuestro universo relativista tal “imposible fenómeno“?. Pues, si eso ocurriera, lo que veríamos sería un muón, viajando a una velocidad residual, es decir, una velocidad sublumínica. Y en contrapartida por truncar su velocidad superlumínica, su masa se incrementaría, de tal forma que la energía total de la partícula siguiera siendo la misma. Eso explicaría por qué vemos hasta tres generaciones de leptones, pero claro, esa explicación tan bizarra y estúpida está descartada por la sacrosanta verdad absoluta del libro gordo de los maintreamófilos.

Profundicemos un poco en esta idea de los leptones superlumínicos. Supongamos que un electrón supera la velocidad de la luz en el vacío, llegando hasta una

\displaystyle v_e = k c + \frac{c}{n}

Donde k y n son enteros positivos mayores que la unidad. Esto significa que el residuo es

\displaystyle \frac{c(k n + 1)}{n}\equiv 0{\pmod {c}} = \frac{c}{n}
Eso quiere decir que, en nuestro universo observable, lo que veríamos sería un muón viajando a una velocidad sublumínica, el residuo vμ = c/n. Luego la energía total del electrón superlumínico debe ser igual a la energía total del muón sublumínico (la energía total de una partícula es la suma de su energía potencial y su energía cinética):

\displaystyle m_e c^2 + K_e = m_{\mu}c^2 + K_{\mu}

Dividamos ambos lados de la ecuación por la energía potencial del electrón, m_e c^2:

\displaystyle 1+ \frac{K_e}{m_e c^2} = \frac{m_{\mu}}{m_e} + \frac{K_{\mu}}{m_e c^2}
Si aproximamos clásicamente la energía cinética del electrón y la del muón tendremos:

\displaystyle K_e=   \frac{m_e v_e^2}{2} = \frac{m_e c^2 (kn+1)^2}{2n^2}\\ \\ K_{\mu}=   \frac{m_{\mu} v_{\mu}^2}{2} =  \frac{m_{\mu} c^2}{2n^2}
Con lo cual, la relación entre la masa del electrón y la del muón sería:

\displaystyle 1+ \frac{(kn+1)^2}{2n^2}=  \frac{m_{\mu}}{m_e} + \frac{m_{\mu}}{m_e}\left(\frac{1}{2n^2}\right) \\ \\ \\  \frac{m_{\mu}}{m_e} = \frac{1+2 k n+2 n^2+k^2 n^2}{1+2 n^2}
Por otro lado, sabemos experimentalmente que la ratio entre la masa del muón y la del electron es:

\displaystyle  \frac{m_{\mu}}{m_e} = \frac{105.6583745}{0.510998928}=206.768
Eso significa que, desde la aproximación clásica, un electrón sólo podría superar la velocidad de la luz en el vacío (n = 1) a partir de cierto número de ciclos k de c, que serían:

\displaystyle k =-1\pm \sqrt{3\frac{m_{\mu}}{m_e} -2}=-1 \pm 24.8657
Luego, desde la aproximación clásica, para que un electrón emerja como un muón debe adquirir una velocidad superlumínica base de:

\displaystyle v_e = c(k + 1)= 25.8657 c
Pero, ¿por qué digo en el título de este artículo que “La velocidad de la luz no es una verdadera velocidad, es una latencia?. Pues lo digo, porque, no es la velocidad clásica con la que imaginamos a un objeto moverse en el espacio. Lo que llamamos luz no se mueve por ningún espacio, es simplemente una transacción cuántica no-local entre dos o más sistemas materiales. Es no-local porque se produce a distancia, sin que el intermediario, el fotón, tenga que pasar por todos los puntos intermedios del intervalo espacial que los separa. Por eso, esa transacción posee una latencia, es decir, un retardo. Al dividir el intervalo espacial por el retardo siempre obtendremos la constante c, si esa transacción es en el vacío. Y para que esa constante sea una verdadera constante, debe ocurrir que la latencia (el retardo) sea directamente proporcional al intervalo espacial. La implicación más interesante de que esto sea así es que esa transacción empieza instantaneamente, sin demora.

Por ejemplo, supongamos que hacemos un ping (eco) con un rayo láser sobre la superficie de la Luna.

Tardaremos aproximadamente 2.5 segundos en ver nuestro rayo Laser reflejado, es decir, que la transacción electromagnética duró (tuvo una latencia de) 1.25 segundos en la ida, y otros tantos 1.25 segundos en la vuelta (reflejo). Pero, la transacción en la ida comenzó instantaneamente desde el mismo momento en que el rayo láser es lanzado desde la superficie de la Tierra, y dicha transacción termina exactamente a los 1.25 segundos. ¿Qué significa esto?. Significa que si supiéramos y pudiéramos construir un detector de media transacción (ansible), nuestro ping lunar sería detectado en la mitad de tiempo. Sería como si el fotón emitido por el láser hubiera viajado a dos veces la velocidad de la luz en el vacío. Pero, esa tecnología de los detectores de submúltiplos de transacción electromagnética no parece que se vaya a hacer realidad pronto, sobre todo si tenemos en cuenta qué teorías físicas imperan en la actualidad, y cuánto tiempo queda aún para que sean desterradas definitivamente. Los detectores de submúltiplos no serán realidad al menos hasta dentro de 1000 años o más, si tenemos en cuenta el ritmo real al que avanza la ciencia y la tecnología humanas.

Pero, podemos entrever cómo funcionaría un detector de submúltiplos. Cuando hacemos ping sobre la Luna, sabemos que observaremos el fotón reflejado al cabo de 2.5 segundos, y ese sería un suceso seguro, es decir, existiría una probabilidad p = 1 de que al cabo de 2.5 detectaremos el reflejo. Con un detector de submúltiplos de media onda, esa probabilidad se reduciría a la mitad si queremos detectarlo al cabo 1.25 segundos. Supongamos que nuestro ping contiene la información de un bit, representado por un 1. Entonces para detectar el submúltiplo con probabilidad segura, p = 1, necesitaríamos más de una antena, separadas espacialmente cierta distancia, cuantas más mejor. Pero, el problema se complica, ya que al estar separadas las antenas, no podremos integrar clásicamente la información completa en tiempos inferiores al de la latencia de la transacción.

¿Qué sería básicamente un ansible de submúltiplos (detector)?. Básicamente sería una antena multibanda. Supongamos que una antena normal, estándar, emite un único fotón hacia un ansible que se encuentra a 299792458 metros en el vació, y lo sintonizamos a media onda. Entonces, ¿seremos capaces de detectar el fotón en la mitad de tiempo, es decir, en 0.5 segundos¿. El ansible conseguiría ver un submúltiplo de ese fotón, no el de la frecuencia principal, con lo cual, la información sería redundante en todos y cada uno de sus múltiplos y submúltiplos, y cada uno llegaría a su ansible detector (no necesariamente el mismo) a un tiempo distinto.

Anuncios

Posted in Astrofísica, Cosmología, Física de partículas, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Algunas pistas para saber si nuestro universo es una simulación informática

Posted by Albert Zotkin en septiembre 13, 2015

Simulation-Theory

Nuestro universo podría ser una especie de Matrix, es decir, una gigantesca simulación por ordenador. El ordenador donde se estaría ejecutando la simulación de nuestro universo podría ser un ordenador cuántico con una memoria de al menos unos 1080 qubits activos.

¿Podemos investigar si nuestro universo es una simulación creada en un simple ordenador cuántico?. Hay varios caminos para saber si eso es así o no. Una forma, que se me ocurre, sería prestar atención a pulsares binarios. Un pulsar binario es un sistema estelar en el que a menudo un pulsar y una estrella enana blanca orbitan el uno alrededor del otro. Se ha observado que los pulsares binarios pierden energía gravitacional con el tiempo, y eso se ha identificado como una prueba de la existencia de ondas gravitacionales, tal y como predice la Teoría General de la Relatividad. Dicha pérdida de energía gravitacional se evidencia en que la pareja orbital se acerca lentamente, con lo cual el periodo de rotación es cada vez menor. Por ejemplo, para el pulsar binario PSR B1913+16 se ha observado que el periodo orbital decae según esta gráfica de una parábola:

orbital-decay

Veamos ahora si es posible explicar ese decaimiento orbital mediante la hipótesis de que la naturaleza realiza cálculos orbitales cuánticos. Para ello debemos saber cómo trabaja un ordenador cuando hace una computación clásica. Existen una serie de registros en los que el ordenador almacena los datos de entrada, y después cuando aplica unos algoritmos a esos datos obtiene unos datos de salida que también almacena en unos registros. Pero, los registros no poseen precisión infinita, sino que poseen un limite finito. Por ejemplo, el número π sólo podría ser almacenado numéricamente hasta cierta cifra. Y ya empezamos vislumbrar en qué consiste ese decaimiento orbital. Fijémonos en la ecuación clásica del periodo orbital de dos cuerpos de masas M1 y M2 que orbitan, según las leyes de Kepler, a lo largo de una elipse:

\displaystyle T = 2\pi\sqrt{\frac{a^3}{G(M_1+M_2)}} (1)

donde a es es semieje mayor de la trayectoria elíptica.

¿Por qué, a cada revolución, el periodo T se va acortando?. Por la sencilla razón de que los registros que usa la naturaleza no pueden almacenar toda la información con una precisión infinita. Una parte muy importante de esa imprecisión sucesiva la tiene el número π. Supongamos que por cada revolución completada, la naturaleza debe ajustar el valor del semieje mayor según el ultimo valor obtenido para el periodo orbital. Es decir, la naturaleza debe reajustar la órbita de forma recursiva a cada paso así:

\displaystyle a = \sqrt[3]{\cfrac{G(M_1+M_2)T^2}{4\pi^2}} (2)

gas

El problema es que no hay “registros naturales” que puedan almacenar el valor exacto del número π ni de cualquier otro número irracional, con lo cual la órbita elíptica se reajusta siempre a la baja (decaimiento orbital) en cada revolución.

Para el caso que tratamos, la ecuación recursiva sería la siguiente:

\displaystyle a_n = \sqrt[3]{a_{n-1}^3} (3)
Otra forma de interpretar esa pérdida de información cuántica, que produce decaimiento orbital, es considerar que en nuestro universo se produce siempre un aumento de la entropía. Por otro lado, la mecánica cuántica no admite como correcta ninguna solución que se base en la perdida de información cuántica.

La conclusión terrorífica es que nuestro universo podría ser una gigantesca simulación informática, un gigantesco autómata celular. Todo universo en el que exista aumento global de la entropía tiene bastantes papeletas para ser un universo simulado, un universo virtual.

Saludos

Posted in Astrofísica, Autómatas celulares, Cosmología, Gravedad Cuántica, informática, Inteligencia artificial, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: