TARDÍGRADOS

Ciencia en español

Un intento de investigar la profundidad computacional de nuestro universo

Posted by Albert Zotkin en septiembre 16, 2015

fractal-univser

Hace ya algún tiempo hice una pequeña animación en flash, en la que mostraba cómo una pequeña simulación de interacción gravitatoria entre dos cuerpos es suficiente para convencernos de que existe pérdida de información, y eso se traduce en decaimiento orbital (acortamiento del periodo orbital, estrechamiento de la órbita): Aquí os dejo una pequeña captura del programa SWF en acción, que he subido a youtube:

Esa animación está gobernada por un sencillo programa informático (escrito en actionscript). En dicho programa uso la clásica ecuación de Newton de la gravitación universal para el cálculo de la aceleración. Las coordenadas espaciales de los dos cuerpos, calculadas fotograma a fotograma, deberían de dar trayectorias elípticas estables según las leyes de Kepler, pero se observa cómo poco a poco los cuerpos aproximan sus periastros hasta llegar a colisionar. Lo curioso de todo eso es que esa aproximación progresiva, que se puede traducir como pérdida de energía gravitacional, no está programada en el actionscript, sino que emerge por la imprecisión de los registros informáticos que almacenan los datos de la computación. Es decir, aunque las ecuaciones matemáticas que expresan la ley de gravitación son exactas y dan órbitas estables, su ejecución en un ordenador con registros finitos deja de ser exacta para pasar a mostrar degeneración orbital a lo largo del periodo de evolución del sistema gravitacional binario que simula.

Para los incrédulos, mostraré sucintamente las rutinas que escribí en el actionscript de la animación. En primer lugar presento la función que actualiza las coordenadas espaciales de cada uno de los dos cuerpos del sistema binario (podría ser un pulsar binario, como el PSR B1913+16, por ejemplo). Esta rutina es llamada siempre antes de que el programa dibuje cada fotograma:

function update2(m)
{

var cm_x;
var cm_y;
if(_root.r_frame==null){
cm_x=Stage.width/2;
cm_y=Stage.height/2;
}else{
cm_x=_root.r_frame._x;
cm_y=_root.r_frame._y;
}

var r = Math.sqrt(Math.pow((m._x-m.target_body._x),2)+Math.pow((m._y-m.target_body._y),2));
var accel = 30*m.mass*m.target_body.mass/Math.pow(r,2);
var cosx=(m._x-m.target_body._x)/r;
var cosy=(m._y-m.target_body._y)/r;
var accel_x = accel*cosx;
var accel_y = accel*cosy;
var s=1;
m.speed.x-=accel_x;
m.speed.y-=accel_y;
m._x+=m.speed.x-cm_x+Stage.width/2;
m._y+=m.speed.y-cm_y+Stage.height/2;

s=(m._y-m.target_body._y)<0?-1:1;
m._rotation=s*Math.acos(cosx)*180/Math.PI-90;

}

y seguidamente, presento las rutinas de lo que tiene que hacer cada cuerpo en cada frame, así como sus condiciones iniciales:

onClipEvent (load) {
speed = new Object;
speed.x=0;
speed.y=0.1;
mass=3.0;
density =1;
_width=20*Math.pow((3/(4*Math.PI))*mass/density,1/3);
_height=_width;
/*
_width=mass*4;
_height=mass*4;
*/
target_body=_root.a2;
//_visible=false;
body_type=1;//2 star, 1 planet
gotoAndStop(body_type);
this.rx=this._x;
this.ry=this._y;

}

onClipEvent (enterFrame) {
if(this, hittest(this.target_body))
_root.pause=true;

if(_root.pause or !_visible)return;
_root.update2(this);
}

Señoras y señores, en otras palabras. Lo que hasta ahora se viene llamando ondas gravitacionales es simplemente una falacia más. Dichas ondas no existen en nuestro universo. El decaimiento de las órbitas de los sistemas binarios, y por extensión, de cualquier sistema gravitatorio, es simple y llanamente debido a una pérdida de información cuántica en la computación que la naturaleza hace. Aunque nuestro universo podría ser infinito y eterno, el aumento de entropía en él sería un signo inequívoco de esa pérdida de información cuántica. Nuestro universo es un holograma, un autómata celular, no es la última realidad profunda. Pero, alguien podría preguntarse : “¿cómo es posible que si el universo es infinito y eterno pueda ser al mismo tiempo un holograma, un autómata celular?. Esos automatas celulares requerirían unos registros cuánticos infinitos”. Esa pregunta es muy razonable, pero un universo infinito y eterno no está en contradicción con que sea una simulación ejecutada desde registros cuánticos finitos. Sólo se requiere que la simulación del universo sea un holograma fractal. Veamos, este video de Musicians With Guns en el que nos presenta un fractal infinito, pero obviamente ejecutado desde un ordenador (cuyos registros, sabemos sin duda, que son de capacidad finita):

Un fractal, como el que nos ha presentado Musicians With Guns, no es más que una sencillita ecuación matemática acompañada de una lista de condiciones de inclusividad, y todo ello define lo que es el conjunto fractal (es decir, un conjunto de elementos que cumplen ciertas condiciones). Cuando dibujamos el fractal, los pixeles pertenecientes al fondo (elementos que no pertenecen al conjunto fractal) se pintan con un color y los pixeles que representan a elementos del conjunto se pintan de otro color que contraste con el primero, de modo que podamos destacar con facilidad el fractal del fondo.

Saludos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: