TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘materia’

Un pequeño apunte sobre el Premio Nobel de Física 2015: oscilación de neutrinos

Posted by Albert Zotkin en febrero 4, 2016

El año pasado la Real Academia de las Ciencias de Suecia entregó el Premio Nobel de Física 2015 al japonés Takaaki Kajita y al canadiense Arthur B. McDonald “por el descubrimiento de las oscilaciones de neutrinos que demuestran que estas partículas subatómicas tienen masa” (Rey Carlos Gustavo de Suecia entrega los Premios Nobel 2015).

Los neutrinos son unas minúsculas partículas elementales que no poseen carga eléctrica, pero poseen algo extraño llamado sabor (flavor). Existen tres clases de sabores, electrónico, muónico y tauónico. Es decir, estas diminutas partículas son como unas pequeñas chuches de tres colores o sabores. neutrinos1

Viajan por el espacio a velocidades ultrarápidas y casi constantes, sin que a penas se vean frenadas ni desviadas al atravesar la materia. Se ha calculado que por cada centímetro cuadrado de la superficie terrestre pasan unos 6.5 × 1010 neutrinos por segundo procedentes del sol (para superficies que apunten hacia él). Se sabe que los neutrinos que salen del Sol son todos de sabor eléctrónico, pero al ser detectados algunos en la Tierra se comprueba que hay de los tres sabores en diferentes proporciones. Eso quiere decir que durante su viaje hacia la Tierra algunos neutrinos eléctrónicos oscilaron y se convirtieron en muónicos o tauónicos. Pero para que un neutrino pueda oscilar necesita tener masa, por muy pequeña que esa sea.

Sorprendentemente, hay muchas evidencias de que el cuadrado de las masas de los neutrinos es negativo. Eso es bastante exótico, por no decir intrigante. ¿Qué significa que los cuadrados de las masas de los neutrinos sean valores negativos?. Pues sencillamente que dichas masas son números imaginarios (números complejos puros). Y la primera consecuencia de eso es que son partículas que viajan a una velocidad superior a la de la luz en el vacío. ¿Por qué ocurre eso?. En los experimentos diseñados para medir las masas de los neutrinos, se obtienen esos resultados porque se usan los formalismos matemáticos de la Relatividad Especial. Más exactamente sus relaciones de dispersión entre energía total (E) y momento (p):

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E = m_0 c^2 \gamma \\ \\  \gamma = \cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} (1)
La energía total E es siempre un escalar, un número real positivo. Si una partícula supera la velocidad de la luz en el vacío, v>c, entonces desde la Relatividad Especial de Einstein se obtiene un factor de Lorentz γ imaginario. Pongamos primero el factor de Lorentz de esta forma:

\displaystyle\gamma=\cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} = \cfrac{1}{\sqrt{-1}\sqrt{\frac{v^2}{c^2}-1}}= \\ \\  = \pm \cfrac{i}{i^2 \sqrt{\frac{v^2}{c^2}-1}}=\mp \cfrac{i}{\sqrt{\frac{v^2}{c^2}-1}} (2)

porque \sqrt{-1}=\pm i

y eso significa que, si asumimos que la energía total es siempre un escalar positivo, la masa de un neutrino será un número imaginario (o lo que es lo mismo, un neutrino es un tachión):

\displaystyle E= m_0 c^2 \gamma \\ \\  m_0 \gamma = \frac{E}{c^2} \\ \\  m_{\text{neutrino}}= m_0  i (3)
Observamos con estupor cómo la Relatividad Especial no es la mejor teoría del mundo para analizar la cinemática ni la dinámica de partículas superlumínicas. Para analizar mejor ese tipo de partículas, de las que los neutrinos parecen formar parte, he desarrollado las siguientes relaciones de dispersión que se enmarcan dentro de la Relatividad Galileana. La energía total de una partícula con masa en reposo m0 es :

\displaystyle E = m_0 c^2 \cosh\left( \frac{v}{c}\right) (4)

y su momento lineal viene expresado así:

\displaystyle p= m_0 c \sinh \left( \frac{v}{c}\right) (5)
Esto implica, ni más ni menos, que la relación energía-momento sigue poseyendo la misma forma que la de la Relatividad Especial, pero con el significativo hecho de que no existe ninguna velocidad superior límite:

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E^2 -(pc)^2  = m_0^2c^4  \\ \\   m_0^2c^4 \cosh^2 \left( \frac{v}{c}\right) -  m_0^2c^4 \sinh^2 \left( \frac{v}{c}\right) = m_0^2c^4 \\ \\   \cosh^2 \left( \frac{v}{c}\right) -   \sinh^2 \left( \frac{v}{c}\right) = 1 (6)
que es estricta y matemáticamente la relación existente entre coseno y seno hiperbólicos. Vemos desde esta Relatividad Galileana, cómo cuando una partícula iguala la velocidad de la luz en el vacío, su energía total no es infinita, como predice la Relatividad Especial, sino que es un escalar finito:

\displaystyle E_c = m_0 c^2 \cosh\left( \frac{c}{c}\right) = m_0 c^2 \cosh 1 = \\  E_c = m_0 c^2 1.543080634815243778477905620757061682601529112365[9] (7)
Los neutrinos pueden ser tratados desde esta teoría de una forma más natural que desde la Relatividad Especial. Es decir, ya no surge ninguna masa imaginaria, es todo real y natural. Las predicciones teóricas con estos nuevos formalismos se ajustan a los resultados experimentales de la misma forma que las de de la Relatividad Especial. Dicho de otro modo, no hay, hoy por hoy, con la tecnología actual más avanzada, forma alguna de llegar a un punto donde se pueda afirmar con rotundidad que el experimento diferencia entre una y la otra teoría. Para poder distinguir experimentalmente una predicción entre estas dos teorías antagónicas, habría que poder discriminar con precisiones de medida tales que, a partir de un punto, el valor del factor relativista de Lorentz y el del coseno hiperbólico de la beta, β = v/c, fueran visiblemente distintos. Esto encierra una discriminación en expansiones de series de Taylor como la siguiente:

\displaystyle \cosh \beta =1+\frac{\beta ^2}{2}+\frac{\beta ^4}{24}+\frac{\beta ^6}{720}+\frac{\beta ^8}{40320}+\frac{\beta ^{10}}{3628800}\dots \\ \\  \gamma = 1+\frac{\beta ^2}{2}+\frac{3 \beta ^4}{8}+\frac{5 \beta ^6}{16}+\frac{35 \beta ^8}{128}+\frac{63 \beta ^{10}}{256}\dots (8)
Es decir, para poder afirmar que una de esas dos teorías pasa el test experimental y la otra no, habría que alcanzar una precesión experimental tal que se discriminara entre las cuartas potencias de la beta, β = v/c: cosh
Alguien escéptico de lo que aquí afirmo podría decir que en el acelerador de partículas más puntero, el LHC, se alcanzan velocidades del orden de v = 0,999999991c, que equivale a un factor de Lorentz de γ = 7460. Por lo que en ningún caso se observan velocidades superlumínicas. Pero, eso no es exactamente así, porque lo que se miden en el LHc no son velocidades, sino energías y momentos. Las velocidades de los protones que circulan por el LHC son deducidas teóricamente aplicando los formalismos matemáticos de la Relatividad Especial. En modo alguno, esas velocidades son medidas directamente. Veamos qué velocidad predice la Relatividad Galileana cuando aplicamos sus formalismos expresados arriba en (4) y (5), para una energía total de un protón de 7 TeV:

\displaystyle v = c\; \text{arcosh} \left( \cfrac{E}{m_0 c^2}\right) (9)

La masa del protón es m_0 = 938.3\; \text{MeV}/c^2. Por lo tanto, m_0 c^2 = 9.383 \times 10^{-4} \; \text{TeV}. Esto da un valor para la velocidad de:

\displaystyle v = c\; \text{arcosh} \left( \cfrac{7}{9.383 \times 10^{-4}}\right)=9.6105\;c (10)
Pero volviendo al tema de la velocidad de los neutrinos, hace ya algunos años se hizo un experimento para medir dicha velocidad, y el resultado fue muy polémico, ya que concluía que antineutrinos muónicos daban velocidades ligeramente superior a la de la luz en el vacío. Este experimento se llamó OPERA, y afirmaba haber medido velocidades superlumínicas en un chorro de antineutrinos muónicos emitido desde el CERN hasta Gran Sasso, viajando una distancia de 730 km. Se observó con sorpresa que dichos neutrinos llegaban antes que si viajaran a la velocidad de c = 299792458 m/s. Esa desviación respecto de c correspondía exactamente a:

\displaystyle \cfrac{v-c}{c}=2.37\pm 0.32 \times 10^{-5} (10)
Esa es una desviación demasiado grande respecto a c, por lo que indicaría que la Relatividad Especial está acabada. Mucho mas tarde se “comprobó” (lo pongo entre comillas porque siempre queda un olorcillo conspiratorio) que todo se debía a un error sistemático. Se comprobó que un cable de fibra óptica mal conectado era el responsable principal de esa desviación. ¿Cuál es el problema de todo esto?. El problema del cable mal apretado consiste básicamente en que no es ciencia es sólo tecnología, y eso da pie a que la conspiración aflore de forma natural. ¿Cuántos notarios constataron que el cable estaba mal apretado?. ¿Cuántos testigos había en el momento en que se descubrió que un cable estaba mal conectado?. Eso no es ciencia, es tecnología llevada al juzgado de guardia. Por eso, siempre está la sombra de la sospecha de la conspiración para dar carpetazo al tema de la velocidad de los neutrinos. Todos nos creemos que los neutrinos no superaron nunca la velocidad c, la Relatividad Especial permanece tan válida como siempre, y todos tan contentos. A nadie se le volverá a ocurrir nunca repetir ese experimento con los cables bien apretados, no sea que vuelva el fantasma de la velocidad superlumínica, y entonces haya que ver a qué aparato endosamos el error sistemático para que la eterna Relatividad Especial siga siendo nuestra única teoría.

Anuncios

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , | Leave a Comment »

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle I = Mr^2  (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle I = \sum m_ir_i^2  (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle r = \cfrac{2GM}{c^2} (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\  \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\  v_e = \sqrt{\frac{2GM}{r}} (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Inteligencia alienígena: Sorprendente resolución de la paradoja de Fermi

Posted by Albert Zotkin en febrero 21, 2014

Buenos días amigos incondicionales de tardigrados. Hoy voy a hablar un poco sobre una sorprendente solución a la paradoja de Fermi. La paradoja de Fermi puede ser formulada sucintamente así:

“si se supone que existen muchas civilizaciones alienígenas inteligentes, con nivel tecnológico muy avanzado, ¿porqué aún no tenemos noticias de ellas ni nos han visitado?”

Una resolución a tal paradoja, se me ocurrió hace poco cuando escribia el post ¿Por qué en nuestro universo observable hay más materia que antimateria?. La mayor parte de las civilizaciones alienígenas inteligentes habitarían en la cara de la antimateria, es decir su “materia ordinaria” seria lo que para nosotros es la antimateria, y por lo tanto sus “ondas electromagnéticas” no serian detectables por nuestros detectores hechos con materia ordinaria. Una nave alienígena no podria aproximarse a nuestro sistema solar porque colisionaria con la materia que va encontrando a su paso y por lo tanto acabaría desintegrada. Para protegerse necesitaría de un escudo de “materia ordinaria”. Pero igual que para nosotros es dificilísimo obtener un gramo de átomos de anti-hidrógeno, para esa supuesta civilización alienígena no sería menos difícil.

ejemplar de la especie Obzzkoj

ejemplar de la especie Obzzkoj

Sin embargo, si una civilización alienígena y sus veleros interestelares, se encuentra a suficiente distancia de nosotros, no necesitaría vivir en el lado de la antimatería, sino que, como digo en ¿Por qué en nuestro universo observable hay más materia que antimateria?, la materia ordinaria conjuga su carga respecto a nosotros cuando supera un Radio de Hubble . Igualmente una civilización alienígena en el lado de la antimateria que se encontrara a más de 1 radio de Hubble, podría ser “visible” desde nuestra ubicación porque su luz nos llegaría como ondas electromagnéticas ordinarias, como las produce la materia ordinaria. Esta hipótesis nos lleva a algo aún más espectacular, y es postular que lo que en astronomía llamamos quasars, podrían ser realmente galaxia de antimateria, que por su lejanía se hacen visibles a nuestros ojos, como si fueran galaxias de materia ordinaria, pero su luz nos llegaria difusa debido a esa lejania y nos impediría observar sus detalles de estructura interna.

Reflexionando un poco más sobre la discriminación entre materia y antimateria, es ahora más evidente el hecho de que la naturaleza no puede distinguir entre carga eléctrica negativa y carga eléctrica positiva. ¿Cómo saber que dos partículas que se repelen por sus cargas eléctricas corresponde a una interacción entre dos cargas negativas o dos cargas positivas?. Puesto que en la naturaleza no existe esa discriminación, ambas cargas deben ser lo mismo pero actuando desde caras opuestas de un espacio dual, el cual a largas distancias se cierra como una banda de de Möbius, resultando en un espacio de una única cara y sin bordes.

Saludos anti-matéricos a todos

Posted in Astrofísica, Cosmología, Exobiología, Uncategorized | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: