TARDÍGRADOS

Ciencia en español

Un pequeño apunte sobre el Premio Nobel de Física 2015: oscilación de neutrinos

Posted by Albert Zotkin en febrero 4, 2016

El año pasado la Real Academia de las Ciencias de Suecia entregó el Premio Nobel de Física 2015 al japonés Takaaki Kajita y al canadiense Arthur B. McDonald “por el descubrimiento de las oscilaciones de neutrinos que demuestran que estas partículas subatómicas tienen masa” (Rey Carlos Gustavo de Suecia entrega los Premios Nobel 2015).

Los neutrinos son unas minúsculas partículas elementales que no poseen carga eléctrica, pero poseen algo extraño llamado sabor (flavor). Existen tres clases de sabores, electrónico, muónico y tauónico. Es decir, estas diminutas partículas son como unas pequeñas chuches de tres colores o sabores.
neutrinos1

Viajan por el espacio a velocidades ultrarápidas y casi constantes, sin que a penas se vean frenadas ni desviadas al atravesar la materia. Se ha calculado que por cada centímetro cuadrado de la superficie terrestre pasan unos 6.5 × 1010 neutrinos por segundo procedentes del sol (para superficies que apunten hacia él). Se sabe que los neutrinos que salen del Sol son todos de sabor eléctrónico, pero al ser detectados algunos en la Tierra se comprueba que hay de los tres sabores en diferentes proporciones. Eso quiere decir que durante su viaje hacia la Tierra algunos neutrinos eléctrónicos oscilaron y se convirtieron en muónicos o tauónicos. Pero para que un neutrino pueda oscilar necesita tener masa, por muy pequeña que esa sea.

Sorprendentemente, hay muchas evidencias de que el cuadrado de las masas de los neutrinos es negativo. Eso es bastante exótico, por no decir intrigante. ¿Qué significa que los cuadrados de las masas de los neutrinos sean valores negativos?. Pues sencillamente que dichas masas son números imaginarios (números complejos puros). Y la primera consecuencia de eso es que son partículas que viajan a una velocidad superior a la de la luz en el vacío. ¿Por qué ocurre eso?. En los experimentos diseñados para medir las masas de los neutrinos, se obtienen esos resultados porque se usan los formalismos matemáticos de la Relatividad Especial. Más exactamente sus relaciones de dispersión entre energía total (E) y momento (p):

\displaystyle E^2 = m_0^2c^4 + (pc)^2 \\ \\  E = m_0 c^2 \gamma \\ \\  \gamma = \cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} (1)
La energía total E es siempre un escalar, un número real positivo. Si una partícula supera la velocidad de la luz en el vacío, v>c, entonces desde la Relatividad Especial de Einstein se obtiene un factor de Lorentz γ imaginario. Pongamos primero el factor de Lorentz de esta forma:

\displaystyle  \gamma=\cfrac{1}{\sqrt{1-\frac{v^2}{c^2}}} = \cfrac{1}{\sqrt{-1}\sqrt{\frac{v^2}{c^2}-1}}= \\ \\  = \pm \cfrac{i}{i^2 \sqrt{\frac{v^2}{c^2}-1}}=\mp \cfrac{i}{\sqrt{\frac{v^2}{c^2}-1}} (2)

porque \sqrt{-1}=\pm i

y eso significa que, si asumimos que la energía total es siempre un escalar positivo, la masa de un neutrino será un número imaginario (o lo que es lo mismo, un neutrino es un tachión):

\displaystyle  E= m_0 c^2 \gamma \\ \\  m_0 \gamma = \frac{E}{c^2} \\ \\  m_{\text{neutrino}}= m_0  i (3)
Observamos con estupor cómo la Relatividad Especial no es la mejor teoría del mundo para analizar la cinemática ni la dinámica de partículas superlumínicas. Para analizar mejor ese tipo de partículas, de las que los neutrinos parecen formar parte, he desarrollado las siguientes relaciones de dispersión que se enmarcan dentro de la Relatividad Galileana. La energía total de una partícula con masa en reposo m0 es :

\displaystyle  E = m_0 c^2 \cosh\left( \frac{v}{c}\right) (4)

y su momento lineal viene expresado así:

\displaystyle  p= m_0 c \sinh \left( \frac{v}{c}\right)  (5)
Esto implica, ni más ni menos, que la relación energía-momento sigue poseyendo la misma forma que la de la Relatividad Especial, pero con el significativo hecho de que no existe ninguna velocidad superior límite:

\displaystyle  E^2 = m_0^2c^4 + (pc)^2 \\ \\  E^2 -(pc)^2  = m_0^2c^4  \\ \\   m_0^2c^4 \cosh^2 \left( \frac{v}{c}\right) -  m_0^2c^4 \sinh^2 \left( \frac{v}{c}\right) = m_0^2c^4 \\ \\   \cosh^2 \left( \frac{v}{c}\right) -   \sinh^2 \left( \frac{v}{c}\right) = 1   (6)
que es estricta y matemáticamente la relación existente entre coseno y seno hiperbólicos. Vemos desde esta Relatividad Galileana, cómo cuando una partícula iguala la velocidad de la luz en el vacío, su energía total no es infinita, como predice la Relatividad Especial, sino que es un escalar finito:

\displaystyle  E_c = m_0 c^2 \cosh\left( \frac{c}{c}\right) = m_0 c^2 \cosh 1 = \\  E_c = m_0 c^2 1.543080634815243778477905620757061682601529112365[9]  (7)
Los neutrinos pueden ser tratados desde esta teoría de una forma más natural que desde la Relatividad Especial. Es decir, ya no surge ninguna masa imaginaria, es todo real y natural. Las predicciones teóricas con estos nuevos formalismos se ajustan a los resultados experimentales de la misma forma que las de de la Relatividad Especial. Dicho de otro modo, no hay, hoy por hoy, con la tecnología actual más avanzada, forma alguna de llegar a un punto donde se pueda afirmar con rotundidad que el experimento diferencia entre una y la otra teoría. Para poder distinguir experimentalmente una predicción entre estas dos teorías antagónicas, habría que poder discriminar con precisiones de medida tales que, a partir de un punto, el valor del factor relativista de Lorentz y el del coseno hiperbólico de la beta, β = v/c, fueran visiblemente distintos. Esto encierra una discriminación en expansiones de series de Taylor como la siguiente:

\displaystyle  \cosh \beta =1+\frac{\beta ^2}{2}+\frac{\beta ^4}{24}+\frac{\beta ^6}{720}+\frac{\beta ^8}{40320}+\frac{\beta ^{10}}{3628800}\dots \\ \\  \gamma = 1+\frac{\beta ^2}{2}+\frac{3 \beta ^4}{8}+\frac{5 \beta ^6}{16}+\frac{35 \beta ^8}{128}+\frac{63 \beta ^{10}}{256}\dots  (8)
Es decir, para poder afirmar que una de esas dos teorías pasa el test experimental y la otra no, habría que alcanzar una precesión experimental tal que se discriminara entre las cuartas potencias de la beta, β = v/c:
cosh
Alguien escéptico de lo que aquí afirmo podría decir que en el acelerador de partículas más puntero, el LHC, se alcanzan velocidades del orden de v = 0,999999991c, que equivale a un factor de Lorentz de γ = 7460. Por lo que en ningún caso se observan velocidades superlumínicas. Pero, eso no es exactamente así, porque lo que se miden en el LHc no son velocidades, sino energías y momentos. Las velocidades de los protones que circulan por el LHC son deducidas teóricamente aplicando los formalismos matemáticos de la Relatividad Especial. En modo alguno, esas velocidades son medidas directamente. Veamos qué velocidad predice la Relatividad Galileana cuando aplicamos sus formalismos expresados arriba en (4) y (5), para una energía total de un protón de 7 TeV:

\displaystyle  v = c\; \text{arcosh} \left( \cfrac{E}{m_0 c^2}\right)  (9)

La masa del protón es m_0 = 938.3\; \text{MeV}/c^2.
Por lo tanto, m_0 c^2 = 9.383 \times 10^{-4} \; \text{TeV}. Esto da un valor para la velocidad de:

\displaystyle  v = c\; \text{arcosh} \left( \cfrac{7}{9.383 \times 10^{-4}}\right)=9.6105\;c (10)
Pero volviendo al tema de la velocidad de los neutrinos, hace ya algunos años se hizo un experimento para medir dicha velocidad, y el resultado fue muy polémico, ya que concluía que antineutrinos muónicos daban velocidades ligeramente superior a la de la luz en el vacío. Este experimento se llamó OPERA, y afirmaba haber medido velocidades superlumínicas en un chorro de antineutrinos muónicos emitido desde el CERN hasta Gran Sasso, viajando una distancia de 730 km. Se observó con sorpresa que dichos neutrinos llegaban antes que si viajaran a la velocidad de c = 299792458 m/s. Esa desviación respecto de c correspondía exactamente a:

\displaystyle  \cfrac{v-c}{c}=2.37\pm 0.32 \times 10^{-5} (10)
Esa es una desviación demasiado grande respecto a c, por lo que indicaría que la Relatividad Especial está acabada. Mucho mas tarde se “comprobó” (lo pongo entre comillas porque siempre queda un olorcillo conspiratorio) que todo se debía a un error sistemático. Se comprobó que un cable de fibra óptica mal conectado era el responsable principal de esa desviación. ¿Cuál es el problema de todo esto?. El problema del cable mal apretado consiste básicamente en que no es ciencia es sólo tecnología, y eso da pie a que la conspiración aflore de forma natural. ¿Cuántos notarios constataron que el cable estaba mal apretado?. ¿Cuántos testigos había en el momento en que se descubrió que un cable estaba mal conectado?. Eso no es ciencia, es tecnología llevada al juzgado de guardia. Por eso, siempre está la sombra de la sospecha de la conspiración para dar carpetazo al tema de la velocidad de los neutrinos. Todos nos creemos que los neutrinos no superaron nunca la velocidad c, la Relatividad Especial permanece tan válida como siempre, y todos tan contentos. A nadie se le volverá a ocurrir nunca repetir ese experimento con los cables bien apretados, no sea que vuelva el fantasma de la velocidad superlumínica, y entonces haya que ver a qué aparato endosamos el error sistemático para que la eterna Relatividad Especial siga siendo nuestra única teoría.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: