TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Advanced LIGO’

La fe en las ondas gravitacionales mueve montañas: Cuando confundes el cero con la indeterminación no apuntas a una kilonova sino a una cero-nova

Posted by Albert Zotkin en octubre 20, 2017

¿Qué ocurrió el 17 de Agosto de este año 2017?. Si leemos el interesante artículo del prestigioso divulgador científico Govert Schilling que escribió el otro día para la revista Sky & Telescope titulado “Astronomers Catch Gravitational Waves from Colliding Neutron Stars”, nos dice lo siguiente:
… El Jueves 17 de Agosto a las 12:41:05 horas UTC, LIGO cazó su quinta señal gravitacional confirmada, denominada ya la GW170817. Pero esta señal duró mucho más que las cuatro primeras: en lugar de una fracción de segundo, como en las anteriores detecciones, esta vez las ondulaciones del espaciotiempo duraron unos grandiosos noventa segundos, y la frecuencia se incrementó desde unas pocas decenas de hercios hasta un kilohercio – que es la máxima frecuencia que LIGO puede observar.
Esa señal gravitacional es la esperada por la teoría para dos estrellas de neutrones que orbitan estrechamente la una sobre la otra y con masas ligeramente inferiores a dos masas solares cada una. Daban cientos de vueltas por segundo, la una alrededor de la otra (mas rápido que la batidora que tienes en tu cocina), con lo que la velocidad tangencial de cada una de ellas era una fracción significativa de la velocidad de la luz. Las ondas que estaban siendo emitidas por ese par de masas acelerando centrífugamente vaciaban rápidamente el sistema binario de energía orbital, y al final las estrellas acabaron chocando. Esa colisión ocurrió a una distancia de la Tierra de unos 150 millones de años-luz.
Los astrónomos ya conocían la existencia de estas estrellas binarias de neutrones desde 1974, cuando Russell Hulse y Joseph Taylor descubrieron la primera, con una separación entre ellas de unos pocos millones de kilómetros y un periodo orbital de 1.75 horas. Pero, la separación y el periodo cambian con el tiempo. De hecho, para las estrellas binarias el periodo orbital decrece lentamente con el tiempo a lo largo de los años, y la Teoría General de la Relatividad de Einstein predice ese decrecimiento con mucha precisión afirmando que la energía orbital que pierde el sistema es la misma que poseen las ondas gravitacionales que emite. Dentro de unos 300 millones de años, según la teoría, la binaria Hulse-Taylor colapsará. …
Bien, ya sabemos cómo se comportan los sistemas binarios: decaen según la Teoría General de la Relatividad. Pero lo que a mi me interesa ahora es poner el énfasis en la fecha y hora de la supuesta observación de LIGO, que dicen que fue a las 12:41:04 horas UTC (Tiempo Universal Coordinado). Evidentemente, si vamos a los archivos de sus bases de datos, nos ofrecerán en bandeja los datos en crudo captados por los detectores a esa hora, que es siempre lo mismo, un ruido Gausiano de fondo, como el de un televisor encendido cuando no sintoniza ninguna emisora, sólo ruido que llega desde todas direcciones a la antena. Ese ruido, en cada uno de los detectores, pasa por una serie de filtros y plantillas de forma automática (o no), es decir, es procesado. A mí me da que ese procesado es muy parecido al que hacen los estadísticos con sus encuestas, lo cocinan al final de tal forma que hay sesgo para que salga más de lo que ellos esperan que otra cosa. Si pones un filtro rosa, el preparado saldrá rosado, si lo pones azul, el pájaro saldrá azulado, ahi está el sesgo, en las plantillas y filtros del procesado. Fijémonos ahora lo que dice nuestro divulgador científico Govert Schilling en el mismo artículo suyo respecto a la colaboración europea VIRGO, la cual, ya te lo digo yo, no vio el evento GW170817 de marras. Pero, se supone que LIGO necesitaba como agua de Mayo esa señal de VIRGO, que nunca le llegó, para poder triangular y localizar las coordenadas celestes del evento GW170817
… Encontrar contrapartidas ópticas, ya sea para las ondas gravitacionales de Einstein o para estallidos de rayos gamma, ayudaría bastante a la hora de dejar el asunto bien zanjado. Desgraciadamente, los astrónomos no siempre pueden localizar con precisión en el cielo las fuentes de las señales que observan. Por ejemplo, la franja de error del telescopio espacial Fermi mide un diámetro de unas pocas decenas de grados (la Luna llena en el cielo ocupa medio grado de diámetro a nuestro ojo). Y el satélite Swift de la NASA, que a veces capta eventos de Fermi con su telescopio de rayos-X, que es más preciso, no vio ninguna emisión de rayos-X trás la emisión GRB 170817A.

En cuanto a la señal de ondas gravitacionales se refiere, la situación aparecía incluso peor. El evento fué observado por los dos detector LIGO, el de Hanford en en el estado Washington y el de Livingston en Louisiana (aunque se tardó un poco más de tiempo en Livingston hasta que la señal pudo por fin ser recuperada después de un fallo técnico). De la pequeña diferencia de llegada de la señal en ambos detectores (unos pocos milisegundos) fue posible trazar el origen de las ondas gravitacionales, situándolo en el cielo dentro de una estrecha franja alargada en forma de banana. Pero aunque esa banana era extremadamente fina, en este caso particular, también era extremadamente larga.

Esa fina y alargada banana de LIGO atravesaba la franja de error de Fermi, en la constelación de La Virgen y La Hidra. Desgraciadamente, la región donde se solapaban era aún demasiado extensa como para poder enfocar una búsqueda exitosa para contrapartidas ópticas del evento, el cual podría ser extremadamente débil.

Pero, esperen un momento – ¿qué pasa con el tercer detector de ondas gravotacionales situado en Italia?. VIRGO ha estado funcionando en tandem con LIGO desde el 1 de Agosto. Las diferencias en los tiempos llegada de ondas para tres detectores hace posible que la triangulación de la localización de la fuente sea mucho más precisa. De hecho, eso fue exactamente lo que ocurrió tres días antes con el evento GW170817 de dos agujeros negros funciéndose. Por lo tanto, ¿no podrían las observaciones de VIRGO del GW170817 proporcionar alguna respuesta?.

Casi dos meses despés de los eventos, Vicky Kalogera aun está con la adrenalina alta cuando explica el papel que el observatorio europeo VIRGO tuvo en la resolución del caso. “En Agosto”, dice ella, “yo estaba de vacaciones con mi familia en Colorado y en Idaho, desde donde observaríamos el 21 de Agosto el eclipse total de Sol. Prometí que no estaría trabajando durante esos días. Entonces vino el GW170814 y tres días más tarde el evento de las estrella de neutrones. Desde entonces he estado trabajando con mi portatil y telecomunicada.

Sorpendentemente, nos cuenta, VIRGO, no se disparó con el GW180817. La señal de la onda de Einstein de 90 segundos de duración de las estrellas de neutrones fusionándose apenas si quedó registrada, aunque el instrumento europeo no habria tenido ningún problema para detectarla. “Lo nuevo de todo esto” dice Kalogera, ” es que la no detección de VIRGO se convirtió en la clave para localizar la fuente”

Los interferómetros laser como los de LIGO y VIRGO pueden detectar ondas gravitacionales desde casi cualquier dirección,. Pero, debido a su diseño, hay cuatro regiones en el cielo sobre el horizonte local del instrumento para las que la detección es mucho más debil que la media. En el mismo centro de esas regiones hay puntos ciegos. VIRGO no registró ninguna onda gravitacional intensa porque la fuente de esas ondas estaba localizada cerca de uno de sus puntos ciegos.

Resultó que ese punto coincidía con la región de solapamiento entre la banana de LIGO y la franja de error de Fermi. Dados los límites superiores en la seña de VIRGO, los astrónomos pudieron cercar más estrechamente esa región del cielo y definir un área de tan sólo unos 28 grados cuadrados.
Todo muy bonito ¿verdad, amables lectores?. Resulta, según nos cuentan, que debido a que VIRGO no observó onda alguna, se pudo definir con mayor precisión donde estaba la fuente. Es decir, la triangulación es como sigue: a la franja de error de Fermi se le intersecta la banana de LIGO, y después a la región que queda se le intersecta la de uno de los cuatro puntos ciegos de VIRGO, para definir al final la región donde esta la fuente, y por lo tanto hacia donde mirar para ver las contrapartidas ópticas.

Una pregunta muy capciosa: ¿Y si VIRGO sí hubiera visto la onda gravitacional, pero al trinagular con LIGO hubiera dado una región fuera de la franja de Fermi?.

Otra pregunta capciosa. VIRGO tiene cuatro puntos ciegos ¿por qué se elige aquel que coincide con la franja de solapamiento y se desechan los otros tres?

Otra pregunta capciosa: ¿Por que se asume que VIRGO detectó algo, siendo perfectamente posible que pudo no haber detectado nada? y en tal caso, ¿Por qué regla de tres, una no-detección que es una indeterminación se transforma por arte de magia en una si-detección?.

Para divertirme un poco, y comprobar el efecto de toda esta capciosidad, me pasé ayer por el blog de la Mula Francis en Naukas, en el que estoy vetado de por vida, por decirle las verdades. Asi que entré con el nombre y el correo de mi amiga Conchi en la sección de comentarios de su post Las alertas de las señales GW170817 (LIGO-Virgo) y GRB 170817A (Fermi/Integral), y dejé lo siguiente, con sus correspondientes réplica y contrarréplica:
Concha Cuetos Concha Cuetos

Hola queridísima Mula Francis. Tengo unas cuantas preguntillas capciosas para ti, porque sé que te gustan mucho, y siempre te hacen mucha gracia.

Los interferómetros tipo advanced-LIGO como el de Virgo tienen cuatro ángulos muertos, no uno, como pareces sugerir en tu artículo.:

1. ¿Por qué eligen, de los cuatro posibles ángulos muertos de Virgo, el que cae dentro de la franja de error del evento GRB 170817A que observó Fermi?.
2. ¿Es porque alguien cómodamente en su despacho intentaba cuadrar números?.
3. ¿No te parece la decisión de elegir el angulo muerto que más favorece la hipótesis un sesgo brutal que pasará a los anales de la historia?. Hay cuatro, pero elegimos el mejor, de los otros no nos vale ninguno.
4. ¿Convertir una no-detección de Virgo en una sí-detección de ángulo muerto no te parece algo tan elaborado como la más grosera de las cocinas estadísticas (a posteriori) para favorecer los resultados que más le gustan al cliente que hizo el pedido?.
5. ¿No te parece sospechoso que, como cuentas, “el sistema de detección automático rechazó la señal de L1 porque vino acompañada de un ruido espurio localizado (glitch) de origen instrumental”, pueda ser interpretado por algunas mentes retorcidas, conspiranoicas y espurias como algo muy similar al tiempo muerto que pide el Real Madrid de baloncesto cuando va perdiendo contra el Barcelona por 89 a 91 en el último minuto y necesitan un triple en el último segundo para ganar?.
6. ¿No será que ese tiempo muerto fue crucial para poder elegir el ángulo muerto que mejor cuadraba con lo que observó Fermi?.
7. ¿Si todo hubiera sido tan automático y tan en tiempo real como intentan vendernos, qué habría pasado si, contando todos los puntos muertos del sistema de la LVC, que ya te lo digo yo, suman doce, y todos equiprobables por definición, el sistema automático hubiera dado como resultado otro muy distinto al que dio la mano humana que manejó los datos finales?.
8. La fe mueve montañas, ¿verdad?. Cocina estadística, ocultismo, sesgos, ruidos correlacionados ignorados, mucho ruido mediático y pocas nueces cientificas serias. La LVC se ha metido en un callejón sin salida, y cuando se desinfle el suflé, todo quedará en una especie de BICEP 3.

Querida Mula Francis, me gusta mucho la ciencia, pero lo que nos cuenta la LVC no puedo admitirlo como ciencia seria, por muchos cientos de trillones de colaboradores que puedan tener en todas las universidades del mundo, ni por todo el crédito oficial que se le otorgue. No me creo la verdad que nos cuenta la LVC, lo siento mucho querida Mula Francis. Te admiro mucho, pero no soporto ese tufillo trilero que nos llega de la LVC. Para sacar conejos de la chistera, me gusta más la magia de David Copperfield. No soy tan ingenua, a mi los trucos de magia geniales y los “oh” de admiración me gusta verlos y oírlos en los escenarios de teatros y platós de television como algo frívolo que divierte al público en general, no en conferencias ni en ruedas de prensa donde supuestamente deben anunciarse asuntos científicos serios. Está claro que no soy muy partidaria … de todo este espectáculo mediático que han conseguido montar.

Saludos de una admiradora, que te lee siempre que puede

 

Francisco R. Villatoro Francisco R. Villatoro

Concha, puedes imaginar todas las conspiraciones que quieras, eres libre de ello, pero la ciencia no funciona así. En ciencia se aprovechan todos los datos disponibles para optimizar la toma de decisiones. Y por supuesto son los científicos quienes lo hacen, ese es su trabajo, mientras no tengamos máquinas o inteligencias artificiales que los sustituyan.

Las ondas gravitacionales son cuadripolares, luego H1, L1 y V1 tienen cuatro puntos ciegos (esta figura muestra los de V1), pero solo uno cae en la región localizada por H1 y L1 (o los otros tres están fuera). Mis respuestas: (1) esta figura lo aclara; (2) ver (1); (3) ver (1); (4) ver (1); (5) no; (6) no; (7) así no funciona LIGO-Virgo; (8) no, lo siento, la fe no mueve montañas.

 

Concha Cuetos Concha Cuetos

Querida Mula Francis, gracias por contestar a mis preguntillas capciosas. Pero, sigue habiendo algo que no me cuadra en la metodología usada por la LVC para encajar la localización de su supuesto evento GW170817 dentro de la localización del GRB 170817A visto por Fermi y por INTEGRAL (porque, no nos engañemos, LIGO se pone a trabajar manualmente sobre su evento GW170817 porque ya tenia la alerta de la localizacion celeste del Fermi, con su franja de error correspondiente, claro). Sigo viendo un sesgo brutal cuando asumen que por el observatorio VIRGO debieron pasar las mismas ondas gravitacionales que pasaron por los dos observatorios de LIGO, por que dan por sentado sin ninguna duda que lo que pasó por LIGO a esa hora fueron ondas gravitacionales. ¿Por qué veo tanto sesgo? Porque, además de la asunción anterior, la intención de quienes estaban al mando del análisis de datos en la LVC a esa hora, era ver de qué forma la localización celeste del evento GW170817 podía encajarse dentro de la del GRB 170817A. Eso no es ciencia. Afirmar tan rotundamente que puesto que en Hanford y Livingston se registraron señales del mismo evento GW170817, entonces necesiariamente por VIRGO debió pasar la misma perturbación gravitacional, y además asumir que, como no quedó registrada, debió pasar por uno de sus puntos ciegos, es mucho asumir, me parece a mí. Demasiadas asunciones, la ciencia no funciona así. Porque por la misma regla de tres, yo también tendría derecho a pensar lo siguiente, y también podría ser llamado ciencia de esa clase, asumiendo cosas:

En Livingston, alguien está estudiando cómo configurar los parámetros para una inyección hardware de señal, usando una plantilla de estrella binaria de neutrones que colapsa. El problema no es fácil en principio, ya que ha sido informado de que VIRGO no admite en esos momentos inyecciones hardware de señales, desde LIGO, por que está en modo unlock. La resolución del problema resulta ser sorprendentemente fácil: pones VIRGO en uno de sus puntos ciegos, y después juegas con los parámetros de desfase tenporales para inyectar por hardware la señal en L1 (livingston) y H1 (Hanford), de tal forma que la localizacion de la supuesta fuente esté dentro de la franja de error vista por Fermi. Incluso me atrevería a decir que el origen de ese glitch que se vio en L1 se debió a una inyección hardware de señal. Sí querida Mula Francis, el origen de esos glitches está, en su mayoría, en las inyecciones de hardware, ya que hay que mover mediante servos las masas-espejos, y eso nunca se hace de forma suave. Las inyecciones por software no tienen ese problema de los glitches, ya que van directamente a la base de datos de salida. Para quien quiera saber cómo se genera la mayoría de esos glitches, debido a inyecciones de hardware, puede consultar este paper:

https://dcc.ligo.org/public/0113/T14…%20Data.pdf

Por cierto, querida Mula Francis, ya hay científicos serios, independientes de LIGO, investigando el tema de las inyecciones en el seno de la LVC, y de qué forma los supuestos eventos descubiertos hasta ahora, que se han dado por válidos, se pudieron obtener de forma fraudulenta. Porque, afortunadamente todo no se hace mal en LIGO, y hay disponibles para el público los booklogs desde 2015 hasta hoy. He aquí un pequeño ejemplo, de alguien que se tomó la molestia de contar cuantas inyecciones de señal hay registradas en los logs de LIGO, y qué se puede hacer con ese Big Data:

http://www.academia.edu/25059961/Big…t_2010-2016

Saludos querida Mula Francis

 

Francisco R. Villatoro Francisco R. Villatoro

Concha, como es obvio, en un detector de ondas gravitacionales se detectan ondas gravitacionales y si se detecta la señal más intensa hasta ahora (en SNR) en un detector, los otros dos también tienen que haberla detectado sí o sí; esto no es opinable. ¿Quieres opinar en contra? Hazlo, pero no en un blog de ciencia. ¿Quieres montarte una conspiración? Hazlo, pero no en un blog de ciencia.

Concha, si quieres trolear, busca otro blog.

 

Es divertido este Francis, ¿verdad? 🙂 ya hacía tiempo que no me reía tanto. En su primera réplica dice: “Las ondas gravitacionales son cuadripolares, luego H1, L1 y V1 tienen cuatro puntos ciegos (esta figura muestra los de V1), pero solo uno cae en la región localizada por H1 y L1 (o los otros tres están fuera)“. Hay que decirle que no es que se elija uno de los cuatro puntos ciegos de VIRGO por que sea el cae en la región localizada por H1 y L1, sino que esencialmente se elige ese porque de lo que se trata es de que la región localizada por H1, L1 y V1 esté dentro de la localizada por Fermi. De eso se trata.

Y cuando dice “ … en un detector de ondas gravitacionales se detectan ondas gravitacionales y si se detecta la señal más intensa hasta ahora (en SNR) en un detector, los otros dos también tienen que haberla detectado sí o sí“. Parece muy obvio ¿no?, pues no. En un detector de ondas gravitacionales no se detectan ondas gravitacionales, en realidad se detecta de todo menos ondas gravitacionales, si tu fe en las ondas gravitacionales está baja. Lo gracioso de todo esto es que los detectores de ondas gravitacionales son los únicos instrumentos que detectan de todo menos de aquello para lo que fueron ideados. Pero, claro la obviedad de la lógica de este Francis es como la de decir “una tostadora de pan sólo tuesta rebanadas de pan“.

Es evidente que “la fe mueve montañas“, y la “la fe en las ondas gravitacionales” mueve los espejos de los interferómetros LIGO.

Saludos conspiranoicos a todos 😀

Anuncios

Posted in Astrofísica, corrupción, Cosmología, curiosidades y analogías, Matemáticas, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »

La ciencia zombie de la gallinita ciega que practica LIGO y sus cien mil hijos de San Luis: ¿Qué fue antes, el huevo GRB 170817A o la gallina GW170817?

Posted by Albert Zotkin en octubre 18, 2017

Queridos y amables lectores de Tardígrados. Después de ser explosionada una bomba atómica mediática más, respecto a los “inmensamente importantes descubrimientos” de LIGO y todas sus miles de ramificaciones crematísticas, afrontamos el nuevo escenario “post-apocalíptico” con entereza y esperanza. Ya sabíamos que estos americanos son unos genios del marketing y el merchandising a la hora de promocionar sus “éxitos científicos”. En la era de la posverdad, la ciencia zombie, propagada desde los cuarteles generales yanquis, se ha convertido en puro espectáculo hollywoodense. Las ruedas de prensa de LIGO se anuncian como si fueran pre-estrenos de películas de Hollywood. Compran tiempo en importantes medios de comunicación, tiene lobbies mediáticos por todo el mundo. Sus colaboradores se cuentas por decenas de miles en todas las universidades del mundo, sus colaborares científicos, que adjuntan sus nombres en los preprints y se cuentan por miles. Evidentemente, todo ese frondoso árbol debe regarse con abundante “agüita” cash. ¿Por qué les han concedido el Premio Nobel de Física de este año 2017 a los ideólogos de LIGO?. Para ayudar al Comité de los Premios Nobel a tomar tan “acertada” decisión, estos genios de la ciencia zombie, dejaron caer a finales de Septiembre discreta y disimuladamente, sobre todos y cada uno de los miembros de dicho comité, la noticia que anunciaron a bombo y platillo este lunes 16 de Octubre. Sí señoras y señores, los miembros del Comité de Premios Nobel ya sabían de antemano que estos “linces” de LIGO iban a anunciar a todo el mundo mundial el “inmenso descubrimiento científico” que anunciaron este lunes. Un trabajo impecable de los lobbies gravitacionales, sin duda. Y dije hace poco que los miembros del Comité de los Premios Nobel de Física no son tontos, pero por lo visto, tampoco son muy listos. Es evidente que los “genios” de LIGO utilizaron el anuncio de la noticia del lunes como una especie de chantaje, o mejor dicho, de extorsión sobre el Comité. Es decir, la extorsión consistió en lo siguiente, que obviamente no fue dicho por nadie, solo que fue inyectado sutilmente en todas y cada una de las mentes de los miembros del Comité del Nobel. “Aunque no nos concedáis el Premio Nobel este año, la semana siguiente anunciaremos a todo el mundo que hemos descubierto desde LIGO-VIRGO la fusión de dos estrellas de neutrones y 70 telescopios de todo el mundo han visto las señales ópticas”.

Yo pensé, después de que les concedieran el Nobel y anunciaran este lunes ese supuesto descubrimiento: “vaya, están exultantes, el premio Nobel les ha inyectado una buena dosis de ánimos, y ahora hasta se atreven con declarar que han detectado ondas gravitacionales de colisión de estrellas de neutrones, nada menos, ¡qué tios más buenos, coño!, están que se salen”. Pero no, el anuncio de este lunes ya estaba programado desde hacía tiempo. Era la bomba mediática que usarían como extorsión al Comité. Son unos genios, lo consiguieron. Mataron muchos pájaros de un sólo cañonazo mediático. Me gustará ver la cara de jilipollas que se le pondrá a mucha gente cuando se demuestre que todo esto del LIGO es sólo una puta mierda pinchada en dos palos transversales.

¿Y VIRGO?. Ese supuesto observatorio europeo de ondas gravitacionales, llamado la Colaboración por los jefes de LIGO, se ha dejado abducir. Si señoras y señores, VIRGO no es una colaboración de LIGO, es una mera abducción, un control férreo y perfecto de LIGO sobre él. Leamos en el mismo diario de noticias de LIGO como es esa abducción:

La Colaboración científica LIGO y la Colaboración VIRGO han completado con éxito la instalación del sistema y protocolos end-to-end (“extremo a extremo”) para detectar sus capacidades en el reciente encuentro de colaboracion celebrado en Arcadia, Califormia. El análisis de datos de las colaboraciones LIGO-VIRGO revela la evidencia de una elusiva señal procedente de una estrella de neutrones cayendo en espiral hacia un agujero negro. La Colaboración sabía que esta “detección” podría ser una “inyección ciega” — es decir, una señal falsa, simulada, añadida a los datos sin que lo supieran los analistas, para comprobar el correcto funcionamiento del detector y su reflejo en los análisis. Sin embargo, la Colaboración procedió como si la señal fuera real, y escribió y se aprobó un documento científico informando del pionero descubrimiento. Unos momentos después, de acuerdo al plan y los protocolos de las inyecciones ciegas, se hizo saber a todas las colaboraciones y al público en general, que todo había sido una inyección ciega. Aunque los científicos presentes quedaron algo decepcionados al ver que no había sido algo real, sino simulado, el éxito de los análisis demostró que la Colaboración era óptima y preparada para la detección de ondas gravitacionales. Los científicos de LIGO-VIRGO, con sus avanzados detectores, están ya en marcha, y esperan observar muchas señales reales procedentes de los más remotos y recónditos lugares del universo.

Amigos, esa “Arcadia feliz” celebrada por los LIGO-budienses, en Arcadia California, fue simplemente la consumación de una pura abducción. La abducción de VIRGO por LIGO. Tras ese ensayo patético, llegó la supuesta señal observada tanto por LIGO como por VIRGO, la GW170814, dos supuestos agujeros cayendo en espiral el uno hacia el otro. Tres días más tarde, atención pregunta: ¿El evento llamado GW170817, correspondiente a dos supuestas estrellas de neutrones cayendo en espiral la una hacia la otra y colisionando, fue visto por VIRGO además de por LIGO?. Atención pregunta: El Estallido de Rayos Gamma llamado GRB 170817A observado con el telescopio Fermi de Rayos Gamma de la NASA fue antes o después del supuesto evento supuestamente visto por la Colaboración LIGO-VIRGO?. ¿Por qué hago estas preguntas tan supuestamente estúpidas? ¿Qué fue antes, el huevo GRB 170817A o la gallina GW170817?. Los linces de LIGO dicen que una vez que vieron el evento GW170817 avisaron corriendo, no sólo a los del telescopio espacial Fermi, sino a los de 70 telescopios más de todo el mundo, para que apuntaran hacia la localización celeste que ellos les estaban gentilmente ofreciendo, para que pudieran ver el grandioso espectáculo de cómo dos estrellas de neutrones chocaban y emitían no sólo ondas gravitacionales sino chorros visibles de rayos gamma y demás centellas. Es decir, Los genios de LIGO avisaron. Es evidente que estos genios de LIGO no sabían que Fermi ya había observado ese estallido RGB 170817A antes de que ellos “observaran” supuestamente el suyo, el GW170817. Veamos la secuencia de los hechos:

1. Tenemos localizado a uno de los “cien mil hijos de San Luis”, un colaborador de LIGO, cuyo nombre sale en la lista de todos los papeles que publica LIGO, y también trabaja para el telescopio Espacial de Rayos Gamma Fermi de la NASA.

2. Esa persona, de momento anónima, con la connivencia de sus jefes en Fermi, informa extraoficialmente a LIGO del hallazgo, porque es un científico honesto al que se le ocurrió la feliz idea de que tal vez en LIGO pudieran quizás remotamente observar algún tipo de onda gravitacional como procedente de esa localización celeste, que tan inocentemente les esta ofreciendo.

3. Los linces LIGO-budienses se miran unos a otros en silencio, se sonríen con complicidad, se frotan las manos y envían el siguiente mensaje a los responsables de las inyecciones ciegas de la Colaboración LIGO-VIRGO: “hola, a ver si podéis diseñar una simulación en menos de 1 hora para esto: se trata de ondas para dos estrellas de neutrones, y aquí os adjunto la localización celeste y otras características técnicas del pedido. Cuando lo tengáis cocinado y en su punto nos lo servís en la mesa, estamos esperando y tenemos mucha hambre”.

4. Los inyectores, Master Chef de las simulaciones,envían el paquete precocinado a la mesa de sus jefes, estos abren la tapa y ven la exquisita gallina asada GW170817, aún humeante y con todos sus jugos, lista para hincársele el diente.

5. Le hincan el diente. Inyectan la señal de forma impúdica, no sólo a los detectores de LiGO (Livingston y Hanford), sino que también se la envian a VIRGO via Arcadia. El problema es que el detector VIRGO estaba apagado, por fiestas patronales, y la señal simulada no tuvo efecto. Pero los linces de LIGO le dieron la vuelta al argumento, y razonaron de la siguiente forma: Si VIRGO no ha visto nada debe ser porque las ondas pasaron por sus dos puntos ciegos (todos los detectores de ondas gravitacionales tipo advancedLIGO, poseen dos puntos ciegos). Los linces de LIGO sabían cual era la franja celeste donde localizar las coordenadas exactas del evento GRB 180817A visto desde Fermi. Que VIRGO fallara en ver el supuesto evento GW170817 supondría acotar esa franja celeste y dejarla reducida a una tercera parte, al solapar los puntos ciegos de VIRGO con la franja. Todo fue minuciosamente estudiado y fabricado antes de ser publicado. ¿He dicho ya que estos tipos de LIGO son unos genios?. ¡Qué causalidad, coño, siempre es VIRGO la hermanita pobre y ciega de la película!, ella es la que siempre falla a la hora de constatar las detecciones clave. Para una vez que se produce el evento histórico GW170817, resulta que es VIRGO la que está situada de tal forma que la onda le pasa por sus dos puntos ciegos. ¡Vaya por Dios, qué mala suerte!. Veamos, en la Colaboración LIGO VIRGO hay tres detectores, dos en USA y uno en Italia. Existía por lo tanto dos tercios de probabilidad de que el punto ciego ese estuviera en alguno de los detectores de USA y un tercio en el de Italia, y ¡coño, le tocó al de Italia!. Hay que joderse, ¿no?. Porque, claro, si le toca el punto ciego a uno de USA ya no habría detección fiable del susodicho evento GW170817. Además de genios estos tipos de LIGO son unos trileros.

6. De todas formas, se activaron todos los protocolos de detección, y se mandaron coordenadas celestes a 70 telescopios repartidos por todo el mundo.

7. Los astrónomos pudieron observar visualmente un estallido de rayos gamma, gracias a que LIGO les informó a tiempo.

8. LIGO envió coordenadas celestes hasta a Fermi. Pero vamos a ver. Alguien en Fermi dirá, “vaya, nosotros les enviamos coordenadas celestes del GRB 1700817A, y ellos, en menos de una hora, nos envían las mismas coordenadas celestes pero, para un GW170817. Extraordinario, fantástico, lo nunca visto señores. Esto quedará para los anales de la ciencia”. Si, si, para los anales de la ciencia zombie, raíz semántica de ano más que de anual.

De todas formas yo no creo que estos genios de LIGO se atrevieran a tanto con sus inyecciones ciegas, y más sabiendo que VIRGO no colaboró en eso esta vez, por muy eufóricos que estuvieran por lo del Premio Nobel. Estos genios gravitacionales del merchandising, estos LIGO-budienses, que saben muy bien cómo hacer caja facturando posverdad, ahora han inventado una nueva herramienta más eficaz y menos escandalosa que sus famosas inyecciones ciegas, para falsificar sus hallazgos, y seguir engañando a todos todo el tiempo. Se trata de diseñar a la carta las plantillas para detectar determinadas clases de señales. Si, la técnica del refinamiento ha llegado a tan alto nivel en LIGO que ya saben hasta cómo han de ser las plantillas para que se vea aquello que ellos quieren que sea visto, y nada más. El problema con las plantillas a la carta es que de vez en cuando se les escapa un poquito de ruidito correlacionado, pero nada importante que eche por tierra todo el trabajo de “escultura”. Basta con ignorar a los cuatro gatos que osen denunciar que existió mucho ruido correlacionado. A fin de cuentas, los de la colaboración LIGO-VIRGO son miles, y el consenso oficial está de su parte. “La ciencia es democracia” es su dogma, la “verdad es la fe de la mayoría” es su lema. Así pues, a LIGO-VIRGO, más que observatorio de ondas gravitacionales yo lo llamaría “taller de escultura”. Coge un ruido de fondo y empieza a “esculpirlo”, quitando todo aquello que no quieres que forme parte de tu señal. Así es como trabaja el diablo cojuelo de LIGO-VIRGO ahora. En sus bases de datos sólo hay almacenado ruido de fondo, eso sí, muy bien etiquetado con sus fechas y horas en que fueron detectados. Así pues, ¿cómo se “esculpe” una señal de dos estrellas de neutrones en caída libre una hacia la otra, hasta colisionar?. Muy fácil, todo se hace a posteriori, en el taller de “escultura”, también llamado centro de análisis de datos. Elije, de la base de datos de ruidos de fondo, ruido de un día cualquiera del pasado reciente, por ejemplo del día 17 de Agosto de 2017, a las 12:41:04 hora UTC. Una vez en el taller de “escultura”, un genio de LIGO, un Miguel Angel de las ondas gravitacionales, decide qué es lo que hay escondido dentro de ese ruido de fondo. Claro, todo esto se está haciendo en un día muy posterior al de la supuesta detección, por ejemplo, el dia 2 de Octubre de 2017, cuando alguien de los Premios Nobel anuncia que “el premio de este año va para … LIGO”. ¿Y qué es lo que hace ese Miguel Angel de las ondas al oír esa noticia? Pues elije una plantilla para detectar colisiones de estrellas de neutrones, y decide que el día 17 de Agosto de 2017, lo que hay escondido dentro de todo ese ruido de fondo almacenado en sus voluminosas bases de datos es, ni más ni menos, que el evento GW170817 de dos estrellas de neutrones colisionando, detectado a las 12:41:4 hora UTC. Si en lugar de elegir esa plantilla especifica hubiera elegido otra, por ejemplo, una para dos agujeros negros colisionando, entonces el evento de estallido de rayos gamma GRB 170817A, observado por el telescopio espacial Fermi el dia 17 de Agosto de 2017 a las 12:41:06 hora UTC, habría quedado huérfano de señal gravitacional.

Pero, ¿qué es la ciencia zombie?. La ciencia zombie es básicamente una posverdad. Usan brutal y muy eficazmente a los medios de comunicación de masas, redes sociales, etc, para convencer al mayor número de gente posible de todo aquello que no pueden convencer por sus propios méritos. La ciencia zombie es por lo tanto, fraude, engaño, mentira. ¿Cuál es el problema con todo esto de LIGO y las ondas gravitacionales?. El problema es que eso no puede ser considerado ciencia, porque, más bien, para dilucidar la verdad se necesita un proceso judicial más que un proceso en el que se aplique el método científico. Porque, para saber si de verdad se detectan esas ondas gravitacionales se necesita todo un entramado jurídico-notarial, con abogados, procuradores, defensores, acusadores, pruebas a favor, pruebas en contra, testimonios, indicios, testigos, victimas, imputados, jueces, jurados. Es decir, se necesita todo lo que hace falta para saber quien fue el asesino y si hubo algún motivo. O sea, se necesita de todo menos de lo que hace la ciencia de verdad, aplicar el método científico para testar teorías o hipótesis científicas.

Saludos correlacionados a todos 😛

Posted in Astrofísica, Cosmología, Matemáticas, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , | 4 Comments »

En el cálculo estocástico de las órbitas gravitatorias en el problema de los dos cuerpos, las ondas gravitacionales no existen

Posted by Albert Zotkin en julio 11, 2016

Hola amigo de Tardígrados. Hoy vamos a calcular, de diversas formas, las órbitas de dos cuerpos que gravitan el uno alrededor del otro. En realidad, dos cuerpos de masas m1 y m2, gravitan alrededor de un centro común, llamado baricentro (o centro de masas). Si los vectores de posición son r1 y r2, el baricentro será el apuntado por el vector:

\displaystyle R =\frac{m_1r_1+m_2r_2}{m_1+m_2}

Voy a programar una simulación (una animación en Flash) escribiendo unas pocas lineas de código en actionscript, en la cual veremos el movimiento orbital de esos dos cuerpos. Para ello, yo usaré el software Flash CS4 de Adobe (Abode Flash Profesional). La intención de diseñar esta pequeña simulación no es sólo ver la evolución gravitatoria del problema de los dos cuerpos, sino de ver cómo las órbitas decaen en dicha simulación debido a algo insólito: la perdida de información computacional. Esto significa que las órbitas de los dos cuerpos pierden poco a poco energía gravitacional, pero esa pérdida no se disipa en forma de ondas gravitacionales, sino que simplemente se expresa en ese decaimiento orbital hasta que los dos cuerpos solisionan.

Pero, empecemos ya a programar nuestra pequeña simulación de los dos cuerpos orbitales: abrimos nuestro programa de Adobe Flash CS4,

1. Creamos una animación en la versión de flashfile (actionscript 2.0). 2. Creamos tres videoclips, dos para cada uno de los dos cuerpos orbitales, y un tercero para el centro de masas. A los videoclips de los cuerpos los llamaremos a1 y a2, y al del centro de masas, cm. Los videoclips a1 y a2 serán dos circulos de distinto color y de pocos pixels de radio. Y el videoclip cm poseerá un radio mínimo, el suficiente para ser visto como un punto destacado sobre el fondo de la animación. Cada videoclip en una animación Flash posee una serie de propiedades, y una de esas propiedades son sus coordenadas espaciales bidimensionales, (_x, _y), dentro del plano de la animación. Por ejemplo, el videloclip correspondiente al primer cuerpo cuya masa es m1, que hemos llamado a1, posee, en la animación que he hecho yo, las siguientes coordenadas espaciales iniciales: a1._x = 160, a1._y = 185. En el sistema de referencia bidimensional usado en Flash, el origen de coordenadas está en la esquina superior izquierda del plano general, y los valores positivos para la abscisa _x corren hacia la derecha, mientras que los valores positivos de la ordenada _y corren hacia abajo. La unidades de medidas de las distancias se expresan en pixels.

Escribamos ahora todo el código de actionscript para nuestra animación. En primer lugar, escribiremos el código para cada uno de los videoclips cuando se cargan al inicio. Para el viceoclip a1 tendremos las siguientes condiciones iniciales:

load.a1

puesto que hemos definido propiedades como la masa y la densidad para ese cuerpo, dibujaremos el circulo que representa a dicho cuerpo a escala, según el valor relativo de esos paramétros. Así, como escribo en el código de arriba, su anchura a escala, _width (que es de igual valor que su altura, _height), la calculo así:

\displaystyle \mathrm{\_width}=20\sqrt[3]{\frac{4\pi \times \mathrm{mass}}{\mathrm{ density}}}
Igualmente, para el videoclip a2 tendremos el código inicial de carga siguiente:

load.a2

Observamos también, en estos códigos de carga de las condiciones iniciales, que está definida la velocidad inicial para cada cuerpo. Como aún no hemos escrito el código para la interacción gravitatoria, esas velocidades iniciales no serían modificadas, y por lo tanto los dos cuerpos permanecerian en movimiento inercial, rectilíneo uniforme. Cabe reseñar también dos cosas más. Primero, que he introducido unas variables, rx, ry, que uso para guardar los últimos valores de las coordenadas espaciales. Segundo, que la velocidad de cada cuerpo al ser una magnitud vectorial, la he separado en sus dos componentes ortogonales en el sistema de referencia. Así, por ejemplo, para este último videoclip a2, las componentes de su velocidad son speed.x = -1, speed.y = 0, y eso quiere decir que ese cuerpo se movería inicialmente e inercialmente hacia la izquierda, mientras que su componente en el eje vertical, al ser 0, indica que no se movería inercialmente por dicho eje.

Escribamos seguidamente el código de las condiciones iniciales de carga para el videoclip cm, que representa el centro de masas de los dos cuerpos anteriores:

cm

Aquí en este código, vemos cómo hemos escrito las coordenadas del centro de masas de los dos cuerpos. Ahora nos falta la rutina principal de la animación en la que escribiremos las ecuaciones para la interacción gravitatioria de esos dos cuerpos. Puesto que es evidente que estamos usando formalismos de gravitación clásica Newtoniana, hay que decir el movimiento inercial de esos dos cuerpos se rompe cuando interactuan gravitacionalmente, y eso significa que cada uno sentirá una aceleración cuyo valor será directamente proporcional a la masa del otro cuerpo e inversamente proporcional al cuadrado de su distancia. Es decir, la aceleración gravitatoria que siente el cuerpo a1 debido a la presencia del cuerpo a2 será:

\displaystyle a_{12}= \frac{G m_2}{r^2}

y recíprocamente la aceleración que siente a2 será:

\displaystyle a_{21}= \frac{G m_1}{r^2}
Por lo tanto, ya estamos en condiciones de escribir el código de la rutina principal para la interacción gravitatoria:

update3

Esta rutína (función) la he llamado update3, y posee un único argumento de entrada, el argumento m, que es una referencia a un videoclip, ya sea el a1 o el a2. Esta función devuelve (return) el valor de la variable r, es decir, la distancia actual entre ambos cuerpos. Vemos que la tarea principal de esta rutina es el cálculo de la aceleración del campo gravitatorio, como ya he especificado arriba en a12 y en a21. Una vez que se ha calculado esa aceleración, la descomponemos en sus componentes ortogonales según los dos ejes del sistema de referencia, y convenientemente escaladas, las restamos a las componentes de la velocidad. ¿Por qué hay que restar la aceleración a una velocidad?. Es decir, ¿por qué realizo los cálculos m.speed.x -= accel_x, m.speed.y-=accel_y?. Pues simplemente, se ha de realizar esa resta porque una aceleración no es más que un incremento o decremento de una velocidad por unidad de tiempo. En otras palabras, la aceleración no es más que la primera derivada de una velocidad respecto al tiempo. Después, en el código de esa rutina, igualmente resto la componente de la velocidad de la componente espacial, y se hace por la misma razón. Una velocidad no es más que un incremento o decremento de una distancia por unidad de tiempo, es decir, es la primera derivada del espacio respecto al tiempo. Con esta última substracción ya hemos actualizado las coordenadas espaciales de cada cuerpo según la interacción gravitatoria, aplicada a su movimiento inercial. Este cálculo con la función update3 se ha de hacer en cada uno de los frames (fotogramas) de la animación. En la que yo he realizado, el número de fotogramas por segundo (fps) lo he puesto a 100, y eso quiere decir que cada centésima de segundo hay que actualizar y calcular y dibujar todo para presentar la animación en tiempo real al espectador. Así, la rutina en actionscript para cuando el cursor de la animación pase por cada frame, será la siguiente:

enterframe

donde en la ultima línea de código controlo la posible colisión de los dos cuerpos, parando la animación cuando la distancia r sea menor que los tamaños relativos de cada círculo. El control de colisiones de videoclips en Flash tambíen se puede hacer con una función predefinida que se llama hitTest, pero yo he preferido definir mi propia función de colisión. Pero, aquí está el meollo de toda esta animación del problema de los dos cuerpos. Se supone que las órbitas de los dos cuerpos, que siguen la Ley de la Gravitación Universal de Newton, deberían ser estables, y por lo tanto deberían seguir trayectorias elípticas o circulares si no hay otras fuerzas externas que las perturben. Pero, lo sorprendente de esta pequeña animación que he realizado es que al ver como evolucionan esas órbitas observamos que poco a poco los dos cuerpos se van aproximando el uno hacia el otro hasta que acaban colisionando. ¿por qué ocurre eso?. La clave está en los incrementos (aceleraciones) que he substraido a las velocidades y de los incrementos substraidos (velocidades) a las coordenadas espaciales. Para que las órbitas fueran exactamente estables, sin que decayeran poco a poco, los incrementos a substraer deberían ser infinitesimales, es decir, unas cantidades muy próximas a cero. Pero, entonces deberíamos aumentar el número de frames por segundo hasta valores que no serían computables.

En la animación que yo he realizado hay algunos parámetros auxiliare más, que no he especifico, porque no tienen mucha importancia. Ahora solo resta hacer una captura de pantalla de la animación y convertirla en un gif animado, ya que WordPress ya no admite archivos Flash de extension swf:

tbp

Observamos con estupor que lo que la ciencia actual llama ondas gravitacionales, emitidas por pulsares binarios que son observados decayendo orbitalmente, es simple y llanamente una pérdida de información cuántica. El problema es que la mecánica cuántica no admite que los sistemas puedan perder información de forma irrecuperable, pero en esta pequeña animación Flash vemos cómo eso es posible en un universo cuya evolución es calculada en cada micro-estado y en intervalos infinitesimales de tiempo que quizás coincidan con tiempos de Planck. La conclusión más dramática que hemos de hacer de todo esto es que las ondas gravitacionales no existen en nuestro universo, y por lo tanto que el supuesto observatorio LIGO (advanced LIGO) nos la está metiendo doblada al afirmar que han descubierto evidencias directas de dichas ondas. Sólo una mente ingenua y simple podría creerse semejante patraña. Cualquier persona con una inteligencia mediana podría comprobar por si misma cómo ese supuesto observatorio no puede detectar movimientos vibratorios de amplitudes tan ínfimas como la milésima parte del radio de un protón. ¿Dónde está el Principio de Incertidumbre que es pieza central de la Mecánica Cuántica, y que la Relatividad General parece querer ignorarlo propugnando un espacio-tiempo infinitamente continuo?. Incluso si no fuera un fraude tan brutal ese que nos quiere meter LIGO, tampoco sería una prueba directa de la existencia de esas ondas gravitacionales, por la sencilla razón de que no existe ningún otro medio independiente de saber que esas supuestas ondas vienen de donde dicen ellos que vienen, y producidas por la causa que ellos dicen que son producidas. El único argumento que usan para afirmar tan rotundamente que esas ondas son reales es que coinciden en forma con las de los libros de texto de la Relatividad General. Si existieran otros medios de comprobar esos supuestos hallazgos, como por ejemplo señales luminosas observables con telescopios ópticos o señales radioeléctricas observables con radiotelescopios, de las supuestas fuentes cósmicas generadoras, entonces y sólo entonces podríamos empezar a creer en ellos. Pero mientras sigan diciéndonos los “listillos” de LIGO que esas ondas proceden de la colisión de dos agujeros negros, estarán intentando metérnosla doblada. Cuando digan que han observado la colisión de un pulsar binario, y a LIGO ha llegado la perturbación gravitacional y a los distintos telescopios ópticos el destello luminoso de esa colisión, entonces y sólo entonces, los que no somos idiotas del todo, empezaremos a creer en la existencia de ondas gravitaciuonales. Mientras tanto, hay que conformarse con mirar con estupor a este universo computacional y observar boquiabiertos que no sólo la interacción gravitatoria está sujeta a perdidas de información cuántica, sino todas las demás. Y todo esto nos indica que es muy probable que nuestro universo es simplemente una gigantesca simulación fractal que está siendo ejecutada en un superordenador cuántico. Que nuestro universo sea una gigantesca simulación no significa que no te duela tu dolor de muelas. En realidad ocurriría que todo en este universo simulado seria real para nosotros, pero sólo sería virtual para los hipotéticos espectadores externos a nuestro universo que contemplan esa simulación.

Saludos

.

Posted in Astrofísica, Cosmología, curiosidades y analogías, Física de partículas, Fractales, Gravedad Cuántica, informática, Matemáticas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

¿Por qué no pueden detectarse ondas gravitacionales con LIGO?

Posted by Albert Zotkin en febrero 14, 2016

La misma teoría que predice la existencia de esas ondas gravitacionales también predice que no podrán observarse con detectores como LIGO. ¿Por qué?. Muy sencillo: las ondas gravitacionales se supone que son ondulaciones del llamado espaciotiempo. Es decir, esas ondulaciones comprimen y expanden el espacio localmente, pero también comprimen y expanden el tiempo en igual medida. Cuando en un detector LIGO uno de los brazos se contrae, el otro, que es ortogonal a él, se expande. Pero la luz Láser, que rebota entre cada par de espejos de esos dos brazos expandidos y comprimidos, se propagará con velocidades diferentes. Es decir, a lo largo del brazo comprimido el rayo Láser viajará más lentamente, y a lo largo del brazo expandido el rayo Láser viajará más rápido. La conclusión es que el Láser siempre tarda lo mismo en recorrer la distancia entre los dos espejos opuestos de un brazo, independientemente de que sea expandido o comprimido por una supuesta onda gravitacional. Y si todo permanece igual en un detector LIGO cuando pasa una onda gravitacional, entonces esa clase de detector no sirve para detectar esa clase de ondas. Así de sencillo. Es el mismo problema que se dio en el famoso experimento Michelson–Morley de 1887. En aquel experimento tan famoso tambíén había un interferómetro con dos brazos ortogonales, y el objetivo del experimento era también detectar cambios en las franjas de interferencias, debido a que se suponía que la luz debía propagarse con distinta velocidad según la dirección espacial que se considerara en el éter. El resultado nulo del experimento Michelson–Morley indica claramente que, aun suponiendo que existiera un medio llamado éter por el que se supondría que se propaga la luz, es imposible con tal interferómetro detectar esas dos velocidades de la luz supuestamente diferentes. Si el éter expande el espacio en la dirección paralela al movimiento de traslación de la Tierra y lo comprime en la dirección perpendicular, entonces estamos ante el mismo problema que he explicado anteriormente. Aunque las velocidades fueran efectivamente diferentes, los tiempos que tarda la luz en recorrer los brazos del interferómetro y recombinarse son los mismos, y por lo tanto el resultado será una señal nula. De hecho, un interferómetro LIGO es básicamente un interferómetro de Michelson, pero mejorado en precisión y que usa luz láser. Sin embargo, por mucha precisión que tenga ese aparato, el resultado será siempre una señal nula, porque no es un problema de precisión, sino de concepción.

Cuando un detector LIGO está en funcionamiento en modo observacional, dicen que ambos brazos ortogonales entre si, están acoplados de tal forma que es como si estuvieran dando la misma nota musical continuamente. Es decir, el rayo láser rebota millones de veces por los espejos opuestos de cada brazo antes de incidir y recombinarse en un punto del detector formando una franja de interferencia constructiva o destructiva que permanece estable, mientras no haya perturbaciones (vibraciones mecánicas). Pero, como he dicho antes, el rayo láser tardaría siempre el mismo tiempo en rebotar de un espejo a otro si el sistema fuera perturbado por una onda gravitacional, por lo que seguiría dando la misma nota estable, como si no hubiera pasado ninguna perturbación

Esa es la triste historia de esta clase de detectores.

LIGO-1

¿Cuál es la tragedia para la ciencia si comparamos el experimento de Michelson–Morley con este actual del Advanced LIGO?. La tragedia tiene que ver con el hecho de que aquel experimento de Michelson–Morley de 1887 tenia por objetivo medir un supuesto fenómeno que siempre estaría disponible para ser observado. En cambio el fenómeno de las ondas gravitacionales resulta que deben ser eventos aislados, no disponibles cuando el observador lo desee. Se ha calculado que un detector muy sensible como Advanced LIGO podría detectar eventos de chasquidos de ondas gravitacionales una vez cada diez años. En cambio, en el experimento de Michelson–Morley se trataba de medir un fenómeno como la supuesta velocidad asimétrica de la luz en el éter, algo que supuestamente siempre estaría ahí para su observación. Einstein nos ofreció un espaciotiempo, en lugar de un éter, pero viene a ser exactamente lo mismo. Las ondas gravitacionales no serían más que ondulaciones del éter, pero sólo podríamos detectarlas como eventos aislados cuando llegan a la Tierra, hecho que no puede ser predicho. Una tragedia para la ciencia verdaderamente. Esa tragedia se agudiza por que en el Advanced LIGO existe una herramienta que se llama “inyección ciega de señal simulada“. Esa simulación por hardware es una arma demasiado peligrosa en manos de una persona negligente o irresponsable. ¿Alguien se comió un sobre lacrado el jueves pasado?.

Nuestro pionero Albert Abraham Michelson (Premio Nobel de Física, 1907), no quiso y ni pudo hacer fraude en su experimento. No hizo trampa en los resultados para que su teoría sobre el éter saliera injustamente victoriosa. Ni se le pasó por la cabeza hacer fraude, era un científico honesto y auténtico. Su interferómetro podría ser fácilmente construido por cualquier otro científico y replicar el mismo experimento. La velocidad de la luz en el supuesto éter siempre estaría disponible para ser medida, no había que esperar a que ocurriera ningún evento cósmico para ello. Pero, ¿qué habría pasado con la ciencia si nuestro honesto pionero Albert Abraham Michelson hubiera querido y podido hacer fraude en su experimento engañando a todos durante mucho tiempo?. Pues simplemente que Einstein no se habría atrevido a proponer siquiera, no ya su Teoría General de la Relatividad, sino la más simple Relatividad Especial. Einstein aprovechó el resultado nulo de Michelson para afirmar que no había éter y dejarnos sus dos teorías de la relatividad. ¿Debemos de estarle eternamente agradecidos por esos dos regalos?. ¿Deberíamos haber preferido que Michelson hiciera un buen fraude en su experimento para que su teoría del éter saliera victoriosa aunque fuera deshonestamente?.

Posted in Astrofísica, Gravedad Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: