TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘velocidad de escape’

El origen del universo: El principio de Mach nos dice que el universo es eterno e infinito

Posted by Albert Zotkin en julio 29, 2015

El principio de Mach nos ilumina con algo casi esotérico pero indiscutible, a saber, que la fuerzas centrífugas tienen su causa en la rotación de los cuerpos respecto de las estrellas distantes, que son consideradas como fijas. Esa influencia es “instantánea”. Si un cuerpo está rotando respecto a las estrellas remotas y mágicamente estas desaparecieran, entonces de forma instantánea la fuerza centrífuga que experimenta ese cuerpo desaparecería también. Este principio tiene no sólo implicaciones para los momentos de inercia de los cuerpos, sino que también explica sus movimientos rectilíneos uniformes y otras muchas cosas más. En particular, veremos cómo el origen de la masa de las partículas se debe fundamentalmente a la existencia de materia bariónica remota (estrellas distantes). Es decir, que lo que otorga masa a las partículas fundamentales no es ningún bosón de Higgs sino la materia circundante a dicha partícula fundamental. Veamos cada uno de estos puntos.

El momento de inercia es equivalente a la masa cuando un cuerpo posee rotación, y por lo tanto la masa de un cuerpo es equivalente a un momento de inercia cuando dicho cuerpo se mueve inercialmente (movimiento rectilinea uniforme). La masa inercial del cuerpo (su inercia) es la resistencia que ofrece el cuerpo a ser acelerado rectilíneamente en un ambiente donde las fuerzas gravitacionales no son significativas. Mientras que el momento de inercia es la resistencia que presenta ese cuerpo a ser acelerado en rotación. Vemos pues que masa inercial y momento de inercia son equivalentes, cada uno en su respectivo tipo de movimiento. Obviamente, el movimiento rectilineo uniforme puede ser visto como un movimiento rotatorio alrededor de un eje situado a una distancia infinita (allá donde están las estrellas remotas de que habla el Principio de Mach). Luego si el radio de curvatura de la rotación va aumentando vemos que el momento de inercia se va transformando progresivamente en masa inercial. Por lo tanto, el principio de Mach puede formularse matemáticamente de muchas formas. Una de ellas es la definición del momento de inercia I de un cuerpo de masa M:

\displaystyle I = Mr^2  (1)

donde r es la distancia al eje de rotación. Y para un sistema de cuerpos dicho momento inercial sería la suma

\displaystyle I = \sum m_ir_i^2  (2)

Si el universo no fuera infinito en todas las direcciones espaciales, una partícula de pruebas podria sentir más atracción gravitatoria en una dirección que en otras y eso implicaría que en esa región del universo no sería posible el movimiento inercial uniforme, ya que los sistemas de referencia serian no inerciales. En realidad, sería mucho peor que eso: el cuerpo no podría girar inercialmente según ciertos ejes de simetria y acabaría parándose en su giro como si existiera alguna fuerza de rozamiento. Pero, tal fuerza de rozamiento no existiria, implemente ese cuerpo estaría en una ubicación cósmica asimétrica, con más materia hacia un lado que en el opuesto, y eso sería la causa de su deficiente rotación inercial.

La materia que rodea a una partícula crea su masa. La masa y el espacio están íntimamente unidos. Allí donde hay mucha concentración de masas se podría afirmar que existe “mucha densidad de espacio”. En otras palabras, la unidad de medida de longitud llamada metro no sería algo constante, invariante, sino que estiraría o se contraería dependiendo de la densidad de materia en una región de espacio. Eso explicaría la gran distancia que existe entre estrellas dentro de una galaxia, o las inmensas distancias intergalácticas entre cúmulos de galaxias. Según esta hipótesis, la distancia de 1 metro en el punto intermedio entre dos estrellas sería mayor comparado con 1 metro en las proximidades de una de ellas. Una nave espacial interestelar que viajara desde una estrella hacia la otra tardaría mucho menos tiempo en recorrer x metros en la zona intermedia que esos mismos x metros en una zona mas próxima a una de esas estrellas. Las masas contraen el espacio en sus proximidades y lo expanden (“estiran”) en regiones mas alejadas de su centro. Todo esto traducido a cinemática y dinámica indica que si un móvil tarda más tiempo en recorrer x metros en una determinada región que en otra anterior o posterior por la que pasó o pasará, quiere decir que lo que se observa es una aceleración. Pero, todo es mas complejo que una mera expansión o contracción estática del espacio debido a la presencia de masas. El hecho sería similar a un flujo de espacio que se dirige hacia el centro de la masa. Así, ese flujo sería de mayor “densidad” en las proximidades de las masas y de menor “densidad” en las regiones más alejadas del centro. El símil hidráulico aquí nos sirve. El agua de un río fluye a cierta velocidad promedio, que podría ser casi nula en la lejanía, pero cuando el cauce del río se estrecha en cierto punto, la velocidad del agua aumenta. La materia estrecharían esos cauces por los que fluye espacio.

Tampoco sería posible concebir un universo vacio de materia. Un universo vacío, sería un universo inexistente porque sería la materia la que crea la extensión. Sin materia no habría extensión espacial. Cabe pues preguntarse cuánto espacio crearía a su alrededor 1 kilogramo de masa. La respuesta nos la da la siguiente ecuación:

\displaystyle r = \cfrac{2GM}{c^2} (3)
por lo tanto,si toda esa masa estuviera concentrada en su centro, una masa de pruebas no podría alejarse mas allá de

\displaystyle r = 1.485227603223509 \times 10^{-27} \  \mathrm{metros}
porque, sencillamente, no habría más espacio disponible en dicho universo.¿De donde sale esa ecuación (3)?. Es una ecuación de la velocidad de escape de un campo gravitatorio cuando dicha velocidad de escape es la velocidad de la luz. Veamos. Cuando igualamos la energía cinética de la masa de pruebas m con su energía gravitacional en el campo gravitatorio creado por la masa M, obtenemos lo que se llama velocidad de escape:

\displaystyle \cfrac{mv^2}{2} - \cfrac{GMm}{r}=0 \\ \\  \cfrac{v^2}{2}  =\cfrac{GM}{r} \\ \\  v_e = \sqrt{\frac{2GM}{r}} (4)
Es decir, si la masa de pruebas, m, supera la velocidad de escape ve a la distancia r y en dirección radial centrífuga, dicha masa continuaría alejándose de la masa M a dicha velocidad constante de escape. Pero, eso sólo sería posible si el universo tuviera más masa que la suma M + m. Es decir, en un universo con masa total M + m, la masa de pruebas m no podría llegar muy lejos, aunque igualara o superara esa velocidad de escape. Pues, esa distancia r sería ni más no menos que el radio de dicho universo si la velocidad de escape igualara la velocidad de la luz.

El radio de r = 1.485227603223509×10-27 metros, que he calculado arriba para una masa de M = 1 Kg, sería menor que el radio de un protón, el cual está entre 0.84 y 0.87 femtómetros (1 fm = 1×10-15 m).

Saludos

Anuncios

Posted in Astrofísica, Cosmología, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Cómo vencer a un agujero negro sólo con un lápiz y un papel

Posted by Albert Zotkin en mayo 10, 2014

En un anterior post mio (Demostración impepinable de que los agujeros negros no pueden existir en nuestro universo) dejé bien claro que en la naturaleza existe un censor cósmico que impide la formación de agujeros negros, por mucho que la Teoría General de la Relatividad y sus acérrimos e “interesados” defensores se empeñen en demostrarnos lo contrario. Efectivamente, ese censor cósmico impide la formación de agujeros negro mediante un curioso mecanismo cuántico llamado “efecto túnel cuántico”. Toda partícula con masa, al aproximarse a una barrera de potencial gravitatorio radialmente y hacia su centro, poseerá cierta probabilidad de saltar al otro extremo de la barrera de potencial sin pasar por el centro. Es decir, la partícula másica será teletransportada a las antípodas y escapará del campo gravitacional que la estaba atrapando. ¿Cuándo y desde dónde existirá la máxima probabilidad de que una partícula másica realice un salto cuántico mediante el efecto tunel?. Eso es lo que trataré de explicar seguidamente en este pequeño post de hoy. black-hole

Como digo, la Teoría General de la Relatividad predice la existencia y formación de agujeros negros. Una de las soluciones se llama Agujero Negro de Schwarzschild. Todo agujero negro posee un horizonte de sucesos, a partir del cuál, todo cuerpo que cayerá en él, incluso la misma luz, ya no podria salir jamás. Ese horizonte de sucesos, según la teoría de Einstein, posee un tamaño, que para el caso del que tratamos, se puede expresar como un radio de Schwarzschild r_\mathrm{sh} :

\displaystyle     r_\mathrm{sh} =\frac{2GM}{c^2}  (1)
Esto significa, como digo, que una partícula que cae hacia el supuesto agujero negro y pasa por su horizonte de sucesos ya no podria salir de él jamás, por mucho que fuera acelerada hacia el exterior. Para escapar, según esa teoría, necesitaría superar la velocidad de la luz en el vacío. Por esa misma razón, la luz tampoco puede escapar de un agujero negro. En cualquier punto de la superficie de esa esfera de Schwarzschild, de radio r sh, la velocidad d escape se iguala a la de la luz. y para puntos del interior la velocidad de escape sería mayor que la de la luz.
Consideremos ahora una partícula de masa m que está cayendo libre y radialmente hacia un supuesto agujero negro. Su longitud de Compton vendrá definida por su masa así:

\displaystyle      \lambda = \frac{h}{m c} \  (2)
Es pues presumible que si el radio de Schwarzschild es menor o igual a la mitad de la longitud de Compton de la partícula que cae, entonces dicha partícula experimentará un salto sobre la barrera de potencial del supuesto agujero negro debido a que el censor cósmico aplica un efecto túnel cuánto. O sea, el suceso seguro (probabilidad igual a 1) se producirá cuando:

\displaystyle      \lambda = 2 \; r_\mathrm{sh} \\ \\  \frac{h}{m c} = \frac{4 \;GM}{c^2}  \\ \\ \\ \\  h = \frac{4 \; GMm}{c}  (3)
Pero (3) se cumpliría sólo para una partícula que cayera en la barrera de potencial a la velocidad de la luz, por lo que para un fotón, la masa m sería su energía dividida por la velocidad de la luz al cuadrado:

\displaystyle     m =\cfrac{h \nu}{c^2} \\ \\ \\  h = \frac{4 \; GM  \nu}{c^3}

Para cualquier otra partícla subluminar, usaremos su onde de De Broglie

\displaystyle     \lambda =\cfrac{h}{m v} \\ \\ \\

donde v es la velocidad a la que cae en la barrera de potencial. Así, tendremos que:

\displaystyle     \frac{h}{m v} = \frac{4 \;GM}{c^2} \\ \\ \\  v = \frac{h c^2} {4 \;GMm} (4)

Saludos

Posted in Astrofísica, Cosmología, Física de partículas, Gravedad Cuántica, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: