TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘Teorema de Pitágoras’

Más allá del último Teorema de Fermat

Posted by Albert Zotkin en marzo 4, 2018

Hola amigo incondicional de Tardígrados. Anoche. como no podía conciliar el sueño, en lugar de contar ovejitas, me puse a calcular mentalmente ternas pitagóricas, y de ahí pasé a mayores evocando el último Teorema de Fermat. Afortunadamente me quedé dormido pronto, pero de todo eso surgieron algunas ideas extravagantes, que más se parecen a cabezonería que a otra cosa. Y me dije para mis adentros: “vale, vale, el último Teorema de Fermat es cierto, no es posible encontrar ternas de números enteros positivos (x, y, z) tal que se cumpla la relación:

\displaystyle    x^n + y^n = z^n  \, (1)
para todo n > 2. Pero, ¿y si nos emperramos en que esa relación se pueda cumplir para ciertas ternas de enteros positivos?. Es decir, queremos que “el último Teorema de Fermat sea falso“, entre comillas, por supuesto. Queremos ir mas allá. Pensemos por un momento en algo parecido a lo que queremos conseguir. Ese algo puede ser, por ejemplo, la raíz cuadrada de un número real negativo. Por mucho que nos empeñemos, la raíz cuadra de un número real negativo no es un número real, ni negativo ni positivo. Pero alguien se emperró y dijo hacia sus adentros, ¿cómo que no voy a ser capaz de calcular esto?:

\displaystyle    x = \sqrt{-25} (2)
Para poder resolver esa imposibilidad algebraica se inventaron los números complejos, y más concretamente el número imaginario i = (0, 1), del cual queremos que su cuadrado sea igual a -1. De esa forma tan artificial y forzada tendremos que, efectivamente:

\displaystyle    x = \sqrt{(-1)25 } =\sqrt{-1}\sqrt{25}= i\sqrt{25} \\ \\ i =\sqrt{-1} (3)
¿Hemos resuelto el problema?. No, pero hemos sabido encapsular el objeto conflictivo, aislarlo de la solución. Los números complejos, visto de esta forma tan extravagante, son como hacer limpieza y meter toda la basura debajo de la alfombra. En realidad, no hemos resuelto el problema de la raíz cuadrada de un numero negativo, simplemente hemos escondido el problema debajo de la alfombra. Pero, al hacer eso, nos hemos visto forzados a definir una nueva clase de números, los números complejos, de la que los números reales es simplemente un subconjunto. Así, con la ecuación (1), que define el teorema de Fermat, pasa algo muy parecido. Supongamos que queremos que exista una solución de ternas enteras para

\displaystyle   x^3 + y^3 = z^3  \, (4)
Sabemos que no será una solución real. Busquemos ternas de números que podrían servirnos. Y para ello nos basaremos en un método análogo al que utilizó Euclides para encontrar ternas Pitagóricas. Euclides encontró, para para cualquier par aleatorio de números enteros positivos, m y n, con m > n, que es posible definir una terna que cumpla el Teorema de Pitágoras, así;

\displaystyle  x=m^{2}-n^{2},\ \,y=2mn,\ \,z=m^{2}+n^{2} (5)
y la relación del Teorema de Pitágoras se cumplirá siempre si las ternas están definidas de esa forma, para cualquiera que sean los números aleatorios m y n:

\displaystyle  z^2=x^2+y^2 (6)
Hagamos ahora algo parecido para nuestras ternas de Fermat en la relación cúbica. Es decir, desde dos números aleatorios m y n, definamos nuestras ternas así:

\displaystyle  x=m^3-n^3,\ \,y=\sqrt[3]{2n^9+ 6m^6 n^3},\ \,z=m^3+n^3 (7)
Evidentemente, como el último Teorema de Fermat es cierto, no esperamos que nuestras ternas, definidas de esa forma, cumplan la relación cúbica (4). Pero, las vamos a presentar para a ver qué ocurre:

\displaystyle  x^3+y^3= (m - n)^3+\left(\sqrt[3]{2n^3+ 6m^2 n}\right)^3 = \\ \\  =(m^3 - n^3)^3+ (2n^9+ 6m^6 n^3)^3 = m^9+3 m^6 n^3+3 m^3 n^6+n^9 = \\ \\   =(m^3+n^3)^3=z^3 (8)
Con lo cual hemos demostrado que el último Teorema de Fermat es ¡falso!. ¿Dónde está el error?. El error está en afirmar que, tal y como hemos definido y, desde los enteros positivos aleatorios m y n, debe ser obligatoriamente un entero positivo. De hecho para demostrar que el último Teorema de Fermat es cierto para el caso cúbico basta con demostrar que:

\displaystyle  y =\sqrt[3]{2n^9+ 6m^6 n^3}  (9)
no puede ser entero positivo si m y n lo son. Y eso se demuestra muy rápidamente:

\displaystyle  y^3 = 2n^9+ 6m^6 n^3 (10)
no puede ser un cubo porque el único sería:

\displaystyle  y^3 = n^9+ 6n^9  +  n^9 = 8 n^9 \\  y = 2n^3 (11)
que es una contradicción ya que originalmente m no puede ser igual a n. En general, para demostrar este teorema para todos los casos, basta con demostrar que el número y no puede ser entero si n y m son enteros. El caso general más simple sería:

\displaystyle  x= m-n ,\ \, z= m+n \\ \\  y = \sqrt[k]{(m+n)^k - (m-n)^k } (12)
y como sabemos que las siguientes expansiones son ciertas:

\displaystyle (m+n)^k = \sum_{j=0}^k {k \choose j} m^{k-j}n^j \\ \\ \\ (m-n)^k = \sum_{j=0}^k {k \choose -j} m^{k-j}n^j (13)

tendremos que:

\displaystyle  (m+n)^k -(m-n)^k = \sum_{j=1}^{k-1} {k \choose j} m^{k-j}n^{j} -\sum_{j=1}^{k-1} {k \choose -j} m^{k-j}n^{j} \\ \\ \\ (14)
Es decir, el número y, expresado desde los aleatorios enteros positivos m y n, sería:

\displaystyle  y = \sqrt[k]{\sum_{j=1}^{k-1} {k \choose j} m^{k-j}n^j-\sum_{j=1}^{k-1} {k \choose -j} m^{k-v}n^j} \\ \\ \\ (15)
Con lo cual para demostrar que es cierto el último Teorema de Fermat, basta con demostrar que, en esta última ecuación (14), si m y n son enteros positivos, entonces y no lo es, y eso debe ser cierto para todo k entero positivo.

El caso general algo menos simple que el anterior sería:

\displaystyle  x= m^k-n^k ,\ \, z^k= m^k+n^k \\ \\  y = \sqrt[k]{(m^k+n^k)^k - (m^k-n^k)^k } (16)
Pero, las expansiones son muy parecidas a las del caso anterior, sólo hay que elevar a k los dos factores que acompañan al binomial, porque es simplemente un vulgar cambio de variable:

\displaystyle y = \sqrt[k]{\sum_{j=1}^{k-1} {k \choose j} m^{k^2-j k}n^{v k} -\sum_{j=1}^{k-1} {k \choose -v} m^{k^2-j k}n^{j k} } (17)
Esa diferencia de sumatorios es fácil redcirla, ya que poseen sumandos iguales, pero en el segundo sumatorio hay alternancia de signos ±. Por lo tanto, los sumando en posiciones impares se suman duplicándose, y los de posiciones pares se restan, anulándose. Una forma elegante de expresar esa diferencia de sumatorios es esta:

\displaystyle y = \sqrt[k]{\sum_{j=1}^{k-1} {k \choose j} (1+e^{i \pi j}) m^{k^2-j k}n^{j k} }

(18)
El último Teorema de Fermat viene a decirnos que el único caso para el que el número y resulta ser entero, siendo los aleatorios enteros m y n, es cuando k = 2. Los casos para k >2, dan todos un número y que no es entero, es decir, le sobra o le falta siempre cierta cantidad para completar un hipercubo.

\displaystyle k=2,\,y= 2 \sqrt{m^2 n^2} \\   k=3,\,y= \left(6 m^6 n^3+2 n^9\right)^{1/3} \\   k=4,\,y= \left(8 m^{12} n^4+8 m^4 n^{12}\right)^{1/4} \\   k=5,\,y=  \left(10 m^{20} n^5+20 m^{10} n^{15}+2 n^{25}\right)^{1/5} \\  k=6,\,y= \left(12 m^{30} n^6+40 m^{18} n^{18}+12 m^6 n^{30}\right)^{1/6} \\   k=7,\,y= \left(14 m^{42} n^7+70 m^{28} n^{21}+42 m^{14} n^{35}+2 n^{49}\right)^{1/7} \\  k=8,\,y= \left(16 m^{56} n^8+112 m^{40} n^{24}+112 m^{24} n^{40}+16 m^8 n^{56}\right)^{1/8} \\  k=9,\,y=  \left(18 m^{72} n^9+168 m^{54} n^{27}+252 m^{36} n^{45}+72 m^{18} n^{63}+2 n^{81}\right)^{1/9} \\  k=10,\,y=  \left(20 m^{90} n^{10}+240 m^{70} n^{30}+504 m^{50} n^{50}+240 m^{30} n^{70}+20 m^{10} n^{90}\right)^{1/10}

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , | Leave a Comment »

La hipótesis blanda de Riemann

Posted by Albert Zotkin en febrero 3, 2016

Anoche mientras me entretenía con algunas sumas parciales de la función zeta de Riemann, me di cuenta de algo muy curioso, cuyo enunciado voy escribir seguidamente a modo de conjetura (hipótesis): Si para la suma parcial

\displaystyle \zeta_N= \sum_{n=1}^N \;\frac{1}{n^s}
el número complejo siguiente es una de sus raíces (ceros), z1 = σ + it, entonces este otro número complejo, z2, escrito en función del primero, posee la misma parte real:

\displaystyle z_2  = - \cfrac{\log(\zeta_{N-1}(z_1))}{\log(N)}
Mi conjetura es que sólo si z1 es un cero de ζN, entonces

\displaystyle \text{Re}(z_2) =  \text{Re}(z_1)=\sigma
A esta conjetura la llamo la Hipótesis blanda Riemann, y la vamos a ver en acción con dos sencillos ejemplos numéricos: Sea la siguiente ecuación:

\displaystyle 1+2^{-x}+3^{-x}=0

y uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle z_1 =0.4543970081950240272783427420109442288880- \\       3.5981714939947587422049363529208471165604i

. Por lo tanto el número z2 será:

\displaystyle z_2 = -\cfrac{\log(-1-2^{z_1})}{\log 3}
\displaystyle z_2 = 0.4543970081950240272783427420109442288880- \\ 2.1210302407654957970993444877464279628993i

Para la siguiente ecuación:

\displaystyle 1+2^{-x}+3^{-x}+4^{-x}=0

sabemos que uno de sus ceros, hasta una precisión de 50 decimales, es:

\displaystyle z_1 =0.502684148750165679490952980864893319283 -\\ 20.7799493688306204126178629816730434295i

. Por lo tanto el número z2 será:

\displaystyle z_2 = -\cfrac{\log(-1-2^{z_1}-3^{z_1})}{\log 4}
\displaystyle z_2 = 0.5026841487501656794909529808648933193 + \\ 1.8818513403053486355205517469102906214

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Los ceros de las sumas parciales de la función zeta de Riemann cerca del inframundo

Posted by Albert Zotkin en enero 10, 2016

¿Sabes resolver la siguiente ecuación donde s es una variable compleja?:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=0 (1)
Esta ecuación es en claro ejemplo de ecuación trascendente, y no posee solución analítica (que sepamos). El lado izquierdo de esta ecuación es una suma parcial de tres sumandos de la función Zeta de Riemann, o lo que es lo mismo, un harmónico generalizado de orden 3:

\displaystyle H_{n,s}=\sum _{k=1}^{n}{\frac {1}{k^{s}}} (2)
En el límite n ? 8, el harmónico generalizado converge hacia la función Zeta de Riemann:

\displaystyle \lim _{n\rightarrow \infty }H_{n,s}=\zeta (s) (3)
Se ve a simple vista que el lado izquierdo de esa ecuación es una suma de exponenciales, es decir, no es un polinomio. Pero, podemos expresarlo mediante serie de potencias, por ejemplo, mediante series de Taylor, así:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=3+(-\log(2)-\log(3) z+\frac{1}{2} \left(\log(2)^2+\log(3)^2\right) z^2+\left(-\frac{1}{6} \log(2)^3-\frac{\log(3)^3}{6}\right) z^3+\frac{1}{24} \left(\log(2)^4+\log(3)^4\right) z^4+\left(-\frac{1}{120} \log(2)^5-\frac{\log(3)^5}{120}\right) z^5+\frac{1}{720} \left(\log(2)^6+\log(3)^6\right) z^6+\left(-\frac{\log(2)^7}{5040}-\frac{\log(3)^7}{5040}\right) z^7+\frac{\left(\log(2)^8+\log(3)^8\right) z^8}{40320}+\left(-\frac{\log(2)^9}{362880}-\frac{\log(3)^9}{362880}\right) z^9+\left(\frac{\log(2)^{10}}{3628800}+\frac{\log(3)^{10}}{3628800}\right) z^{10}+O(z)^{11}
He investigado algo esto y he visto que todo harmónico generalizado se puede expresar así:

\displaystyle H_{m,s}=\sum _{n=0}^{\infty } \sum _{k=2}^m  \frac{\log (k^n )(-s)^n}{n!} +1 (4)
Esto significa que la función Zeta de Riemann puede escribirse de la siguiente forma:

\displaystyle \zeta(s)=\sum _{n=0}^{\infty } \sum _{k=2}^{\infty} \frac{\log (k^n )(-s)^n}{n!} +1 (5)
Pero, intentemos saber cómo resolver la primera ecuación que escribí, la (1): Si la variable es compleja entonces esa ecuación posee infintas raices o ceros, y dos de esos ceros son (con alta precisión en número de dígitos) estos:

\displaystyle z_1 = 0.4543970081950240272783427420109442288880772534469111379406228046-3.598171493994758742204936352920847116560425746628839339842061185i\\ \\ z_2=0.4543970081950240272783427420109442288880772534469111379406228046+3.598171493994758742204936352920847116560425746628839339842061185i
Esos dos ceros, z1 y z2, son dos números irracionales, y presumíblemente sus infinitos ceros también lo sean.

Pero, intentemos contestar a la pregunta con la que abría este post. ¿Sabes resolver la siguiente ecuación donde s es una variable compleja?:

\displaystyle 1+\frac{1}{2^s}+\frac{1}{3^s}=0
Esa ecuación al ponerla en forma polinómica, posee grado infinito, como hemos visto arriba. Pero, ¿qué podemos decir de esta otra ecuación?:

\displaystyle 1+s^{-2}+s^{-3}=0 (6)
Esta ecuación parece más tratable de resolver analíticamente, ¿no?. Su raíces serían estas tres (una real y dos complejas):

\displaystyle s_1=-\left(\frac{2}{3 \left(-9+\sqrt{93}\right)}\right)^{1/3}+\frac{\left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{3^{2/3}}\\ \\ \\ s_2=-\frac{\left(1+i \sqrt{3}\right) \left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{2 3^{2/3}}+\frac{1-i \sqrt{3}}{2^{2/3} \left(3 \left(-9+\sqrt{93}\right)\right)^{1/3}}\\ \\ \\ s_3=-\frac{\left(1-i \sqrt{3}\right) \left(\frac{1}{2} \left(-9+\sqrt{93}\right)\right)^{1/3}}{2 3^{2/3}}+\frac{1+i \sqrt{3}}{2^{2/3} \left(3 \left(-9+\sqrt{93}\right)\right)^{1/3}}
La pregunta del millón es la siguiente. ¿Existe algún álgebra tal que podamos transformar la ecuación analíticamente intratable (1) en otra más tratable que se parezca mucho en la forma a la (6)?. La respuesta es sí. Afortunadamente, las bases para ese tipo de álgebra ya la descubrí anteriormenete en lo que llamé aritmética del inframundo y del ultramundo.

Partimos de la ecuación (1). y la expresamos mediante exponenciales de esta forma

\displaystyle 1 + e^{-x\log 2}+e^{-x\log 3}=0 \\ \\
ahora pasamos el 1 al lado derecho y aplicamos logaritmo neperiano en ambos lados:

\displaystyle  e^{-x\log 2}+e^{-x\log 3}=-1 \\ \\  \log(e^{-x\log 2}+e^{-x\log 3})=\log(-1)= i\pi \\ \\
y observamos que el lado izquierdo es literalmente la definición de infra-suma de grado -1, con lo cual nuestra ecuación inicial (1) queda al final así:

\displaystyle  \left(-x\log 2\right)\oplus \left(-x\log 3\right)=i\pi (7)
Si este álgebra poseyera las mismas propiedades que el álgebra de grado 0 convencional, podríamos atisbar una solución para esta última ecuación (7), recordando que la multiplicación de grado -1 es la suma convencional de grado 0. Así, sacando factor común (-x) y despejándola en el lado izquierdo, obtendríamos una hipotética solución de x:

\displaystyle  (-x) + \left(\log 2\oplus \log 3\right)=i\pi  \\ \\   (-x)  = i\pi \left(\log 2\oplus \log 3\right) \\ \\     x = \left(\log 2\oplus \log 3\right) - i\pi \\ \\     x = \log\left(e^{\log 2}+e^{\log 3}\right) - i\pi
\displaystyle x=\log\left(\frac{e^{\log 2}+e^{\log 3}}{e^{- i\pi}}\right)  (8)
Pero, sabemos que la ecuación (1) posee infinitas raíces (ceros), por lo tanto, la solución (8) debería incluir los infinitos cíclos mediante los múltiplos de . Así, una hipotética solución podría ser como la siguiente (aunque puede demostrarse fácilmente que esta solución que presento es incorrecta):

\displaystyle x_n = \log\left(\frac{e^{\log 2}+e^{\log 3}}{e^{- i\pi n}}\right)  \\ \\ \\ \\  x_n = \log\left( \frac{5}{e^{- i\pi n}}\right)   \\ \\ \\ \\  x_n=\log 5 - i\pi n

Saludos

Posted in Matemáticas | Etiquetado: , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: