TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘speed of light’

Refutación de la inocentada relativista llamada “paradoja de los gemelos”

Posted by Albert Zotkin en abril 5, 2015

La paradoja de los gemelos que predice la teoría de la Relatividad Especial de Albert Einstein es una de las mayores catástrofes teoréticas de la historia de la ciencia. Toda teoría que contenga una paradoja de tal calibre debe ser instantáneamente desechada de cualquier mente medianamente racional.

A menudo me encuentro muchos gráficos de Minkowski con los que los autores, defensores (mainstreamófilos) de esa teoría tan inocente, pretenden explicarnos cómo se resuelve dicha paradoja de los gemelos. Todos ellos coinciden en señalar que no es una paradoja, sólo una pseudo-paradoja. Ponen mucho empeño en eso (más de cien años de superioridad moral les “avalan” para creerse que están en posesión de la verdad absoluta, y los demás somos sólo unos tontitos que no entendemos nada). Dicen que esa PARADOJA (con mayúsculas), que ellos llaman pseudo-paradoja, es simple y llanamente una especie de herramienta (experimento mental, Gedankenexperiment) pedagógica para enseñar dicha teoría a los neófitos. Está claro que si admitieran que es una verdadera paradoja entonces deberían desechar la teoría, porque los fenómenos naturales no pueden ser nunca explicados desde paradojas, sino desde certezas inequívocas.

Uno de los últimos diagramas de Minkowski que me he encontrado, usado para explicar la supuesta resolución de la paradoja de los gemelos, es el siguiente:

twin-paradox

Vemos que es un gráfico de Minkowski muy bonito. El autor del artículo que pretende explicarnos la resolución de la paradoja de los gemelos (también llamada paradoja del tiempo) admite al menos que no es la aceleración la causa de esa asimetría temporal entre los gemelos. Según dicho autor, la causa es el cambio de sistema de referencia. Una de cal y otra de arena. Efectivamente la aceleración no es la causa de esa asimetría, pero el cambio de sistema de referencia tampoco. En realidad, lo que un relativista nos contaría es que la resolución de la “pseudo-paradoja” está en que el gemelo viajero recorre más espacio-tiempo que el gemelo estacionario (el que se queda en la Tierra). Efectivamente, según el diagrama de Minkowski de arriba, los gemelos viajeros recorren más espacio-tiempo que el estacionario.

Reflejemos horizontalmente el diagrama anterior y girémoslo 90 grados, para que el tiempo t (variable temporal) sea visto en en el eje horizontal, y la variable espacial x esté en el eje vertical.

twin-paradox-2

Es indiferente que deban de ser gemelos (misma edad), la dilatación del tiempo se predice desde la teoria de la Relatividad Especial, para cualquier cuerpo que se mueva (incremento o decremento de su velocidad) respecto a otros. En este diagrama hay tres cuerpos móviles (uno de ellos queda estacionario). Pero, mmmm, ¿un diagrama de Minkoski no es un sistema de referencia de cuatro dimensiones, tres espaciales y una temporal?. Es decir, nos están explicando la paradoja de los gemelos desde el punto de vista del gemelo que queda estacionario en la Tierra (Albert – linea verde), usan un sistema de referencia donde el gemelo de la Tierra queda estacionario, en reposo. Albert (linea verde) siempre está en el eje vertical (no se mueve espacialmente), sólo se supone que “viaja temporalmente”. Los eventos de cada cuerpo móvil son puntos en ese diagrama. Esos puntos se mueven respecto a un meta-tiempo común, y lo hacen a la misma meta-velocidad recorriendo sus respectivas lineas de universo (longitud de sus respectivos intervalos de espacio-tiempo). ¿Dónde está la ingenuidad de toda esto en la Relatividad Especial?. Simple y llanamente, la ingenuidad está en creer que cuando Carlos o Beatriz interceptan el eje vertical del tiempo de Albert, se encuentran con él. Eso es absurdo, y ahí reside el meollo de esta paradoja tan brutal. Cuando Beatriz, que ha estado viajando menos tiempo que carlos, llega al eje vertical del tiempo de Albert, Albert ya no está ahi, por lo tanto, Beatríz no encuentra a nadie en ese punto del eje. Albert cuando vuelve Beatriz se encontraría mucho más arriba en el eje del tiempo. Amigo, mmmm, ¿Qué pasa cuando tienes una cita con la chica que te gusta y llegas una hora tarde?, pues que la chica ya no está, simplemente. el 99.99999% de los eventos en la Relatividad Especial son eventos vacios. Si te encuentras con un evento vacío, simplemente te encuentras con un hueco donde una vez hubo materia, pero nunca con una colisión. La paradoja de los gemelos se resuelve negativamente siempre, es decir para resolverla correctamente hay que poner en evidencia toda la Relatividad Especial. En dicha Teoría, para que exista consistencia, el gemelo estacionario (Albert – linea verde) debe estar en el punto de intersección de Beatríz (linea roja) cuando vuelve al eje vertical. Y cuando vuelve Carlos al eje vertical, deben estar Beatríz y Albert ahí. Deben ser eventos llenos, es decir eventos en los que exista materia ocupando espacio. Pero, para que esos encuentros ocurran debemos ver a Albert viajando más despacio por su eje vertical del tiempo que a Beatriz por su trayectoria espacio-temporal (su linea de universo). Y Carlos debe de viajar más deprisa que Beatríz por su propia trayectoria. Pero, si hacemos eso para que los encuentros sean posibles, entonces nos estamos cargando la famosa invariancia de Lorentz. Es decir, si existen reencuentros de los gemelos en el eje vertical, entonces, eso sólo es posible si todos tiene la misma edad, y la invariancia de Lorentz (simetría) resulta ser un camelo, una inocentada de muy mal gusto para toda mente racional.

Amigo, te quedas sin novia si te crees la Relatividad Especial, pues en tus citas con la chica de tus sueños siempre llegarás tarde y ella no te esperará mucho tiempo allí plantada. La falacia de la relatividad especial está en los eventos vacios, donde supuestamente hay siempre sistemas materiales accesibles en tus ensoñaciones de viajes en el tiempo. Amigo, hace ya más de un siglo que los “científicos” defensores de la relatividad Einsteniana nos la vienen metiendo doblada. Los eventos llenos (puntos dinámicos del diagrama de Minkowski) viajan todos a la misma meta-velocidad, así lo dice matemáticamente la invariancia de Lorentz, pero al viajar con esa velocidad invariante, sus reencuentros en el eje del tiempo son siempre eventos vacíos (eventos sin colisión), allí no hay nadie ni nada con qué colisionar.

Por otro lado, toda teoría de la relatividad que se precie, debe admitir que la velocidad es una magnitud relativa, pues depende del sistema de referencia que elijas para medirla. Pero si elegimos, por ejemplo, al viajero Carlos como estacionario, entonces son los demás los que se alejan de él con sus respectivas velocidades. Es decir, Carlos en el sistema de referencia en el que permanece en reposo sólo viaja por su eje vertical del tiempo, con lo cual, los demás serían más jóvenes que él cuando se reencontraran. O sea, desde el punto de vista de Carlos (linea azul), el diagrama sería así
twin-paradox-3
Es decir desde el sistema de referencia de Carlos, Beatriz sería al final más joven que Carlos, y Albert más joven que Beatriz. Y desde el punto de vista de Beatriz, tendríamos el siguiente diagrama:
twin-paradox-4. Es decir, los que no permanecen estáticos serán al final, cuando se reencuentren, más jóvenes que quien permanece estático. Algo absurdo, evidentemente, una inocentada de muy mal gusto para cualquier mente medianamente racional.

En resumen: la conclusiónn de todo esto es clara. Sólo mediante la presentación de diagramas (los cuales obedecen a ecuaciones matemáticas) es posible ver dónde radican los errores de consistencia en la teoría de la Relatividad Especial. El primer error es tratar de compactar todo el espacio-tiempo con eventos llenos, lo cual no es cierto. Un evento lleno es aquel que contiene materia. Cuando Beatriz vuelve a situarse sobre el eje temporal de Albert, no lo encuentra, pues ahí sólo existe un evento vació. El evento lleno que contiene a Albert está situado más adelante el (arriba) en su eje del tiempo. Y así con todos los reencuontros. Por lo que la dilatación del tiempo es una falacia. Cuando usas una falacia para predecir algo supuestamente real aparece lo que se llama una paradoja (nunca una pseudo-paradoja), es decir una auténtica absurdidad.

Saludos

Posted in Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , | 15 Comments »

Velocidades superlumínicas en el LHC del CERN

Posted by Albert Zotkin en marzo 30, 2015

El Gran Colisionador de Hadrones (LHC) tiene previsto este año (2015) reiniciar sus colisiones protón-protón, después de dos años de parada técnica por tareas de mantenimiento. En principio se tenia previsto llegar a colisiones con el máximo de energía para la que fue diseñada la compleja máquina. Esa máxima energía es de 14 TeV (14 Tera-electrón-voltios), pero por razones de optimización posterior, y atendiendo a las características técnicas de los 1232 imanes dipolares superconductores de que está dotado el anillo de 27 kilometros de circunferencia del LHC, la energía a la que llegarán las colisiones este año será de 13 TeV. Aun así, esa energía es significativamente mayor que la que se utilizó al principio, que fue de 7 TeV, llegando después hasta 8 TeV.
Según la Relatividad Especial, la energía total E de una partícula de masa m se expresa así:

\displaystyle E = \gamma mc^2

siendo γ el famoso factor de Lorentz

Si la energía total a desarrollar para los dos protones que colisionan en el LHC es de 13 TeV, entonces para uno de esos protones, y en un sistema de referencia centrado en el centro de masas de ambas partículas, la energía sería de 6.5 TeV y le correspondería un factor de Lorentz de:

\displaystyle    6.5 \times 10^{12} \;  \mathrm{eV} \times 1,602 \times 10^{-19} \frac{\mathrm{J}}{\mathrm{eV}} = \gamma \; 1,67 \times 10^{-27} \; \mathrm{Kg} \times 3 \;10^8 \; \left(\frac{\mathrm{m}}{\mathrm{s}}\right )^2  \\ \\  \gamma = 6937.7

y ese factor de Lorentz representaría una velocidad de :

\displaystyle   v = c\sqrt{1-\frac{1}{\gamma^2}}= 0.9999999896c

muy próxima a c, pero sin superarla, como dicta la Relatividad Especial.

La velocidad de la luz es, si cabe, uno de los fenómenos físicos más extraños y menos entendidos desde el punto de vista científico. Ni siquiera nadie puede afirmar con rotundidad que esa sea una verdadera velocidad de algo (un fotón) que se desplace por el llamado espacio-tiempo (constructo teorético que también se las trae como concepto bastante artificioso).
Veamos ahora cómo se modela el movimiento de un protón desde otra teoría de la relatividad, en la que la dilatación del tiempo, y/o del espacio, no es necesaria para explicar nada. En dicha teoría la energía total viene definida así:

\displaystyle E = mc^2 \cosh \left(\frac{v}{c}\right)

con lo que obtenemos una velocidad para un único protón de:

\displaystyle   v = 9.5378784612c

proton-proton

es decir, ¡nueve veces y media la velocidad de la luz! Representemos en dos gráficas comparativas el factor de Lorentz γ y el factor coseno hiperbólico, el cual pertenece a la teoría de la relatividad Galileana:

sl

¿A partir de qué energía total un protón superaría la velocidad de la luz c?

\displaystyle   E=m c^2\cosh 1=1.4457 \;\mathrm{GeV}
A los incrédulos les diré que para comprobar si una partícula supera o no la velocidad de la luz, lo primero que hay que hacer en el experimento es sincronizar dos o más relojes distantes. Ahí está la clave de todo este meollo. La sincronización de relojes es algo absolutamente convencional, es decir, algo arbitrario que ha emanado de la invención humana. La naturaleza no necesita sincronizar relojes para poder funcionar ni comprobar nada, simplemente funciona. En cambio, dependiendo de qué convención arbitraria utilicemos para sincronizar dos o más relojes distantes, obtendremos diferentes resultados dispares en las mediciones de las velocidades. Hay que saber que existen infinitas convenciones de sincronización de relojes, todas ellas igual de válidas. Elije una de ellas y estarás creando una teoría de la relatividad ni más ni menos válida que la actualmente reinante en el mundo de la física.
Pero, los físicos de partículas no son tontos, no se complican la vida afirmando o negando que una partícula, o un puñado de ellas, supera la velocidad de la luz en el vacío. Los físicos de partículas simplemente usan algo llamado rapidez, que se aproxima algo al concepto de velocidad, pero no es igual. Sólo decir, por último, que si llamamos f a dicha rapidez, entonces la velocidad v, que consideramos en la teoría de la relatividad Galileana, se relaciona con ella de la siguiente forma:

\displaystyle   v = c\varphi

Saludos

Posted in Física de partículas, Mecánica Cuántica, Relatividad | Etiquetado: , , , , , , , , , , , , , , , , , , , | 2 Comments »

 
A %d blogueros les gusta esto: