TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Posts Tagged ‘mecánica estadística’

El mundo de los muertos y la cinemática de los walking dead (Mecánica estadística)

Posted by Albert Zotkin en octubre 25, 2014

El “mundo de los muertos” es el infra-mundo de orden -1. En ese universo, las cosas son, se mueven y evolucionan de una forma muy peculiar. El “mundo de los muertos” es el reino de los objetos y fenómenos cuánticos por antonomasia. Por otro lado, la definición de función de partición en mecánica estadística es muy importante.

En un sistema de partículas en equilibrio que sólo intercambia energía térmica con su entorno, tenemos que la función de partición para dicho sistema es:

\displaystyle \mathcal{Z} = \sum_{s} e^{\beta \epsilon_s} (1)
donde la suma se ha realizado sobre todos los microestados s, εs representa la energía del microestado s y ß se define como menos el inverso del producto de la temperatura por la constante de Boltzmann:

\displaystyle \beta = -\frac{1}{k_BT}
Así desde estas definiciones podemos por ejemplo expresar la ecuación de estado de los gases ideales así:

\displaystyle \langle PV\rangle=-\frac{\ln(\mathcal{Z})}{\beta} = -\frac{\epsilon_1\oplus\epsilon_2\oplus\epsilon_3\oplus\dots}{\beta}  (2)
donde εi representa la energía del microestado i. Es decir, la energia PV de los gases nobles es simplemente la infra-suma ⊕ de orden -1 de las distintas energias de los micro-estados. En general, toda ecuacion en la que aparezca el logaritmo de la función de partición, ln(Z), implica una infra-suma de energias de micro-estados. Pero alguien diría, muy bien y ¿dónde está el mérito de todo esto?. Pues el mérito de todo esto está en darse cuenta de que la infra-suma de orden -1 de energias de micro estados genera la emergencia de la energia del sistema macroscópico. Clásicamente la energía es una magnitud escalar que se suma o se resta canónicamente, con la aritmética de orden 0, pero lo curioso de todo esto es que las energias de los micro-estados se suman y se restan mediante la aritmética de orden -1. O sea, el macrocosmos (orden 0) emerge como consecuencia de infra-interacciones de orden -1.

infra Saludos

Posted in Física de partículas, Matemáticas, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Demostración de que la anisotropía de perfil Doppler en el plasma estelar descarta la inflación cósmica

Posted by Albert Zotkin en marzo 29, 2013

Queridos lectores, hoy voy a demostrar que la llamada inflación cósmica no existe realmente, sino que es un artefacto de aplicar incorrectamente el efecto Doppler de ondas electromagnéticas para fuentes remotas.
Hasta ahora parece indiscutible que las galaxias y cúmulos de galaxias se alejan unas de otras con una velocidad de recesión que crece con la distancia que las separa. Eso lo descubrió, como sabemos, Edwin Hubble.

u

Hoy en día, no sólo sabemos que existe esa inflación cósmica, sino peor aún que eso, parece ser que esa inflación tiene lugar de forma acelerada.
Hoy voy a demostrar que no sólo el universo no se está expandiendo de forma acelerada, sino que es esencialmente estático (no hay inflación). Para esa pequeña demostración, aunque rigurosa, me apoyaré en dos hechos irrefutables. El primer hecho es que el efecto Doppler de una onda electromagnética se describe completamente mediante la fórmula f = f_0 \exp (v/c). El otro hecho es el llamado ensanchamiento Doppler.

Observemos la luz de una estrella distante. Sabemos que las estrellas están formadas esencialmente por hidrógeno, el cual mediante reacción de fusión se transforma en helio, liberando gran cantidad de energía. Parte de esa energía nos llega en forma de fotones. Pero, observemos también que una estrella posee una atmosfera casi perfectamente esférica, y sus fuentes de emisión de fotones están distribuidas azarosamente por ella. El ensanchamiento Doppler es el ensanchamiento de líneas espectrales debido al efecto Doppler causado por una distribución de velocidades de átomos o moléculas.

Derivemos ahora una fórmula para el ensanchamiento Doppler de luz procedente del plasma de una estrella muy remota.

Cuando el movimiento térmico hace que en la fotosfera de esa estrella remota un átomo de Higrógeno se mueva hacia el observador, la radiación emitida sufrirá un corrimiento hacia una frecuencia más alta. Igualmente, cuando la fuente emisora se aleja, la frecuencia se reduce. Para velocidades relativistas (RGC, Relatividad Galileana Completa), el corrimiento Doppler en frecuencia será:

\displaystyle f = f_0 \exp \left ( \frac{v}{c} \right ) (1)
donde f es la frecuencia observada, f0 es la frecuencia en reposo, v es la velocidad del emisor hacia el observador, y c es la velocidad de la luz.

Puesto que en cualquier elemento de volumen del cuerpo radiante hay una distribución de velocidades dirigidas tanto hacia el observador como alejándose de éste, el efecto neto será un ensanchamiento de la línea observada. Si \,P_v(v)dv es la fracción de partículas con componente de velocidad v a v + dv a lo largo de la línea de visión, la distribución de frecuencias correspondiente será

\displaystyle P_f(f)df = P_v(v)\frac{dv}{df}df (2)
donde v es la velocidad hacia el observador que corresponde al corrimiento de la frecuencia en reposo f0 a f. Diferenciando (1) tenemos

\displaystyle v = c \ln \frac{f}{f_0} \\ \\ \\ dv = \frac{c\ df}{f} (3)

por lo tanto

\displaystyle P_f(f)df = \frac{c}{f}P_v\left (c \ln \frac{f}{f_0} \right) df (4)
En el caso del ensanchamiento Doppler térmico, que se observa en los perfiles del plasma estelar, la distribución de velocidades viene dada por la distribución de Maxwell-Botzmann

\displaystyle P_v(v)dv = \sqrt{\frac{m}{2\pi kT}}\,\exp\left(-\frac{mv^2}{2kT}\right)dv (5)
donde M es la masa de la partícula emisora, T es la temperatura y k es la constante de Boltzmann. Entonces tendremos que,

\displaystyle P_f(f)df=\left(\frac{c}{f}\right)\sqrt{\frac{m}{2\pi kT}}\,\exp\left(-\frac{m c^2 \ln^2 (\frac{f}{f_0}) }{2kT}\right)df (6)
Podemos ahora observar en (6) que estamos ante la presencia de una distribución log-normal, y esto significa que no solo existe un ensanchamiento de las lineas espectrales sino también un desplazamiento hacia el rojo, debido a la anisotropía que produce la exponencial en el perfil Doppler.

La distribución log-normal tiende a la función densidad de probabilidad

\displaystyle f(x;\mu,\sigma) = \frac{1}{x \sigma \sqrt{2 \pi}} e^{-(\ln x - \mu)^2/2\sigma^2} (7)
por lo tanto, para (6) tendremos que la media sería \mu=\ln f_0, si expresamos f_0 en unidades naturales, e igualmente, siendo \sigma la desviación estándar del logaritmo de variable f, tendremos,

\displaystyle 2\sigma^2 = 2\frac{k T}{m c^2} \\ \\ \\  \sigma = \sqrt{\frac{k T}{m c^2}} (8)
observemos estos ejemplos de funciones densidad de probabilidad de distribuciones log-normales,

LogNormalDistribution

Recordemos ahora la Ley de Planck, la cual predice la intensidad de la radiación emitida por un cuerpo negro con una temperatura T, y una frecuencia f,

\displaystyle I(f ,T) = \frac{2h\pi f^{3}}{c^2}\frac{1}{e^{\frac{h f}{kT}}-1} (9)
y algunas gráficas a modo de ejemplos, como las siguientes
nos están diciendo a gritos que tales curvas son en realidad funciones densidad de probabilidad de distribuciones log-normales. La pregunta del millón es pues ¿por qué la Ley de Planck no se expresa como una distribución log-normal?.

Escalemos ahora las gráficas de arriba de las distribuciones log-normales por ciertos factores de escala s,

LogNormalDistribution2

Esto nos hace pensar que la Ley de Planck puede ser modelada mediante distribuciones log-normales que poseen un factor adicional de escala. Y por lo tanto, nos hace pensar que la derivación de la Ley de Planck usando la mecánica estadística es sólo una aproximación más pobre que la conseguida con distribuciones log-normales.

Fijémonos ahora en el Fondo Cósmico de Microondas (CMB). Cuando hacemos un plot de la intensidad de la CMB en función de las frecuencias de sus fotones (vease la de COBE), obtenemos una gráfica que se define como la de emisión de un cuerpo negro, por lo tanto obedece la Ley de Planck. Pero, observando las distribuciones log-normales, es ya más que evidente que la CMB nos llega precisamente como distribución log-normal. Y eso significa que si adoptamos ese modelo entonces podemos llegar a predecir observables que el modelo estándar no puede predecir.

Saludos

— Continuará —

Posted in Astrofísica, Cosmología, Mecánica Cuántica | Etiquetado: , , , , , , , , , , , , , , | Leave a Comment »

 
A %d blogueros les gusta esto: