TARDÍGRADOS

Ciencia en español

Matemáticas alienígenas: números primos marcianos

Posted by Albert Zotkin en marzo 28, 2018

Hoy hablaré de los número primos marcianos Fobos y Deimos, que como sabrás, sus nombres son como los dos satélites naturales de Marte. Primero hablaré del número Deimos:

\displaystyle \text{\small Deimos}=2^{127} - 1 =170141183460469231731687303715884105727 (1)
Este número es primo, y además de ser de la clase Mersenne, es de la clase Catalan-Mersenne. El número marciano Deimos hizo un pequeño cameo en la serie de dibujos animados Futurama. Más concretamente, salió en el episodio Futurama: La bestia con un millón de espaldas, película de 2008. Exactamente, la secuencia se puede encontrar en el punto de metraje 01:16:59.178: en la que el profesor Farnsworth le dice a su rival, el profesor Wernstrom, que ha conseguido una prueba elemental de la Conjetura de Goldbach.

Pero hablemos un poco ahora sobre la sucesión de números llamados de Catalan-Mersenne. Esta sucesión puede ser definida de la forma recursiva siguiente:

\displaystyle a_n= 2^{a_{n-1}}-1 \\ \\ \text{\small donde} \ \; a_0 = 2 \ \;\text{\small tenemos \'orbitas de 2 \textit{ad infinitum}} \\ \\ \text{\small y sus cinco primeros n\'umeros son:}\\ \\ C_n=\{2, 3, 7, 127, 170141183460469231731687303715884105727,\ldots\} (2)
como muy bien los tienen catalogados en la referencia A007013. Por lo tanto, en este catálogo de OEIS, nuestro número Deimos es el C5.

¿Son todos los números de esa sucesión de Catalan-Mersenne primos?. Los cinco primeros que he escrito en (2) son primos, sí. Pero, ¿y el sexto y los siguientes?. El sexto Catala-Mersenme es precisamente, C6, Fobos, nuestro siguiente número marciano:

\displaystyle \text{\small Fobos}=2^{170141183460469231731687303715884105727} - 1 = 111 \ldots 111_2  (3)
La expansión decimal del número Fobos es demasiado larga para ser escrita explicitamente. Pero escrita en base 2 tiene exactamente Deimos 1’s, porque es un número repunit en base 2. Ningún terrícola sabe decir si Fobos es un número primo. Pero, ya te voy a decir yo que Fobos es un número primo. Joerg Arndt sabe muy bien que Fobos, C6, es un número primo. Joerg Arndt afirmaba hace algún tiempo que Fobos sólo podía ser primo, o pseudoprimo de Fermat con factores no menores a 10 elevado a 51. Pero, ahora sabe ya que Fobos es un número primo. De hecho, todos los números de la sucesión Catalan-Mersenne son primos, los infinitos, y eso demuestra que hay infinitos números primos Mersenne. Si Fobos no fuera primo, sería, como he dicho antes, un pseudoprimo de Fermat en base 2, y todos los infinitos siguientes números marcianos (o Catalan-Mersenne, como prefieras) serían también pseudoprimos de Fermat. Pero, alguien en su sano juicio puede creer que un número como C7 (El hijo de Fobos), o superior, no es un número primo?. ¿En qué cabeza cabe?. Por supuesto que el número marciano:

\displaystyle C_7=2^{2^{2^{127} - 1} - 1} - 1 = \\ \\ = 2^{2^{170141183460469231731687303715884105727} - 1} - 1 (4)
es un número primo. Los infinitos Catalan-Mersenne lo son, ¡terrícola de poca fe!. Pero antes de ir a las demostraciones matemáticas, necesitamos unas pocas definiciones y alguna que otra curiosidad sobre esa clase de números. Para ello, amigo terrícola, permíteme que defina primero la Ciclotomia Transcendente de los números Catalan-Mersenne. Al igual que existen los polinomios ciclotómicos, podemos definir algo parecido, pero en el terreno de los números marcianos (Catalan-Mersenne). Para ello, en lugar de un polinomio estándar, nos fijaremos en la sucesión de funciones exponenciales de la siguiente clase:

\displaystyle F(x)_n=\{x,\ x^x-1,\ x^{x^x-1}-1,\ x^{x^{x^x-1}-1}-1,\ {x^{x^{x^{x^x-1}-1}-1}-1},\ldots \} (5)
Esta sucesión es monótona decreciente para ciertos valores reales de x, y monótona creciente para otros. En general, es fácil ver que para valores reales, 0 < x < 1, se obtienen sucesiones que decrecen y convergen hacia ciertos valores, según los casos. En cambio, para números reales x > 2, se obtienen sucesiones que crecen y convergen hacia ciertos valores. Pero, sólo existe un único número real capaz de estabilizar esa sucesión de funciones de modo que se mantiene igual a una constante, o punto fijo. Ese número real lo llamaré Tahawus, y es este:

\displaystyle \text{\small Tahawus}= 1.7767750400970546974797307440387567486374110343292961390843740\ldots (6)
Lo llamo número de Tahawus, por que fue el profesor Richard P. Stanley, otro “alienígena” (aunque de Tahawus), uno de los primeros en demostrar que ese número es transcendente y por lo tanto irracional. ¿Cómo se puede hallar ese número?. Hay muchas formas, pero siempre resulta ser la raíz real positiva de la ecuación:

\displaystyle x^x-1=x (7)
como así nos lo propuso Rick L. Shepherd. pero también es la única raíz real positiva de la función diferencia entre dos funciones consecutivas de F(x)n:

\displaystyle x= x^x-1, \\ \\ x^x-1=x^{x^x-1}-1, \\ \\ x^{x^x-1}-1=x^{x^{x^x-1}-1}-1, \\ \\ x^{x^{x^x-1}-1}-1=x^{x^{x^{x^x-1}-1}-1}-1 \\ \\ \ldots (8)
Estas funciones ciclotómicas transcendentes son extremadamente interesantes. Aquí os presento las representaciones gráficas de sus diferencias, (8), y en las que podemos observar cómo todas intersectan al eje de abscisas en los puntos (0, 0), (1, 0) y (Tahawus, 0):

Observemos ahora las gráficas de los logaritmos de algunas de las funciones F(x)n, en concreto, las de estas:

\displaystyle \log F(x)_4= \log \left(x^{x^{x^{x^x-1}-1}-1}-1 \right), \\ \\ \log F(x)_3= \log \left(x^{x^{x^x-1}-1}-1 \right), \\ \\ \log F(x)_2= \log \left(x^{x^x-1}-1 \right), (9)
vemos que todas tienen un polo en (1,0), y que F(x)3 ni siquiera está definida en el intervalo real [0,1], pues para valores de x, que se aproximan a 1 desde la derecha, la función de aproxima a – 8, cae al pozo y ya no vuelve.

Amigo terrícola, te estarás preguntando. “Ok, todo muy bonito, pero ¿para qué sirve todo eso?”. Sólo son matemáticas. Además, ¿no te parece interesante que exista un número real, Tahawus, distinto a 0 y a 1, con la propiedad de hacer que cualquier función F(x)n, de esa clase, sea igual a Tahawus?

\displaystyle x=\text{\small Tahawus}= 1.776775040097054697\ldots, \\ \\ F(\text{\small Tahawus})_4=x^{x^{x^{x^x-1}-1}-1}-1=\text{\small Tahawus}, \\ \\ F(\text{\small Tahawus})_3= x^{x^{x^x-1}-1}-1= \text{\small Tahawus}, \\ \\ F(\text{\small Tahawus})_2=x^{x^x-1}-1=\text{\small Tahawus} \ldots (10)
Los números Mersenne poseen una peculiaridad, y es que para que un número Mersenne sea primo debe de serlo el exponente del 2 que lo crea. Pero, eso es sólo una condición necesaria, no suficiente. Esa misma condición es válida para los números Catalan-Mersenne, pero estos últimos tienen además otra peculiaridad añadida, y es que si un número Catalan-Mersenne no es primo, entonces todos los que van tras él (su hijo y demás descendientes) tampoco lo serán. Imagina la sucesión de números catalan-Mersenne como una linea recta horizontal de ladrillos, todos del mismo tamaño, pero los que representan a Catalan-Mersenne primos son de color verde y los que representan a los no primos son de color rojo. Pues bien, si empezamos nuestra obra de albañilería desde la izquierda, veremos que los primeros ladrillos son todos de color verde, es decir, primos. Y si eventualmente uno de los ladrillos no fuera primo entonces todos los infinitos siguientes deberian ser rojos también, como él. Todo eso nos lo contó hace años Leonard Eugene Dickson, cuando hizo referencia a una carta que respondió Catalan a Édouard Lucas, allá por 1876, en la que le decía lo rápido que crecían los números de esa sucesión, y cómo el número C6, Fobos, podía ser muy bien primo también, como su padre (C5 Deimos) y sus abuelos. Landon Curt Noll nos contó hace poco cómo había comprobado que Fobos no posee factores por debajo de 5×1051, y para ello hizo uso de su programa calc.

Intentemos ahora factorizar algunos números que merodean cerca de esos números marcianos. EL profesor Robert Israel, de Princeton, nos ofreció hace poco una prueba de que si un numero marciano an (fijémonos en la sucesión (2) que escribí arriba, en el sexto párrafo de este artículo) era primo entonces ese an divide a an+1-1 para todo n. Por ejemplo, lo que nos dice R. Israel es que, siendo an = 127, entonces

\displaystyle a_5 = 2^{127}-1 =\text{\small Deimos},

con lo que a_5 -1 =\text{\small Deimos} - 1, debe ser divisible por 127. Y efectivamente lo es

\displaystyle \frac{a_5 - 1}{127} = \frac{2^{127}-2}{127} =1339694357956450643556592942644756738
Lo que no nos dice explícitamente R. Israel es que esos números, que son pares, no sólo son divisibles por el anterior de la sucesión, sino por todos y cada uno de los anteriores Empezaré por la secuencia principal, la de los números marcianos, y la llamaré a(n), y después obtendremos desde ella otras sucesiones cercanas, la b(n) y la d(n):

\displaystyle a_1=2,\\ a_2=2^2-1)=3,\\ a_3=2^{2^2-1}-1))=7,\\ a_4=2^{2^{2^2-1}-1}-1=127,\\ a_5=2^{2^{2^{2^2-1}-1}-1}-1)=170141183460469231731687303715884105727,\\ a_6=2^{2^{2^{2^{2^2-1}-1}-1}-1}-1)=\text{\small Fobos},\\ \ldots \\ \\ b_1=2-1=1,\\ b_2=2^2-2=2,\\ b_3=2^{2^2-1}-2=6,\\ b_4=2^{2^{2^2-1}-1}-2=126,\\ b_5=2^{2^{2^{2^2-1}-1}-1}-2=170141183460469231731687303715884105726,\\ b_6=2^{2^{2^{2^{2^2-1}-1}-1}-1}-2=\text{\small Fobos-1},\\ \ldots \\ \\
Y ahora los dividimos por 2, porque, no sé si lo habrás notado, pero, todos los números exomarcianos bn son pares, y así obtenemos los exomarcianos dn:

\displaystyle d_2=\frac{2^2-2}{2}=2-1=1,\\ \\ d_3=\frac{2^{2^2-1}-2}{2}=2^{2^2-2}-1= 3,\\ \\ d_4=\frac{2^{2^{2^2-1}-1}-2}{2}=2^{2^{2^2-1}-2}-1=63,\\ \\ d_5=\frac{2^{2^{2^{2^2-1}-1}-1}-2}{2}=2^{2^{2^{2^2-1}-1}-2}-1=\frac{\text{\small Deimos-1}}{2},\\\\ d_6=\frac{2^{2^{2^{2^{2^2-1}-1}-1}-1}-2}{2}=2^{2^{2^{2^{2^2-1}-1}-1}-2}-1=\frac{\text{\small Fobos-1}}{2},\\ \\ \ldots \\ \\
En general tenemos que:

\displaystyle d_n=2^{a_n-1} -1
es divisible por an, si ese exponente pertenece a la sucesión Catalan-Mersenne (número marciano), y además, también será divisible por todos los números que le anteceden, es decir por a1, a2, …, an-1. Eso es así por el pequeño teorema de Fermat. Y si recordamos, a vuelapluma este teorema, que dice:

\displaystyle a^{p-1} \equiv 1 \pmod p.

siempre es cierto, si el entero a no es divisible por el número primo p. O expresado de otra forma:

\displaystyle \frac{d_p}{p}=\frac{a^{p-1} - 1}{p}, \ \; \text{\small es un n\'umero entero distinto de 0.}
En nuestro caso, el de los número Catalan-Mersenne, vemos que es estrictamente cierto, incluso para p = a1 = 2, ya que también es a = 2, y por lo tanto, al ser el mismo número, el pequeño teorema de Fermat nos dice que no dará una división entera. Efectivamente, para ese caso, de p = 2, esa división es d2/p = 1/2.

Ahora vamos a demostrar que todos los números marcianos (Catalan-Mersenne) son números primos. Para ellos debemos fijarnos es la extensión del pequeño teorema de fermat que dice:

\displaystyle A = a^{p^n-1}-1 \equiv  0 \pmod p
Lo cual quiere decir que si el número a no es divisible por el número primo p, el cual aparece elevado a cierto número natural n, entonces en número A es divisible por el número primo p. Dicho de otra forma:

\displaystyle A = a^{n-1}-1 \equiv  0 \pmod p
es siempre divisible por p = cad(n) si ese p es primo, y sabiendo que cad(n) es el radical de n. El radical de un número primo es siempre el mismo número primo. El radical de un número primo elevado a cualquier número natural es también siempre el mismo número primo. El radical de un número cualquiera, sea primo o no, es siempre el producto de sus factores primos despojados de los exponentes mayores a la unidad, Por ejemplo rad(23 × 3 × 54 × 7) = 2 × 3 × 5 × 7 = 210.
Saludos alienígenas a todos
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: