TARDÍGRADOS

Ciencia en español -ʟᴀ ʀᴀᴢóɴ ᴇsᴛá ᴀʜí ғᴜᴇʀᴀ-

Expansiones naturales completas de los productos de Euler

Posted by Albert Zotkin en septiembre 11, 2016

Hola amigos de Tardígrados. Siguiendo esta secuencia matemática, hoy vamos a ver cómo expresar un Producto de Euler, de tal forma que el índice del producto corra no únicamente sobre todos los números primos, sino sobre los sucesivos números naturales.

El primer caso que vamos a ver es el Producto de Euler asociado a función Zeta de Riemann. Este producto es:

\displaystyle \prod _{p}(1-p^{-s})^{-1}=\prod _{p}{\Big (}\sum _{n=0}^{\infty }p^{-ns}{\Big )}=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\zeta (s) (1)
donde el índice del producto corre sobre los sucesivos números primos. Ahora, aprovechando la función característica de los números primos que os presenté en el artículo anterior, vamos a ver cómo es posible hacer que el índice de ese producto infinito (porque sabemos que hay infinitos números primos) corra ahora sobre los sucesivos números naturales. Y la respuesta es simplemente esta:

\displaystyle \prod_{p}(1-p^{-s})^{-1}=\prod_{n=1}^{\infty}(1-\chi _{{{\mathbb  {P}}}}(n)n^{-s})^{-1}=\zeta (s) (2)
donde obviamente ?P es la función característica de los números primos. Una forma inédita de expresar la función zeta de Riemann, parece, y descubierta por mi 😛 Vemos también, que puesto que sabemos usar la función característica de los números compuestos (los números no primos), es posible definir una nueva función zeta relacionada con ellos, así:

\displaystyle \zeta_{NP} (s)=\prod_{n=2}^{\infty}(1-\chi _{{{\mathbb  {NP}}}}(n)n^{-s})^{-1} (3)
donde es más que obvio que la función caracteristica ?NP es la de los números no primos. Y llegamos a la conclusión de que la función zeta de Riemann y esta ?NP están relacionadas por medio de algún tipo propiedad de complementariedad, que todavía no vislumbro. Esta peculiar función zeta ?NP posee un polo en n = 1, por eso el índice del producto empieza a correr desde n = 2. Y lo primero que advertimos en la evaluación de dicha función es el notable y absolutamente increible resultado siguiente:

\displaystyle \zeta_{NP} (2)= \frac{2}{\zeta(2)}= \frac{12}{\pi^2} (4)

Saludos

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: