TARDÍGRADOS

Ciencia en español

¿Es la Hipótesis de Riemann un problema indecidible?: empecemos con la Conjetura de Collatz

Posted by Albert Zotkin en diciembre 11, 2015

Quizás la dificultad en resolver la Hipótesis de Riemann tenga que ver con el hecho de que pueda ser un problema indecidible. Si esa hipótesis (o conjetura) es cierta o no, pero sabemos que es indecidible, entonces nunca tendremos una prueba matemática de ella.

Podemos divagar un poco sobre este tema y presentar una conjetura menos compleja (aparentemente) que la de Riemann. Se trata de la Conjetura de Collatz, o tambien conocida como el problema 3n+1. Aquí tenemos un video de Eduardo Sáenz de Cabezón que nos la explica muy sencillamente:

Para esta conjetura se define la siguiente iteración:
flow1

es decir, tenemos una función sobre los enteros positivos definida así:

\displaystyle f(n) = \begin{cases} \tfrac{n}{2}, & \mbox{si }n\mbox{ es par} \\ 3n+1, & \mbox{si }n\mbox{ es impar} \end{cases} (1)

Por ejemplo, para n=2781 tendriamos la siguiente sucesión, la cual terminaría en el 1:


2781➞8344➞4172➞2086➞1043➞3130➞1565➞4696➞2348➞1174➞587➞1762➞881➞2644
➞1322➞661➞1984➞992➞496➞248➞124➞62➞31➞94➞47➞142➞71➞214➞107➞322➞161
➞484➞242➞121➞364➞182➞91➞274➞137➞412➞206➞103➞310➞155➞466➞233➞700➞
350➞175➞526➞263➞790➞395➞1186➞593➞1780➞890➞445➞1336➞668➞334➞167➞
502➞251➞754➞377➞1132➞566➞283➞850➞425➞1276➞638➞319➞958➞479➞1438➞
719➞2158➞1079➞3238➞1619➞4858➞2429➞7288➞3644➞1822➞911➞2734➞1367➞
4102➞2051➞6154➞3077➞9232➞4616➞2308➞1154➞577➞1732➞866➞433➞1300➞
650➞325➞976➞488➞244➞122➞61➞184➞92➞46➞23➞70➞35➞106➞53➞160➞80➞
40➞20➞10➞5➞16➞8➞4➞2➞1

Se sabe ya que la conjetura de Collatz es un problema indecidible, es decir, no se puede probar matemáticamente. Pero eso no quiere decir que la conjetura sea falsa o cierta.

Yo me he animado a crear una función tipo Collatz, que posee la siguiente forma:

\displaystyle h(n) = \begin{cases} 3n+1, & \mbox{si }n\mbox{ es par} \\ \tfrac{n+1}{2}, & \mbox{si }n\mbox{ es impar} \end{cases} (2)

Esta función tipo Collatz da, por ejemplo, para n=101:

101➞51➞26➞79➞40➞121➞61➞31➞16➞49➞25➞13➞7➞4

y para cualquier entero positivo siempre parece que tenemos que la sucesión termina en 4, no en 1 como la anterior. Pero, se trata de ver si la Hipótesis de Riemann es indecidible y qué relación tiene con la conjetura generalizada de Collatz. Lo primero que observamos en toda función de Collatz es que siempre entran en juegos los números pares e impares positivos. Y si nos fijamos, la sucesión de los números primos, nace precisamente de ir cribando los números pares y los números impares (y dentro de los impares se va cribando los múltiplos de 3, de 5, etc), como en la famosa Criba de Eratóstenes. Se me ocurre esta función de Collatz, donde los números primos tienen un papel central:

\displaystyle g(n) = \begin{cases} 3n+1, & \mbox{si }n\mbox{ es primo} \\ f(n), & \mbox{si }n\mbox{ no es primo} \end{cases} (3)
y donde f(n) es la función de Collatz que primero presenté (1). Esta función, así definida, parece que converge siempre hace el número 2, para cualquier n desde el que empecemos la sucesión. Por ejemplo, para n=2710, tendremos:

2710➞1355➞4066➞2033➞6100➞3050➞1525➞4576➞2288➞1144➞572➞286➞143➞430➞
215➞646➞323➞970➞485➞1456➞728➞364➞182➞91➞274➞137➞412➞206➞103➞
310➞155➞466➞233➞700➞350➞175➞526➞263➞790➞395➞1186➞593➞1780➞890➞
445➞1336➞668➞334➞167➞502➞251➞754➞377➞1132➞566➞283➞850➞425➞1276➞
638➞319➞958➞479➞1438➞719➞2158➞1079➞3238➞1619➞4858➞2429➞7288➞3644
➞1822➞911➞2734➞1367➞4102➞2051➞6154➞3077➞9232➞4616➞2308➞1154➞577➞
1732➞866➞433➞1300➞650➞325➞976➞488➞244➞122➞61➞184➞92➞46➞23➞70➞
35➞106➞53➞160➞80➞40➞20➞10➞5➞16➞8➞4➞2

o para n=3001, que es un número primo, tendremos la sucesión siguiente:

3001➞1624➞812➞406➞203➞610➞305➞916➞458➞229➞688➞344➞172➞86➞43➞130➞65➞
196➞98➞49➞148➞74➞37➞112➞56➞28➞14➞7➞22➞11➞34➞17➞52➞26➞13➞40➞
20➞10➞5➞16➞8➞4➞2

De igual forma que las anteriores funciones de Collatz, esta g(n), donde los números primos juegan un papel predominante, da lugar a otra conjetura que también es un problema indecidible, es decir, no se puede demostrar que para cualquier entero positivo n siempre se obtiene una sucesión que converge hacia el número 2. Puesto que la hipótesis de Riemann tiene mucho que ver con los números primos, parece evidente suponer que esta ultima conjetura de Collatz que he propuesto tenga algo que ver con la de Riemann. Y no resultaria una gran sorpresa el descubrimiento de que la propia Hipótesis de Riemann es simple y llanamente un problema indecidible.

Saludos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: