TARDÍGRADOS

Ciencia en español

El mito de la expansión del universo: la anisotropía Doppler demuestra que la Teoria del Big Bang es un camelo, una pura patraña

Posted by Albert Zotkin en junio 30, 2015

Queridos y amables lectores de Tardígrados, hace tiempo que vengo reflexionando sobre el origen del universo, sopesando los datos científicos experimentales, y he llegado a una conclusión:

“Nuestro universo nunca tuvo un origen, ni de espacio ni de tiempo. Nuestro universo es estático, infinito en espacio y tiempo, nunca tuvo un principio, y nunca tendrá un final, y permanecerá eternamente idéntico a sí mismo”

Llegué a esta conclusión después de examinar minuciosamente el efecto Doppler que Hubble descubrió en galaxías y cúmulos galácticos distantes. Incluso el mismo Edwin Hubble siempre tuvo la duda de si atribuir ese efecto Doppler a un movimiento de alejamiento (recesión) o a otra causa, el tipo era un científico serio y el método científico le impedía afirmar rotundamente que el corrimiento al rojo de la luz de esas galaxias se debía sin duda a una velocidad cinemática de recesión. Pero, si no es un movimiento de recesión el que causa ese corrimiento hacia el rojo de la luz, ¿qué es?. La clave está en el modelo matemático que usemos para describir ese efecto Doppler. Hace ya mucho tiempo que descubrí que el mejor modelo matemático para describir el efecto Doppler, porque es autosimilar, es el siguiente:

\displaystyle f = f_0 \exp \left(\cfrac{v}{c}\right) (1)
\displaystyle \lambda = \lambda _0 \exp \left(- \cfrac{v}{c}\right) (2)
donde obviamente, f es la frecuencia de la luz medida por el observador, f0 es la frecuencia original emitida por la fuente de luz, v es la velocidad relativa entre fuente y observador, y c es una constante (299792458 m/s) que muchos dicen que es la velocidad de la luz en el vacío (yo no me atrevería a decir tanto). λ es la longitud de onda medida, y λ0 es la longitud de onda original.

Hay que advertir también que, la ley de Hubble, se ha convertido en una herramienta estándar para el cálculo de distancias de objetos distantes como galaxias, cúmulos galácticos o quasares. Tan es así que ya nadie discute si un corrimiento al rojo concreto corresponde a cierta distancia astronómica, lo dan por hecho. Es algo muy parecido a la famosa conjetura de Riemann respecto a los ceros de la función Zeta (se da por cierta la conjetura para extraer de ella teoremas a cerca de los números primos). La ley de Hubble, la cual relaciona (o mejor decir que correlaciona) la distancia r con la supuesta velocidad de recesión v, resulta en una ecuación lineal de la siguiente forma

\displaystyle \exp \left(\cfrac{v}{c}\right)= \exp \left(\cfrac{r}{R_0}\right) \\ \\ \\ \\ v  = \cfrac{cr}{R_0}

donde la constante R0 se llama radio de Hubble, como no podía ser de otra forma.

exp

Pero, pensemos un poquito. Seamos un poco escépticos y no nos creamos a pies juntillas que esa correlación lineal de que nos habla la ley de Hubble sea la verdad absoluta de la que no quepa ni siquiera dudar en ningún caso. Pensemos que nuestro universo (al menos nuestro universo observable) es básicamente estático y homogéneo, y que las galaxias y cúmulos de ellas se mueven con distintas velocidades relativas unas de otras, como las partículas de un gas. Pensemos, sólo por un momento, que nuestro universo (observable) no se está expandiendo y por lo tanto una supuesta expansión acelerada sería aún más impensable. Entonces al aplicar nuestra fórmula de doppler (1), observamos algo inédito: galaxias que en principio hemos dicho que se mueven con velocidades aleatorias, ahora resulta que los corrimientos al rojo son más pronunciados que los corrimientos al azul. Efectivamente, nuestra fórmula (1) produce, para un mismo valor absoluto de v, un mayor desplazamiento de la frecuencia. ¿Y qué importancia tiene esto?. Si ofrecemos esos datos a alguien para que, haciendo ingeniería inversa, reconstruya el puzzle y nos diga cuales eran las velocidades originales de cada una de las galaxias tabuladas, podria concluir erróneamente que dichas galaxias están dotadas mayoritariamente de velocidades de recesión si utiliza una fórmula Doppler distinta a la que hemos utilizado nosotros. Por ejemplo, si en lugar de las fórmulas (1) y (2), la cuales son completas porque son autosimilares, utiliza estas otras, la cuales son sólo una aproximación de primero orden de las anteriores:

\displaystyle f = f_0  \left(1+\cfrac{v}{c}\right)  (3)
\displaystyle \lambda = \lambda_0  \left(1-\cfrac{v}{c}\right)  (4)
llegará a la conclusión de que las galaxias (estadísticamente) se están alejando unas de otras. Pero, nosotros, que somos quienes hemos elaborado los datos iniciales, y se los hemos proporcionado a modo de acertijo, sabemos que las galaxias se mueven con velocidades aleatorias, tanto de acercamiento como de alejamiento. Sólo hay que pensar un poquito para darse cuenta de que todo esto de la expansión del universo es un camelo, producto de una alucinación por empecinarse en usar modelos matemáticos incorrectos.

Si, amigo lector de Tardígrados, el Big Bang nunca existió, ni la madre que lo parió tampoco. La expansión del universo es una patraña, un gran bulo que nos están metiendo. Cuando usas la Ley de Hubble para decretar a qué distancia debe estar una galaxia estás usando una herramienta ficticia que produce conclusiones engañosas. El método científico nos impide afirmar que sea siempre cierto que cuanto más alejada está una galaxia mayor es el corrimiento al rojo de su luz. ¿Qué pasa?. ¿Aún no te crees lo que te estoy contando?. ¿Aún piensas que, de verdad, el universo se expande y que, por lo tanto, una vez hubo un Big Bang?. Insistamos un poco más en todo esto. Desechemos la Ley de Hubble, de momento, como herramienta para catalogar distancias galácticas. Pensemos, como he hecho antes, que las velocidades de galaxias, quasares y cúmulos, se distribuyen uniformemente por el espacio como las partículas de un gas.

Pues bien, presentamos a nuestro investigador, una tabla con los corrimientos de una determinada longitud de onda, en concreto de la longitud de onda original λ0 = 486 nm (nanómetros). Esta longitud de onda corresponde a la linea verde-azulada del espectro del átomo hidrógeno para la transición que va desde n=4 a n=2. Es decir, la energía de ese fotón emitido en esa transición atómica es de 2.55 eV (electrón-voltios). Como digo, a nuestro investigador de astrofísica, le vamos a presentar una tabla con 1000 valores de corrimientos al rojo de esa longitud de onda λ0, que elaboraremos aplicando nuestra fórmula (2) de Doppler. Este es el gráfico de los puntos que representa las 1000 longitudes de onda:
f

El investigador, desde esta tabla, debe usar su fórmula Doppler para elaborar una tabla de velocidades. Y hemos supuesto ya que el investigador usará la fórmula Doppler incompleta (4). Con lo cual las velocidades que hallará serán las calculadas así:

\displaystyle \lambda = \lambda_0  \left(1-\cfrac{v}{c}\right) \\ \\ \\ \\  v=c\left(1-\cfrac{\lambda}{\lambda_0}\right) (5)
La tabla de velocidades que hallaría sería esta:
v1

Hemos asumido que la velocidad de la luz es c=1, y que las velocidades no superan dicha velocidad máxima. Observamos lo siguiente: aun siendo el número de velocidades de acercamiento hacia el observador aproximadamente igual al número de velocidades de recesión, vemos que las de acercamiento están más comprimidas en el intervalo [0, 0.6]. En cambio las velocidades de recesión están expandidas dentro de un intervalo más amplio, el [0, -1.6]. Si el investigador asume que la fórmula de Doppler empleada para deducir las velocidades es la correcta, entonces llegará a la conclusión de las galaxias que se alejan del observador lo hacen a mayor velocidad que las galaxias que se acercan.

Supongamos ahora que el investigador es muy avanzado y en lugar de la fórmula de Doppler anterior, y usa la fórmula del Doppler relativista siguiente, que se supone es más precisa:

\displaystyle \lambda = \lambda_0  \sqrt{\cfrac{1 - \tfrac{v}{c}}{1 + \tfrac{v}{c}}} \\ \\ \\ \\   (6)
la cual al resolver para v, tenemos ;

\displaystyle v= c\cfrac{\lambda_0^2 -\lambda^2}{\lambda_0^2 +\lambda^2} \\ \\ \\ \\   (7)

y el gráfico de velocidades para esa distribución de 1000 longitudes de onda sería este:
v2

Es decir, observando este último gráfico, el investigador vería incluso más distorsión que en el anterior, por lo que pensaría que las velocidades de recesión estarían en un intervalo incluso más amplio, el [0, -3.5], mientras que las velocidades de acercamiento estarían más apelotonadas en en intervalo [0, 0.5], casi apelotonadas alrededor del 0.

Por último, veamos qué ocurre cuando el investigador usa la misma fórmula Doppler que hemos usado nosotros para calcular la tabla de longitudes de onda que le hemos presentado. Es decir si usa la ecuación (2), las velocidades se deducen así:

\displaystyle v= -c\log\left ( \cfrac{\lambda}{\lambda_0} \right) \\ \\ \\ \\   (8)

y el gráfico para esta distribución de velocidades sería este:

v3

y observamos cómo estas 1000 velocidades se distribuyen al azar uniformemente en un único intervalo [-1, 1], con lo cual el investigador sólo podrá concluir en este caso que las galaxias se acercan o se alejan aleatoriamente, sin poder extraer ninguna correlación significativa.

Saludos

4 comentarios to “El mito de la expansión del universo: la anisotropía Doppler demuestra que la Teoria del Big Bang es un camelo, una pura patraña”

  1. satabistha said

    Hola.

    Yo creo que el verdadero problema es saber si existe un universo externo a la mente que lo observa.

    En las conversaciones de Einstein con Tagore, publicadas en el UCLA en los años 30, el primero reconocía que su creencia en la existencia de un mundo natural externo a la mente que lo percibe era religiosa (como sinónimo de irracionalidad) ya que nunca podría ser científicamente verificada.

    Esta cuestión es ontológicamente primordial y sería la explicación del porqué de muchos problemas aparente irresolubles.

    Un saludo.

  2. Margarita Sanz said

    Todo eso está muy bien, pero no veo en tu teoría la relación entre distancia y corrimiento al rojo, que sí ve en la Ley de hubble, ya que las distancias a las galaxias se pueden calcular por otros medios, como las cefeidas por ejemplo.

    • satabistha said

      Lo que sucede en el fondo es que la física se basa en las matemáticas y éstas son de origen mental por antonomasia. Es decir, que lo que llamamos física tan sólo es medición. ¿Puede existir la medición sin una mente que la realice?

      Creemos, por que así nos lo han dicho, que la base del mundo físico son leyes matemáticas. Pero si aceptamos que tales matemáticas tan sólo son relaciones de mediciones entonces tendremos que aceptar que lo que hemos tomado como mundo físico es la proyección de nuestra propia actividad mental. Vivimos en un mundo virtual y no nos estamos dando cuenta de ello.

      Qué es el mundo físico ajeno e independiente a nuestra mente jamás podremos saberlo. Con esto incluyo la percepción de los sentidos.

      Si dejáramos de devanarnos los sesos con la exactitud y la relación de las distintas mediciones y atendiéramos más a la psicología de la percepción, descubriríamos unas cuentas cosas sorprendentes. Es en la investigación de la percepción donde están todos los secretos por descubrir.

  3. Julio said

    Tengo la misma impresión que tú, que el universo ha estado alli, y que no existio jamas el big ban y la expansión del universo. Estoy totalemte de acuerdo con tu apreciación de las cosas. Y me parece aun más loca la idea de que el universo se retraerá y tendrá su fin. No se como di con tu espacio, muy intereante, en todo caso en hora buena. Saludos desde el otro lado del charco.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: