TARDÍGRADOS

Ciencia en español

Decibelios de un agujero negro

Posted by Albert Zotkin en mayo 17, 2014

Un supuesto agujero negro (si es que existen realmente) se comportaría de forma análoga a una antena parabólica. En una antena parabólica inciden ondas electromagnéticas, en ese supuesto agujero negro inciden también ondas de materia cuando partículas con masa caen hacia él (ondas de De Broglie). De modo que un agujero negro posee una “ganancia de antena” para ondas de materia, de igual forma que una antena para onda electromagnéticas.

Consideremos ahora el radio de Schwarzschild de un agujero negro:

\displaystyle      r_\mathrm{sh} =\frac{2GM}{c^2}   (1)
El área de la esfera definida por ese radio será entonces:

\displaystyle      A_{sh} = 4 \pi r_{sh}^2 = 4 \pi \left( \frac{2 G M}{c^2} \right)^2 = \frac{16 \pi G^2 M^2}{c^4} \;  (2)
De igual forma, la ganancia de una antena parabólica es:

\displaystyle      G_{\mathrm{antena}} = \frac{4 \pi A}{\lambda^2}e_A = \frac{\pi^2d^2}{\lambda^2}e_A  (3)
donde A \mathrm{,\ } d \mathrm{,\  } \lambda \mathrm{,\  } e_A son respectivamente, el área de la apertura de antena, el diámetro de la antena parabólica, la longitud de onda de la onda incidente, y un parámetro adimencional que puede ir de 0 a 1.

La ganancia de una antena es la razón entre la potencia recibida por la antena desde una fuente emisora a lo largo de su eje respecto de la potencia recibida por una hipotética antena isotrópica. La ganancia se mide en belios, B, o en submúltiplos como el decibelio (dB).

Por lo tanto, para un agujero negro, tendremos en su esfera de Schwarzschild, que la ganancia sería:

\displaystyle    G_{\mathrm{antena}} = \frac{64 \pi^2 G^2 M^2}{\lambda^2 c^4}\, e_A  (4)
y si decimos que si la longitud de onda de esa onda incidente está definida por la longitud de onda de una onda de materia (onda de De Broglie) \lambda= \frac{h}{mv}, tendremos una ganancia de:

\displaystyle    G_{\mathrm{antena}} = \frac{64 \pi^2 G^2 M^2 m^2 v^2}{h^2 c^4}\, e_A  (5)

La interpretación física de esa fórmula de la ganancia de una agujero negro será pues una medida de la probabilidad de que una partícula con masa m que cae hacia la barrera de potencial gravitatorio de dicho agujero negro NO escape al mismo mediante efecto de túnel cuántico. Si la partícula masiva es atrapada con suceso seguro entonces la ganancia del agujero negro para el momento de esa partícula sería máxima. Examinando esa fórmula de ganancia (5), vemos que sólo existiría una ganancia nula para partículas con momento nulo, p = mv = 0. Para todas las demás siempre existiría una probabilidad no nula de NO escapar por efecto túnel.

Esto quiere decir, que la única posibilidad de que un agujero NO atrapara nunca (suceso seguro) a toda partícula que cae en él sería que el parámetro eA (llamado eficiencia de apertura) fuera siempre nulo.

Veamos qué ocurre en el caso de que sea un fotón el que entra en la barrera de potencial gravitatorio del agujero negro. En tal caso, aunque el fotón no posee masa (m = 0), eso no implica que la ganancia de antena del agujero negro se anulara, porque el fotón posee momento no nulo, y en tal caso tendriamos que aplicar la fórmula (4) de ganancia de antena. Si no aplicáramos la fórmula (4) entonces una ganancia nula indicaría que la probabilidad de que el fotón escapara del agujero negro sería el suceso seguro, es decir siempre escaparía, nunca entraria en el agujero negro. Evaluando un poco esa fórmula (4) vemos que sólo para fotones con longitud de onda infinita, la ganancia sería nula, es decir, en tal caso no serían atrapados por el agujero negro.

Para un fotón la ganancia puede también ser expresada en función del momento p, así:

\displaystyle    G_{\mathrm{antena}} = \frac{64 \pi^2 G^2 M^2 p^2}{h^2 c^4}\, e_A  (6)

y como la frecuencia del fotón y su longitud de onda están relacionas así \lambda\ \nu = c.

La ganancia de antena también puede ser expresada en función de su frecuencia así:

\displaystyle    G_{\mathrm{antena}} = \frac{64 \pi^2 G^2 M^2 \nu^2}{ c^6}\, e_A  (7)
Podemos buscar alguna relación entre la ganancia de antena de un agujero negro y la Radiación de Hawking. Sabemos que la tenperatura de Hawking para que exista esa radiación es:

\displaystyle    T_H={\hbar\,c^3\over8\pi G M k}  (8)

donde k es la constante de Boltzmann.

Fijémonos ahora en la última ecuación (7) de la ganancia. Podemos expresarla, pues, en función de la temperatura de Hawking y de la frecuencia de la onda de materia incidente, así:

\displaystyle    \cfrac{\hbar^2}{k^2\;T_H^2}=  \frac{64 \pi^2 G^2 M^2 }{ c^6}  (9)
\displaystyle    \boxed{G_{\mathrm{antena}} =\left (\cfrac{\hbar\;\nu}{k\;T_H}\right )^2\;e_A}  (10)
observamos que \hbar\;\nu es la energía de la partícula incidente (onda de materia incidente), y que k\;T_H viene a ser algo así como la energía del agujero negro por mol. Efectivamente si aplicamos la ley de los gases nobles a un agujero negro, tendremos,

\displaystyle     PV = kNT  (11)

donde N, es el número de moles. Eso indicaría que

\displaystyle    G_{\mathrm{antena}} =\left (\cfrac{\hbar\;\nu}{k\;T_H\;\sqrt{1/e_A}}\right )^2  (12)

es decir, el número de moles del agujero negro sería, sin lugar a dudas, el inverso de la raíz cuadrada de la eficiencia de apertura,

\displaystyle    N =\cfrac{1}{\sqrt{e_A}}  (13)

y esto implica también que la presión de un agujero negro por mol sería:

\displaystyle    P = \frac{3\; c^9\; \hbar }{256\;G^4\; M^4\; \pi^2}  (14)

Saludos

Una respuesta to “Decibelios de un agujero negro”

  1. […] Decibelios de un agujero negro mayo 17, 2014 […]

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: